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Abstract 
 

Under different single variable driving coupled schemes, Projective Synchronization ( jP S ) in 
coupled circulant partially linear chaotic systems is investigated in this paper. Both simple criteria 
for judging jP S  occurrence and practical control strategy for the scale factor are discussed based on 
theoretical analysis. A typical chaotic system is also used to illustrate the proposed methods.  
Keyword: Chaotic system, Circulant partially linear chaotic system, Projective synchronization. 

I. Introduction 
 
During the last decades, synchronization in coupled chaotic system has become a topic of interest 
because of its potential applications. Different types of synchronization phenomena have been 
observed and experimentally verified in a variety of chaotic systems, see [2] and references therein. 
As a special type of generalized synchronization [10], projective synchronization, which means that 
the states of coupled subsystems could be synchronized up to a constant ratios, is firstly discussed in 
[3], and further investigated in [4]-[9].  

jP S  is characterized by a scale factor that defines a proportional relation between the synchronized 
systems. jP S  results from the partial linearity of coupled chaotic system, and become the unique 
feature of partially linear systems [3]. The proportionality allows us to duplicate a chaotic system 
with different scales, while the topological characteristics (such as the Lyapunov exponents and 
fractal dimensions) of the two synchronized systems remain unchanged [4].  
In this paper we investigate jP S  in a circulant partially linear chaotic system newly proposed by Liu 
W-B and Chen G [1]. Conditions for the occurrence of jP S  with different driving variable are 
proposed in section 1. Linear feedback control of the scale factor based on switch strategy in virtue 
of the system’s inter-property is briefly discussed in section 2. The conclusion is given in section 3.  
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II. jP S  in the circulant partially linear chaotic system 
 
Firstly, we define the circulant partially linear system as follows:   
Definition 1 
Assume the system is a set of ordinary differential equations, and can be described as:  

 ( )W F W ρ= ,&
 (1) 

where 1 2 3( )TW x x x= , , , ρ  is system parameter. The state vector W  can be arbitrarily broken into 
two parts ( )ix U, . System (1) is called a circulant partially linear system. The system equation can be 
written in the following form:  

 

( )
( )
i i

i i

U M x U
f x Ux

= ,
= ; .

&

&  (2) 
( )i iM x is linearly dependent on U , and the equation for ix  is nonlinearly related to the other 

variables, while the equation for the rate of change of vector U  is linearly related to U  through a 
Matrix M  that can depend on the variable ix , as in (2).  
Next, we will discuss the projective synchronization criteria [3] with different driving variable. For 
convenience, the discussion is illustrated using a newly proposed chaotic system in [1]. The newly 
proposed three-dimensional continuous autonomous chaotic system can display complex 2- and 4-
scroll attractors in simulations. Its circuitry realization is also provided in [1]. The system dynamical 
equation is described by  

 

1 1 1 2 3

2 2 2 1 3

3 3 3 1 2

x ax d x x
x bx d x x
x cx d x x

= + ,⎧
⎪ = + ,⎨
⎪ = + ,⎩  (3) 

where 1 2 3a b c d d d, , , , ,  are system parameters. The chaotic parameter regions that exhibit chaotic 
behaviors can be found in [1]. In the following discussion, the parameters are chosen 
as 1 20 5 10 4 1 1 3 1a b c d d d= . , = − , = − , = , = − , − = − , with which the system displays a 4-scroll 
attractor, as shown in Figure 1-4.   

 

−50

0

50 −40
−20

0
20

40

−30

−20

−10

0

10

20

30

x
2
(t)x

1
(t)

x 3(t
)

 

Figure 1. Attractor in 3D view. 
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Figure 2. Phase portrait in 2D view on the 1 2x x−  plane. 
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Figure 3. Phase portrait in 2D view on the 1 3x x−  plane. 
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Figure 4. Phase portrait in 2D view on the 2 3x x−  plane. 
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Notably, this new system is not equivalent in any sense with any other existing similar system, such 
as the classical Lorenz chaotic system, the Chen chaotic system, the Lü chaotic system,and so on, as 
mentioned in paper[1]. Obviously, it is a typical alternative partially linear system as defined before.  
In what follows, we will investigate the projective synchronization for this system. Using 3mx  as the 
driving variable, the coupled system can be described as  

 

1 1 1 2 3

2 2 2 1 3

3 3 3 1 2

1 1 1 2 3

2 2 2 1 3

3 3 3 1 2

m m m m

m m m m

m m m m

s s s m

s s s m

s m s s

x ax d x x
x bx d x x
x cx d x x
x ax d x x
x bx d x x
x cx d x x

= + ,⎧
⎪ = + ,⎪
⎪ = + ,⎪
⎨ = + ,⎪
⎪ = + ,
⎪

= + ,⎪⎩  (4) 
To derive the stability condition, one can investigate an error dynamics 1 2 1 2( ) m s s me t x x x x= − . Thus 
we can discuss in what parameter configuration in system(4) that the error dynamics converges to 
zero, namely, lim ( ) 0t e t→∞ = .  
In what follows, the Lyapunov function method is applied to derive the stability condition for 
projective synchronization.  
Consider the following Lyapunov function  

 
21 ( )

2
V e t= ,

 
It satisfies  

 

0 0
0 0

V if e
V if e
= , = ;⎧

⎨ ≠ , ≠ .⎩  
Its time derivative is given by  

 

2 1 2

1 2

( ) ( ) ( ){ }f fV e t e t e t
x x
∂ ∂

= = +
∂ ∂

& &

 
If 1 2

1 2
0f f

x x
∂ ∂
∂ ∂+ < ,V&  satisfies  

 

0 0
0 0

V if e
V if e
⎧ = , = ;
⎨

< , ≠ .⎩

&

&
 

That is, V is positive definite and V&  is negative definite, i.e., V will tend to zero as t →∞ .  

Similarly, if we choose 1x  as the driving variable and define the error as 2 3 2 3( ) m s s me t x x x x= − , the 

stability condition becomes 32

2 3
0ff

x x
∂∂

∂ ∂+ < . If choose 2x as the driving variable and 

define 1 3 1 3( ) m s s me t x x x x= − , the stability condition is 31

1 3
0ff

x x
∂∂

∂ ∂+ < .  
Therefore, we can derive the following theorem.  
Theorem 1 
For the driving coupling circulant partially linear chaotic systems (1), projective synchronization 
will certainly occur via transfer only a single scale variable, if conditions 1 2

1 2
0f f

x x
∂ ∂
∂ ∂+ < ; 31

1 3
0ff

x x
∂∂

∂ ∂+ < ; 

and 32

2 3
0ff

x x
∂∂

∂ ∂+ <  hold for all the parameters in possible parametric space.  
 
Theorem 1 can be easily used in practical applications, such as in secure communication, signal 
amplification in circuits, etc. We will compare situations with the change of scale factor and the 
synchronization speed under different driving variables numerically in the next section, in order to 
show the characteristic resulted from the circulant partially linearity. Fig.5-8 show different scale 
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factors forming processes under different variable driving schemes with different initial conditions. 

In figure 9-11, the phase portraits of the master and slave systems are given for illustration with 3x  
being the driving variable.  
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Figure 5. The change of scale factor under 1( )x t  driving, where initial condition 

is: (1 0 2 0 3 0 3 0 9 0 7 0)T. , . , . , . , . , . , 1 9716η = . . 
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Figure 6. The change of scale factor under 2 ( )x t  driving, where initial condition 
is: (1 0 2 0 3 0 9 0 3 0 5 0)T. , . , . , . , . , . , 7 2061η = . . 
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Figure 7. The change of scale factor under 3( )x t  driving, taking initial 

condition: (1 0 2 0 3 0 9 0 3 0 5 0)T. , . , . , . , . , . , 6 8175η = . . 
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Figure 8. The change of scale factor under 3( )x t  driving, taking initial condition: 

(1 0 2 0 3 0 7 0 6 0 5 0)T. , . , . , . , . , . ,  5 8361η = . , which is different from in Fig.7. It means the scale factor is 
unexpected and dependent on the initial conditions. 
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Figure 9. The 2-D phase graph under 3( )x t  driving, where initial condition 

is: (1 0 2 0 3 0 7 0 6 0 5 0)T. , . , . , . , . , . , 5 8361η = . , solid: master system, dotted: slave system. 
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Figure 10. The 2-D phase graph under 3( )x t  driving, where initial condition 
is: (1 0 2 0 3 0 7 0 6 0 5 0)T. , . , . , . , . , . , 5 8361η = . , solid: master system, dotted: slave system. 
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Figure 11. The 2-D phase graph under 3( )x t  driving, where initial condition 
is: (1 0 2 0 3 0 7 0 6 0 5 0)T. , . , . , . , . , . , 5 8361η = . , solid: master system, dotted: slave system. 

III. Controlling of the jP S  scale factors 
 
In this section, under different variable driving schemes, the practical control schemes of projective 
synchronization are investigated for alternating the formed scale factors. Recently, a simple but 
practical linear feedback control scheme is proposed in [5] and attracts much interest in related 
fields. Here the same scheme is used for controlling the scale factor of a circulant chaotic system. 
Here, we choose 3mx  as the driving variable to illustrate the practical control scheme.  
Firstly, the equations of driving coupled systems are still described as (4). In order to manipulate the 
scaling factor, one should consider the good virtues of the typical circulant partially linear system, 
this has been proved to be very useful for the controlling task as used in [5]. So, to direct the slave 
system states evolving on the request of jP S , one can take two steps to fulfill the task. We will use 
the situation transfer signal 3mx  for illustration in the following analysis.  
Since under one-way driving by the coupling variable 3mx , one can observe the jP S  occurrence and 
obtain the unexpected scale factor η ; after the critical time, the phase synchronization persists all the 
time. After achieving first jP S , one can introduce an additional controller (here named as linear 
feedback plus driving coupling scheme) to (4), switch on the controller after the critical time 
estimated in the first step, the scale factor will then be manipulated onto a new desired value. We 
will explain this in the following analysis part.  
In order to know the precise behavior of this coupled system, we will investigate the time variation 
of the ratio 1

1

s

m

x
x  (or 2

2

s

m

x
x ). For simplicity, introduce the cylindrical coordinates ( )r zθ, , , then 

1 2 3 3x rcos x rsin x xθ θ= , = , =  and 2
3 1 1 2 2 1 2 2 1 3( ) (( ) ( ) )r x x x x x r x x x x r xθ, , = + / , − / ,&& . In order to exclude 

the singularities of the ratio 1 2

1 2
( ) s s

m m

x x
x xtη = =  in the following discussions, firstly, define the values of 

( )tη  in two special cases (it will be seen in the following discussion that the definitions have no 
conflicts with the whole analysis).   
(1)Define η = ∞  when 0 0m sr r= , ≠  and 0η =  when 0 0s mr r= , ≠ . In this case, only the master or 
the slave system converges to the origin.  
(2)Define η =  arbitrary′  value′  when 0mr =  and s 0r = . In this case, both the master and slave 
system converge to the origin.  
Secondly, from theorem 1, with the same condition, as t →∞ , 
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1 2 1 2lim lim( ) 0p m s s mt t
e x x x x

→∞ →∞
= − =  

holds. We get  
lim (cos sin cos sin ) lim sin( ) 0m s m s s m m s s mt t

r r r rθ θ θ θ θ θ
→∞ →∞

− = − = , 

Since 0m sr r = does not always hold, it can be deduced that when t →∞ , there must be 
sin( ) 0s mθ θ− → . That means that the phase of the slave and the master will synchronize to a fixed 
slip of Kπ , where K Z∈ , which also means the two system are phase locked by a phase difference 
of  0 or Kπ .  
Thirdly, since  

3( ) ( ) ( , , ) sin( )s s s m
m m s s m

m m s m

r r r rd h x
dt r r r r

η η η θ θ= − = −
& &

                                                       (5) 

where   
2 1 1 2

3
2 1 2 1

( , , ) [( )sin( ) ( ) cos( )]m s m s m s m
f f f fh x
x x x x

θ θ θ θ θ θ∂ ∂ ∂ ∂
= − + + − +

∂ ∂ ∂ ∂
 

Since limsin( ) 0s mt
θ θ

→∞
− = , one can deduce:  

lim ( ) 0s

t
m

rd
dt r→∞

=  

It means lim s

t
m

r
r

η
→∞

= , where Constη =  (That obviously includes the singular cases defined before). 

Now it is declared that: lim( ) 0s mt
r rη

→∞
− = . 

From the equation (5) of ( ) s

m

rt
r

η = , one can get  

3 ,
0

( ) (0) exp( ( , )sin( ) )
t

m s m s mt h x dη η θ θ θ θ τ= −∫  

Where (0)(0)
(0)

s

m

r
r

η = . That is to say, the scaling factor η  evolving with time and finally becoming 

variant, when Criticalt T> , where CirticalT  is the critical time at which sin( )s mθ θ−  equals to zero. Since 
( )tη  changs with 3 , ,m m sx θ θ , it is unexpected in essence. But when Criticalt T> , ( )tη  will remain 

unchangeable at (0)Cη η= , where  

3 ,
0

exp( ( , )sin( ) )
CriticalT

m s m s mC h x dθ θ θ θ τ= −∫ , 

since limsin( ) 0s mt
θ θ

→∞
− =  will always hold after the phase synchronization happens at the critical 

time (denoted aforementioned as CirticalT ). In other words, the scaling factor is an unpredictable 
“constant”, which is related to the initial conditions of the master and slave systems. Further study of 
this projective synchronization shows that the unpredictable scaling factor is controllable. That is to 
say, if proper controller is introduced, one can manipulate the factor to arbitrary designated value 
(that also means adjusting the amplitude of the slave system can be done).  
As a particular case of those control strategies, the simple feedback control design (based on the 
switch strategy in virtue of the inter-property) can be derived as follows.  
In order to manipulate the scaling factor, by introducing a controller to (5), the equation of  ( )tη  
thus becomes  
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3( ) [ ( , , ) sin( ) ( )]s
m m s s m

m

rd h x t
dt r

η η η η θ θ δ= = − +&                                    (6) 

where  

*

0,
( )

( ).
Critical

Critical

if t T
t

if t T
δ

ε η η
<⎧

= ⎨ − ≥⎩
 

and the  *η  is the designated scaling factor,  ε  is the feedback gain. Solving (6) when Criticalt T> . 
One can get  

*
* * 1( ) [1 ( 1) exp( ( ))]Criticalt t Tηη η εη

η
−= + − − −  

Obviously, *η ε  should always be satisfied to guarantee the success of controlling η  to *η . 
Rewriting the controlled system in Descartes coordinates, we have the controlled system for 

Criticalt T>  as shown in (7), which can be seen as a typical ’linear feedback plus driving coupling 
systems’ scheme as follows 

*
1 1 1 2 3 1 1

*
2 2 2 1 3 2 2

3 3 3 1 2

1 1 1 2 3

2 2 2 1 3

3 3 3 1 2

( )
( )

m m m m s m

m m m m s m

m m m m

s s s m

s s s m

s m s s

x ax d x x x x
x bx d x x x x
x cx d x x
x ax d x x
x bx d x x
x cx d x x

ε η
ε η

⎧ = + + − ,
⎪ = + + − ,⎪
⎪ = + ,⎪
⎨

= + ,⎪
⎪ = + ,
⎪

= + ,⎪⎩

                         (7) 

In practice, the whole control strategy now can be divided into two parts: firstly, design the 
uncontrolled system (4) and estimate the evolution time CirticalT  of achieving projective 
synchronization ; secondly, design the controlled system (7), setting the scaling factor *η  as wanted; 
finally, switch on the controller after time CirticalT ; if a new factor **η  is needed, adjust the controller 
in (7) and repeating this procedure. Fig.12 shows an illustrative example for controlling expun ectedη  to 

desiredη .  
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Figure 12. The graph of controlled scale factor under 3( )x t  driving, the controller switched on at 5th 
second, where initial condition is: (1 0 3 0 5 0 9 0 1 0 2 0)T. , . , . , . , . , . , 4 5036η = . , 15 0η∗ = . , solid line: 

1 1s mx x/ , dotted line: 2 2s mx x/ . 

IV. Conclusion 
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Under different single variable driving coupled schemes, Projective Synchronization ( jP S ) in 
coupled circulant partially linear chaotic systems is investigated in this brief paper. Both simple 
criteria for judging jP S  occurrence and practical switch control strategy for the scale factor are 
discussed based on theoretical analysis. A typical chaotic system, proposed by Liu W B, and Chen 
G. recently, is used to illustrate the proposed methods. Numerical experiments show the rightness 
and effectiveness of the theory analysis and control method. Further research and applications of 
such a typical category chaotic systems will be studied in near future.  
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