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Abstract 
 
Viola et al. have introduced a rapid object detection framework based on a boosted cascade of simple 
feature classifiers. In this paper we extend their work and achieve two contributions. Firstly, we 
propose a novel feature definition and introduce a feature shape mask to represent it. The defined 
features are scale-invariant which means the features can be rescaled easily and reduce the 
performance degradation introduced by rounding. The feature shape mask can be computed 
efficiently and expanded conveniently, which can simulate feature shapes used by others and thus 
enriches the haar-like feature pool. Secondly, we present an improved cascade-structured classifier 
which is called fuzzy cascade classifier. The cascade-structured classifier owns the disadvantage of 
neglecting confidence of the prior stage classifiers while only using the binary output of prior stages. 
Motivated by fuzzy theory, we expand the output of each stage to three states: face, non-face, and 
potential face and set probability being face to each candidate window to make full use of the 
information of prior stages. Merged by voting, we improve the hit rate at similar false alarm rate. 
Keyword: Face detection, AdaBoost, Scale-invariant feature, Fuzzy cascade classifier 

Ι Introduction 
 
Face detection is the first step of any face processing system. The accuracy and computation 
complexity are both the most important performance of a face classifier. Viola et al. [1] have 
proposed a framework for robust and extremely rapid object detection, which achieved an equivalent 
accuracy of the state-of-the-art results [2] while being distinguished from others in its ability to 
detect face extremely rapidly. Recently, many extensions and improvements have been made by 
expanding features [3], [4], [5] and polishing up features selection procedure [4]. 

There are many attributions of the high performance of Viola et al.’s method. To improve the 
accuracy, they used not raw pixel values but simple features to reduce the in-class variability and 
increase out-of-class variability. Learning with AdaBoost, thousands of important features are 
selected and combined to construct classifier with a good classification performance. To speed up, a 
new image representation called integral image is proposed to allow fast feature evaluation, and with 
a cascade classifier structure, most of the false candidate windows are rejected by simple classifiers, 
while only a little amount of promising windows are processed with complex computation to reject 
negative samples similar to positive. 
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Based on Viola et al.’s framework, our work extends theirs in such two following ways: 
Firstly, we propose a novel definition of features, and the novel defined features are scale-

invariant meaning that the feature can be computed in same manner when features are rescaled to 
detect different size of object and because the features are normalized by acreage, the performance 
degradation introduced by rounding rescaled coordinates to nearest integer position is reduced. In 
addition, the features are convenient to correct illumination and need not to deal with intensity 
average. Further more, we expand the feature set with a shape mask, which is very flexible and 
controllable, with which, we can select and design more features conveniently. The shape mask can 
simulate the features used by [1], [3], [5] and enriches the haar-like feature pool very much because 
there is 93  of different shape masks! 

Secondly, we rectify the cascade structure proposed by Viola et al. [1] to build an improved 
cascade-structured classifier which improves hit rate at same false alarm rate. The cascade-structured 
classifier in [1] owns the disadvantage of omitting information of the prior stages. In [9], B. Wu et 
al. have proposed a nesting-structured cascade to enhance cascade-structured classifier in [1]. To 
make full use of prior stages information, we set the output of every stage classifier to three states: 
face, non-face, and potential face and set possibility being face to all potential face detections 
according to the number of stages they passed and the confidence of the final rejecting stage 
classifier. At the last several stages, if a candidate window is rejected by the current stage, we do not 
reject it as non-face, while setting them as potential faces and processing them in the merging 
procedure. In merging procedure, we merge neighboring potential detections to create valid faces by 
voting. If sum of the possibility of potential face detections at same position with similar size is 
larger than a threshold, we output a valid face detection. If the sum of probability is smaller than 
threshold, we reject potential windows as non-face. Experimental results show that the approach 
improves the hit rate at same false alarm ratio. To be convenient, we call the cascade structure 
proposed in [1] as original cascade structure, and call our novel improved cascade structure with 
fuzzy outputs as fuzzy cascade structure. 

The remainder of the paper is organized as follows: Section II defines the novel features with 
introduction of the advantages of the rectified definition and presents the convenient shape mask. 
The fuzzy cascade structure is introduced in section III. Section IV provides the experimental results 
and conclusions are given in section V. 

II. Features 
 
Rather than using pixel intensity directly, most objects classifiers use features to present object. 
Features can make classification easier by reducing the in-class variability while increasing the out-
of-class variability than raw pixel intensity [3]. Further more, features is more expressive to 
represent objects with similar computational complexity. Haar-like features are used by Papageorgou 
et al. [6] to detect pedestrians and faces, and then Viola et al. have developed a fast and robust face 
detection approach with three kinds of rectangle features. Some other previous works [3], [4], [5] 
have used similar features, and for convenience, we call them haar-like features. 

All of the above haar-like features can be looked upon as being composed of several rectangle 
features and the feature value is defined as the intensities difference of the neighboring regions. 
Unlike the above works, we rectified the feature definition and designed a feature shape mask to 
build and represent different features, with which we can build tremendous features according 
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different classification work. The features which are also combined with rectangle can be calculated 
efficiently and easier to expand. 

A. Feature definition 

Unlike Viola et al. [1], we define the features as the average intensities difference between several 
positive and negative neighboring rectangles. We suppose that there are two rectangle sets pR  and 

nR , where 
p

p p p p
1 2 mR ={r ,r ,...r }  is called positive rectangles set because their signs are positive, and 

n

n n n n
1 2 mR ={r ,r ,...r }  is called negative rectangles set because theirs are negative. Our features are 

defined in the form: 
( )( )

( , )

np
ji

jp n i
p p n n
i i j j

i j

sum rsum r
f R R

w h w h
= −

∑∑
∑ ∑

. (1)

The pixel sum of r is denoted by sum(r), and w/h is the width/height of the rectangle. The features 
have several good properties, which are proved as following. Since rectangle is the basic unit of our 
features, we would like to discuss the properties of rectangle feature firstly. 

B. Rescaling properties of basic rectangle feature 

A image rectangle in the window is specified by r(l, t, w, h), where l/t is the left/top and w/h is the 
width/height of the rectangle. The pixel sum of r is denoted by sum(r), where sum(r) is defined as 

t+h-1 l+h-1

y=t x=l
sum(r)= I(x,y)∑∑  and I(x, y) is the gray intensity of pixel(x, y). 

Let us consider such situation when a image r(l, t, w, h) is zoomed out with scale 1
s

( s>1 ) to 

get a smaller image r’(r’, t’, w’, h’) and thus w hs= =
w' h'

. Shown in fig. 1, the procedure is approximate 

to that two digital images r and r’ are all got by sampling from an original continuous image with 
different spatial sample frequency 1 1( , )

∆x ∆y
 and 1 1( , )

s∆x s∆y
. 

 

 
Fig. 1. Approximating image rescaling to image sampling 

 
Let ar  denote a continuous image, and we sample it to get r  with spatial sample frequency 

1 1( , )
∆x ∆y

. Let 1 2F(ω ,ω )  denote the discrete two-dimensional Fourier transform of the sampled image, 

and according to Fourier transform convolution theorem, there exists the relationship  
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where a 1 2F (ω ,ω )  denotes continuous two-dimensional Fourier transform of original image. 
Supposing that the sampling rate is greater than the Nyquist rate, from (2), we get 

a
1 1F(0,0)= F (0,0)
∆x ∆y

. 

According to discrete Fourier transform definition, F(0,0)=sum(r) . Thus we get 
a

1 1sum(r)= F (0,0)
∆x ∆y

. 

Suppose that we get r’ by sampling ar  with sample frequency 1 1( , )
s∆x s∆y

, and thus 
a

1 1sum(r')= F (0,0)
s∆x s∆y

. 

So we get 
2( )

( ')
sum r s
sum r

= . (3)

Equation (3) shows the approximate relationship between intensities sum of original rectangle image 
and that of rescaled rectangle image.  

C. Scale-invariant property 

Let us assume the basic unit for the presence of an object is a window called candidate window. 
Suppose that there are two candidate windows, and window 2 is got by rescaling window 1 with 
scale s( s>1 ). Shown as fig. 2, we use feature sets pR  and nR  to calculate features in window 1, and 
the corresponding rescaled feature sets ' pR  and 'nR  to calculate features in window 2. To window 2, 
equation (1) has the form  
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Where 
'p 'p 'n 'n
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p p n n
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w h w hs= = = =
w h w h

. According to equation (4) and (2), we get 'p 'n p nf(R ,R )=f(R ,R ) . Thus 

the rescaled features in corresponding rescaled image windows are same as the original features in 
the original image and we need only to calculate rescaled features in candidate windows of different 
size, and no more other operations are required. The property is called scale-invariant in the paper. 
 

 
Fig. 2. Rescaling features 

 
D. Illumination-invariant property 

Rainer lienhart et al. [3] used I(x,y)-uI'(x,y)=
cσ

, c R+∈  to correct illumination. According to equation (1), 

when we translate a image with equation I(x,y)-uI'(x,y)=
cσ

, the corresponding feature in translation image 

is 
p n

p n f(R ,R )f'(R ,R )=
cσ

, so our features only need to be normalized by cσ . We call the property as 

illumination-invariant which means the features are robust to the change of illumination of the whole 
image. 
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E. Feature shape mask 

Above works have presented many feature shapes, some of which are shown as a, b, c in fig. 3. We 
unify the feature shapes and generalize them to a shape mask composed of 9 blocks. In the nine 
blocks, positive features set is composed of white blocks, negative features set is composed of gray 
blocks, and black ones are left to be not used. Using this feature mask we can get tremendous feature 
shapes (almost 93  cases) which is very convenient. The shape mask can present most of the prior 
features used by others similarly, some of which are shown as d, e, f in fig. 3. 
 

 
Fig. 3. Examples of simulating others’ features by shape mask 

III. Improved structure of cascade 
 
In [1], cascade structure was used to speed up, with which most of the false candidate windows are 
rejected by simple classifiers, while only a little amount of promising windows are processed with 
complex computation to reject negative samples similar to positive. To make more use of the prior 
stages information, we use fuzzy output and voting to improve face hit rate with similar false alarm 
rate. 

Original cascade classifier owns the disadvantage of omitting the information of the prior 
stages. To make full use of information, we set the output of last several stage classifiers to three 
states: face, non-face, and potential face. Shown as fig. 4, at the last m stages, if a candidate window 
is rejected by the current stage, we do not reject it as non-face, while setting their output as potential 
face and giving it a probability being face according to both its passed stages number and confidence 
of the final rejected stage classifier. All the potential face would be processed in the merging 
procedure. 

When all non-face candidate windows are rejected, the face and potential face detections are 
merged to create final valid faces. Since face windows are not as sensitive to changes in position and 
scale as non-face, one valid face might create several detected candidates, while false detected non-
face often appearing individually. Among the potential detections, several intersecting ones are 
introduced by one face which can not pass all the stages and by voting, we can expect some of the 
neighboring potential faces can be merged to create a final valid face while rejecting the individual 
potential faces created by non-face. 

 
Fig. 4.The structure of fuzzy cascade classifier 
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The whole face merging procedure is composed of two steps. In first step, we merge detections 
at same position with similar size by voting. First, the set of face and potential face windows are 
partitioned into disjoint subsets and two detections are in the same subset if the centers distance and 
size ratio of two windows are in the limited range. In each subset, if there is face detection, yields a 
single final detection, and outputs the final bounding region as the average of corners of all face 
detections in the subset. If there is no face detection, add all face probability of the potential faces 
together, and if the probability sum is larger than a threshold, yields a final detection, and output the 
bounding region as the average of corners of all potential face detections. If the probability sum is 
smaller than threshold, reject all the potential windows as non-face. In second step, we combine 
overlapping valid detections to reduce false detections. Because in nature, the situations such as one 
face is in another or two faces are intersected by almost 1/2 of the whole acreage are hard to appear, 
we integrated overlapping faces to avoid unnatural situations and thus reduce false detections. 

IV. Face detection in real world 
 
Before we implement the approach in face detection, we will present some more details of feature 
selection and training methods. 

A. Feature selection and fast computation 

One feature is decided by three factors. The shape mask denotes the feature’s shape which thus 
decides the feature’s calculation manner, and the position and size including width and height 
distinguish features by calculating difference of intensities sum of neighboring regions at different 
position with different size. 

Since the raw feature set is infinitely large, for practical reasons, the shapes are selected as 
follows. The 9 basic blocks should be same as each other in size, while the width and height of one 
block can be different. Due to each shape, we shift the position and change the size, but limit the 
outline in candidate rectangle, and we can get 1 H 1 W(H+2)( -1)+1 (W+2)( -1)+1

2 3 2 3
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 features totally for 

one shape, where W/H is the width/height of the candidate windows. The shape can be in 93  
different forms and since the feature shapes are tremendous, considering expressional power and 
computation, only 16 feature shapes are selected to train, some of which are shown in fig. 3. 

Like Viola, we get pixel sum of rectangle by integral image as following format: 
sum(r(l, t, w, h)) = II(l-1,t-1)+II(l+w-1, t+h-1)-II(l - 1, t + h)-II(l+w-1,t-1) , where II(x, y) is the (x, y) 
value in integral image. Getting pixel sum of one rectangle is called a rectangle operation in this 
paper. It seems that our features need 9 rectangle operations, but by integrating neighboring regions, 
it can be reduced greatly and each feature used in the paper only needs 2 or 3 rectangle operations 
and a little addition/subtraction operations. For each scale level, we record the reference coordinate 
of the rescaled features to the top-left of integral image and the sum of acreage of the 
positive/negative rectangles of the features in look-up-table (LUT), after looking up the value of the 
rescaled rectangle’s coordinate and areas, we calculate features with reference coordinate. Since the 
feature is average-invariant, we only use image variance σ  to correct illumination, which can be got 
using integral images of both original image and image squared. 

One of the advantages of haar-like features is that they can easily be rescaled which avoids to 
calculate a pyramid of images and thus accelerates the detector greatly. When rescaling, we must 
round the coordinate to nearest integer, which would degrade the performance of Viola’s features 
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[3]. But due to our features, we need only to round the rescaled coordinates to nearest integer and 
store the corresponding acreage, and because the features have been normalized by acreage, the 
rounding error would be decreased very much. 

B. Candidate weak classifiers and training methods 

We use Real AdaBoost [8] to train every stage classifiers. Domain-partitioning weak hypotheses are 
used to build weak classifiers. To minimize the upper bound on training error, each candidate weak 
classifier is computed from the weighted histograms of face and non-face on several disjoint blocks, 
and to avoid the value in the histograms might be very small or even zero, the weak classifiers 
prediction is smoothed as [8] 

1

1

1( ) ln( )
2

j

j

Wh x
W

ε
ε

+

−

+
=

+
, (5)

where ε  is a small positive constant, and 
1
jW+
, 

1
jW−
 are the weighted histograms of features of face and 

non-face examples in block j. To save training time, we use weight trimming method to select 
examples with larger weights to train while neglecting the samples with smaller weight [7]. 

C. Experimental Results 

All experiments are performed on the complete CMU frontal face test set of 130 grayscale pictures 
with 510 frontal faces [2]. The hit and false alarm criterion is same as that defined by Rainer 
Lienhart [3]. 

We use 1000 original frontal faces to create 5000 face patterns with random rotating about 10±  
degree, random shifting up to 1±  pixel, and random mirroring, while 3000 non-face samples passed 
all prior stages are used to train the current stage which is called bootstrap. All the samples are 
resized to 24×24. With training algorithm for building a cascade detector [1], we get a cascade-
structured classifier with 34 stages which is called original cascade classifier here. Due to each stage, 
the hit rate is no less than 0.998, and the false alarm rate is no more than 0.4. Beginning with the 
24 24×  scale, we set the scale factor to 1.15 to build the rescaled features, and by shifting the 
windows with 1.15 times of the candidate windows’ size, we scan all the potential positions.  
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Fig. 5. ROCs comparing performance of original cascade and fuzzy cascade classifier 
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We set the final 8 stages of original cascade classifier as potential stages to get a fuzzy cascade 
classifier. The Receiver Operating Curves (ROCs) shown in fig. 5 compares the performance of 
fuzzy cascade classifier and the original cascade classifier. From the ROCs, we can see that the hit 
rate of voting cascade classifier outperforms that of the original one with same false alarm rate. 
Especially when the false alarm rate is lower than 5E-7, the hit rate is increased more than 5%. But 
with the false alarm rate increasing, the curve of voting cascade inclines to the original cascade 
curve, which is because that when the threshold decreases to some extent, all the candidates pass the 
stages before the first potential stage can pass all the following stages, both the fuzzy cascade 
classifier and the original cascade classifier use the stages before the first potential stage only. Some 
of the detection examples are shown in fig. 6. 
 

 
Fig. 6. Some detection examples 

V. Conclusions 
 
The paper is based on the work of Viola et al. In the paper, firstly, we propose a novel feature 
definition and introduce a feature shape mask to represent it. The defined features are scale-invariant 
which means the features can be rescaled easily and reduce the performance degradation introduced 
by rounding the coordinates to nearest integer. In addition, the novel features are robust to whole 
image illumination changing and illumination correction can be processed with integral images of 
both original image and image squared. The feature shape mask can be computed efficiently and 
expanded conveniently, which can simulate feature shapes used by others [1], [3], [5] and thus 
enrich the haar-like feature pool. Fast features computation methods and an approach to create 
candidate weak classifiers from features are also introduced. 

Secondly, we introduce a novel cascade structure called fuzzy cascade based on cascade 
structure proposed in [1]. With fuzzy output and voting, we promote the hit rate with same false 
alarm rate. 

Although the examples and experiments are based on face detection, both the features and the 
novel cascade structure can be implemented in object detection conveniently. 
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