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Abstract 
 
Two inequalities well known in the rough set theory have been modified to become equalities by 
using certain increment operator and uncertain decrement operator, which introduced in our previous 
papers. The union, intersection, complement operations have also been defined based on the 
equalities. Boolean algebra property can be satisfied based on these operations. Hence, many 
properties in rough set theory are improved and the applications of rough set theory are extended. In 
this paper, we will discuss the properties of certain increment operator farther in rough set data 
analysis (RSDA), and get some interesting and useful theorems. These theorems will extend the 
concept of reduct and the generation of reduct algorithm in RSDA. Particularly, a hierachical reduct 
algorithm (HRA) has been introduced to find the optimal reduct for huge information system. 
Keyword: Certain Increment Operator; Rough Set; Data Analysis. 

I. Introduction 
 
In 1982, Z. Pawlak. introduced the rough set theory [1], which has emerged as another major 
mathematical tool for modeling the vagueness presented in human classification mechanism [8-10]. 
After more than 20 years’ development in this field, rough set theory has been successfully applied 
in machine learning, pattern recognition, decision support systems, expert systems, data analysis, 
data mining and so on [2,7]. In reference [3], we have defined certain increment operator and 
uncertain decrement operator, which can modify inequalities ( )R X Y RX RY⊇U U and 

( )R X Y ⊆I RX RYI  into equalities, based on which we can redefine the algebraic operation of rough 
sets, discuss the properties of rough sets, and prove the Boolean algebra of rough sets. In this paper 
we will discuss the properties of certain increment operator further. Some useful theorems will be 
established. More important, a hierachical reduct algorithm (HRA) is proposed. 
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II. Basic Concepts and Properties 
 
In this section, we will review the definitions and properties of certain increment operator, uncertain 
decrement operator in reference [3], and some basic concepts of rough set data analysis [1,2]. 
Definition 1: Let U be the universe and R be an equivalence relation on U. For any X U⊆  and x X∈ , 
the two sets 

( ) { | [ ] } [ ]X R Rh x y y x y X x X= ∈ ∧ ∉ = − , 

( ) { | [ ] } [ ] ( )X R R Xl x y y x y X x h x= ∈ ∧ ∈ = − , 
(1) 

are called the basic factor of inducing rough and the correlation basic factor of inducing rough of X, 
respectively. 
Definition 2: Let U be the universe and R be an equivalence relation on U. For any X U⊆  and 
x X∈ , the two sets 

( )

( ) ( )
R

X
x Bn X

H X h x
∈

= U , 

( )

( ) ( )
R

X
x Bn X

L X l x
∈

= U , 

are called R-inducing rough region and R-inducing rough correlation region of X, respectively.  
Definition 3: Let U be the universe and R be an equivalence relation on U. Let ,X Y U⊆ . When X is 
extended by Y (i.e. X YU ), ( ) ( ) :Z U U U⋅ ⋅ × → is defined by 

( ) {[ ] | ( ) , ( ) ,X R XZ Y x x L X l x Y= ∈ ⊄U ( ) }Xh x Y⊆ . (2) 

( ) ( )Z ⋅ ⋅ is called the certain increment operator. 
Definition 4: Let U be the universe and R be an equivalence relation on U. Let ,X Y U⊆ . When X is 
cut by Y  (i.e. X YI ), ( ) ( ) :Z U U U⋅ ⋅ × →  is defined by 

( ) {[ ] | ( ), ( ) ,X R XZ Y x x L X l x Y φ= ∈ =U I ( ) }Xh x Y φ≠I . (3) 

( ) ( )Z ⋅ ⋅  is called the uncertain decrement operator. 
Definition 5: Let U be the universe and R be an equivalence relation on U. Let ,X Y U⊆ . We have 

( ) ( )XR X Y RX RY Z Y=U U U  
( ) ( )XR X Y RX RY Z Y= −I I  

Definition 6: Let { , , , }aS U A V f= be an information system, where U is a non-empty finite set of 
objects, called universe, the elements in U are called records. A is the attribute set of S, a A∀ ∈ , aV  is 
the value set of attribute a, : af U A V× →  is called information function. If  A C D= U , C and D are 
called the condition attribute and decision attribute respectively. When =C D AU  and =C D φU , 
information system S is also called decision system and is expressed by a decision table.  
Definition 7: Let { , , , }aS U C D V f= U  be a decision system, any subset of attribute B C⊆ , we define 
equivalence relation ( )IND B  as ( ) {( , ) ,IND B x y U U= ∈ ×  }( ) ( ),a x a y a B= ∀ ∈ , which is also called 
indiscernibility relation.  
Definition 8: Let { , , , }aS U C D V f= U  be an information system, if ,X U⊆ B A⊆ , 

( ) { | [ ] }BB X x U x X= ∈ ⊆ , ( ) { | [ ] }BB X x U x X φ= ∈ ≠I  will denote the lower  and upper approximation of 
X with respect to attribute set B, respectively. ( )BPOS D =

/

( )
X U D

B X
∈
U  is the positive region of D with 

respect to B . 
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Definition 9: Let { , , , }aS U C D V f= U  be an information system, if ,B C⊆ and 
for r B∀ ∈ , { }( ) ( )B B rPOS D POS D−≠ , then B is independent; if B is independent and ( ) ( )B CPOS D POS D= , 
then B is a reduct of C, denoted by ( )RED C . 
Obviously, the reduct of C is not exclusive. The reducts that have the least attributes are called the 
minimal reduct or the optimal reduct. The attributes in all reducts of C are called the core attributes, 
denoted by ( ) ( )CORE C RED C= I . 

III. The Discussion of Certain Increment Operator in Rough Set Data Analysis 
 
The key part of rough set data analysis is the core and reduct of rough set, which is also the main 
means and approaches to apply rough set to the data mining and knowledge discovering. In this part, 
we will discuss the performance of certain increment operator in rough set data analysis.  
Let { , , , }aS U C D V f= U  be an information system, C be a condition attribute set and D be a decision 
attribute set. 1 2/ { , }kU C X X X= L , 1 2/ { , }lU D Y Y Y= L . 
If 0C C⊆ , 0 1 2/ { , , }NU C Z Z Z= L , information system 0{ ,( ) , , }i i aS Z C C DV f= − U   ( 1,2i N= L ) is called an 
information subsystem of information system S with respect to 0C . 
We will introduce three lemmas before discussing further the theorems of certain increment 
operator.  
Lemma 1: Supposing that attribute set B A⊆ , ,x y U∀ ∈ , if [ ] [ ]B Bx y≠ , then [ ] [ ]A Ax y≠ . 
Lemma 2: ,x y U∀ ∈ , if [ ] [ ]A Ax y≠ , then [ ] [ ]A Ax y φ=I . 
Lemma 3: If attribute sets A B C⊆ ⊆ , and ( ) ( )A CPOS D POS D M= = , then we have ( )BPOS D M= . 
Theorem 1: If attribute sets 0 ,C C B D⊆ ⊆ , /iY U B∈ , 0 1 2/ { , , }i i i imY C Y Y Y= L , 1, 2i l= L , then ( )

iuY ivZ Y φ= , 
where ,u v m≤ , u v≠ .  
Proof. 0 1 2/ { , , }i i i imY C Y Y Y= L , hence ,s iu t ivx Y x Y∀ ∈ ∈ , ,u v m≤ , and u v≠ , 

0 0
[ ] [ ]s C t Cx x≠ . From lemma 1, we 

have [ ] [ ]s C t Cx x≠ . From lemma 2, we can get [ ] [ ]s C t Cx x φ=I . For the randomicity of t, we can obtain 
[ ]s C ivx Y φ=I . According to definition 1.1, ( ) [ ]

iuY s s Ch x x⊆ . Hence ( )
iuY s ivh x Y φ=I . Moreover, according 

to definition 1.3, ( )
iuY ivZ Y φ= .  

This theorem indicates that in rough set data analysis, if the definition region of certain increment 
operator is the equivalence class of the universe U with respect to decision attribute set D, then 
certain increment operator equals zero. In such case, we have the following theorem. 
Theorem 2: Supposing that attribute set 0C C⊆ , /iY U D∈ , 0 1 2/ { , , }i i i imY C Y Y Y= L , 1,2i l= L , then 

( ) ( ) ( )iu iv iu ivC Y Y C Y C Y=U U . 
Proof. According to theorem 1, ( )

iuY ivZ Y φ=  ( ,u v m≤ , u v≠ ). From definition 1.5, we can get 
( ) ( ) ( )iu iv iu ivC Y Y C Y C Y=U U .  

Inference: If attribute set 0C C⊆ , /iY U D∈ , 0 1 2/ { , , }i i i imY C Y Y Y= L , then 
0/

( ) ( )
iu

i iu
Y U C

C Y C Y
∈

= U . 

Theorem 3: If attribute set 0C C⊆ , /iY U D∈ , 0 1 2/ { , , }
ii i i imY C Y Y Y= L , 1, 2i l= L , then 

( )CPOS D = 0( )CPOS D CU .  
Proof. From the inference,

0/

( ) ( )
iu

i iu
Y U C

C Y C Y
⊆

= U , hence, 
/

( ) ( )
i

C i
Y U D

POS D C Y
∈

= U  = 

0/ /

( )
i iu i

iu
Y U DY Y C

C Y
∈ ∈
U U =

0/( )

( )
iu

iu
Y U D C

C Y
∈ U

U = 0( )CPOS D CU . 

Theorem 4: In an information subsystem iS , for any ix Z∈ , we have 
0

[ ] [ ]C C Cx x− = . 
Proof. Since 0C C C− ⊆ , we have 

0
[ ] [ ]C C Cx x −⊆ .  
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For any 
0

, [ ]C Cx y x −∈ , 0c C C∀ ∈ − , we have ( ) ( )c x c y= . Furthermore, , ix y Z∈ , we have '( ) '( )c x c y= , 

0'c C∀ ∈ . Therefore for any c C∈ , we can obtain ( ) ( )c x c y= , then , [ ]Cx y x∈ , i.e. 
0

[ ] [ ]C C Cx x− ⊆ . So 

0
[ ] [ ]C C Cx x− = . 
Theorem 5: In information subsystem iS , for any /j iY Z D∈ , we can get 0 ( ) ( )j jC C Y C Y− = . 
Proof: According to the definition of lower approximation and theorem 4, 

00 ( ) { | ,[ ] }j i C C jC C Y x x Z x Y−− = ∈ ⊆ ={ | ,[ ] } ( )i C j jx x Z x Y C Y∈ ⊆ = . 
Theorem 6: If the positive region of information subsystem iS  is 

0

( ) ( )i
C CPOS D− , then 

0

0

( )

/

( )
i

i
C C

Z U C

POS D−
∈
U = ( )CPOS D . 

Proof. 
0

0

( )

/

( )
i

i
C C

Z U C

POS D−
∈
U =

0

0
/ /

( )
i j i

i
Z U C Y Z D

C C Y
∈ ∈

−U U =
0/( )

( )
j

i
Y U D C

C Y
∈ U

U = 0( )CPOS D CU  = ( )CPOS D . 

Theorem 7: Let iC  be a reduct of the information subsystem iS , then 
0

( )

/

( ) ( )
Ci

i

i
C

Z U C

POS D POS D
∧

∈

=U , 

where iC∧ denote the conjunction of iC . 
Proof. If iC is a reduct of information subsystem iS , then 

0

( ) ( )i
C CPOS D− = ( ) ( )

Ci

iPOS D . For any iC , we 
have 0i iC C C C⊆ ∧ ⊆ − . According to lemma 3, we know 

0 0

( ) ( )

/ /

( ) ( )
i Ci

i i

i i
C

Z U C Z U C

POS D POS D∧
∈ ∈

=U U . From 

theorem 6, we have
0

0

( )

/

( )
i

i
C C

Z U C

POS D−
∈
U  =

0

( )

/

( )
i

i

i
C

Z U C

POS D
∈
U =

0

( )

/

( )
Ci

i

i

Z U C

POS D∧
∈
U = ( )CPOS D . 

Remark: From the definition of reduct, we know that reduct is a set of some attributes. However, 
from the viewpoint of discernibility matrix, reduct is the conjunction of some attributes. This paper 
has used both of the two points of view, but it’s not difficult to distinguish them according to 
context. Thus, in this paper, we use the same expression of reduct, without distinguishing whether it 
express a set or a conjunction form. 
Theorem 8: Let iC  be a reduct of information subsystem iS . If 0C  is the core of information system 
S, then 0 )iC C∧U（ is a reduct of information system S.  
Proof. To prove that 0 )iC C∧U（ is a reduct of information system S, we only need to prove two 
conditions: 1）

0

( )

/

( ) ( )
Ci

i

i
C

Z U C

POS D POS D
∧

∈

=U ；2） ( )ir C∀ ∈ ∧ , 
0

( )

/

( ) ( )
C ri

i

i
C

Z U C

POS D POS D
∧ −

∈

≠U . As 0C is the 

core of information system S, the element of 0C  can not be taken out. 1) has been proven by theorem 
7, we will prove 2). ( )ir C∀ ∈ ∧ , so there would exist at least one iC , and ir C∈ . If r is taken out from 

iC∧ , according to the definition of reduct, we have ( ) ( )( ) ( )
i i

i i
C C rPOS D POS D−≠ , i.e. ( ) ( )( ) ( )

i i

i i
C C rPOS D POS D∧ −≠ . 

Hence, 
0

( )

/

( )
i

j

i
C

Z U C

POS D∧
∈

≠U  
0

( )

/

( )
i

i

i
C r

Z U C

POS D−
∈
U , i.e. 

0

( )

/

( ) ( )
C ri

i

i
C

Z U C

POS D POS D
∧ −

∈

≠U . So, 0 )iC C∧U（ is a reduct of 

information system S .  
Theorem 9: Let iC  be the minimal reduct of information subsystem iS , then the minimal reduct of 
information system will need max{| |}iC  attributes, on the basis of attribute set 0C , denoted as ( )ZX S , 
where | |iC  denotes the number of attributes in iC . 
Proof. According to theorem 8, the reduct of information system can be denoted as 0 )iC C∧U（ . For 
any iC , there is | | | |i iC C≤ ∧ . Hence, the minimal reduct of information system will need at least 
max{| |}iC  attributes, on the basis of attribute set 0C .  
Theorem 10: Let { , 1,2 }ij iC j r= L  be all the minimal attribute reducts of information subsystem iS ; ir  
is the number of the minimal attribute reducts, ijC  denotes the j -th the minimal attribute reduct of  

information subsystem iS . We can construct discernibility function 
1

( )
i

i

r

ijS IS j
C

∈ =
∧ ∨  on the basis of 

{ , 1, 2 }ij iC j r= L . According to the discernibiliy function we construct the conjunction normal forms, 
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denoted by kB , 1, 2,k n= L . Then the minimal attribute reduct of information system S will still need 
min(| |)kB  attributes at most, on the basis of attribute set 0C , denoted as ( )ZD S .  
Proof. As k ijB C= ∧ , ijC  is a minimal attribute reduct of information subsystem iS . From theorem 8, 
we know 0 kC BU is a reduct of information system S. Moreover, 0 0| | | | min | |k kC B C B≥ +U , 1, 2,k n= L , 
thus the minimal attribute reduct of information system S will still need min(| |)kB  attributes, on the 
basis of attribute set 0C . 
Theorem 11: If B is a reduct of information system S, and 0| | ( ) | |B ZD S C≤ + , then there must be a iC , 
| | ( )iC ZD S≤ , so that 0 ( )iB C C= ∧U .  
Proof. As B is a reduct of information system S, there must be iC B⊆ , which is a reduct of 
information subsystem iS . In addition, 0| | ( ) | |B ZD S C≤ +  and 0C B⊆ , we have | | ( )iC ZD S≤ . Hence 

0 ( )iC C B∧ ⊆U . As iC  is a reduct of information subsystem iS , according to theorem 8, 0 ( )iC C∧U  is a 
reduct of information system S. From the definition of reduct, we can obtain 0 ( )iC C B∧ =U . 

Ⅳ. The Minimal Reduct Algorithm Based on HAR 
 
The information system based on rough set can be separated into information system with decision 
(DIS) and information system without decision (NDIS). Computing the reduct of NDIS is to obtain 
the minimal attribute set who can distinguish the records according to information system, the basis 
of which is maintenance indiscernibility. The purpose of computing the reduct of DIS is to obtain the 
most simplified decision. The basis of the computing the reduct of NDIS is the rule of compatibility. 
If we consider the attribute set of NDIS as the decision set of DIS, then NDIS can be considered as 
DIS, thus we deal with DIS only in this paper. According to whether or not having core, the 
information system based on rough set can be separated into core-information system (CIS) and nor-
core-information system (NCIS). We will discuss them respectively as following. 
A. The Minimal Reduct Algorithm of CIS 
Let ( , , , )aS U C D V f= U is a information system, where 1 2{ , , }nU x x x= L  is universe; C is the condition 
attribute set, D is the decision attribute set, aV is the set constructed by all attribute values,  f ：

aU V→  is the information function. 
The process of the minimal reduct of CIS is as follows: 

1. To get the core of S, denoted by 0C . 
2. Classify U according to 0C , 0 1 2/ {Z , Z , Z }kU C = L . Separate S into k sub-information systems 

(SIS) 0 '( , ( ) , , )i i aS Z C C D V f= − U , 1, 2,i k= L , where 0'a C C∈ − . 
3. Deduce all the reduct of 0 '( , ( ) , , )i i aS Z C C D V f= − U , 1, 2,i k= L . 
4. Use theorem 9 and theorem 10 to get ( )ZX S and ( )ZD S . 
5. Judge whether or not ( )ZX S  equals to ( )ZD S . If they are not equal, then we compute next 

step. If they are equal, stop. Then the collection of the minimal reduct of S is the union of the 
core and the reduct having ( )ZX S  attributes. 

6. Select the reducts of iS , 1, 2,i k= L , whose number of attributes is less than ( )ZD S  in step 3, 
and then use them to construct discernibility function and then solve it. In the process of 
solving, all conjunction normal forms whose number of elements is greater than ( )ZD S  are 
deleted. Then the collection of the minimal reduct of S is the union of the core and the reduct 
which having the least number of elements in the conjunction normal forms are selected in 
results.  
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In step 3, if there is a SIS jS  which leads , ,m n jx x Z d D∀ ∈ ∀ ∈ , then we have ( ) ( )m nd x d x= , that is to say, 
there is a /kY U D∈ , which leads j kZ Y⊆ , that is to say that iZ  relates with 0C  only, and does not 
relate with 0C C− . Thus we can suppose that the reduct of iS  are empty set φ . 
Using this method we can compute the minimal reduct of information system, but they are not all the 
minimal reducts. If we want obtain all the minimal reducts, we need only get rid of step 5, then 
change “less than” into “less than or equal to” in step 6. 
SIS iS  is NCIS. Now we use discernibility matrix to prove it. Let iS  have core. Then there exit two 
records ,u v ix x Z∈ . There is one and only one attribute a in 0C C−  that leads to ( ) ( )u va x a x≠ . And let 

0' { }a C C a∈ − − , then '( ) '( )u va x a x= . Because 0/iZ U C∈ , then 0 0a C∀ ∈ , 0 0( ) ( )u va x a x= . That is, there is 
only one attribute a  leads ( ) ( )u va x a x≠ , thus a is the core of information system. This is conflict with 

0a C C∈ − . So iS  is NCIS. 
Because SIS is NCIS and some information systems are the NCISs, so it is necessary to discuss how 
to compute the reduct of NCIS. 
B. The Minimal Reduct Algorithm of NCIS 
The character of NCIS is that there are many attributes but few records in information system. If 
NCIS is small, then we can use discernibility matrix to compute the minimal reduct directly. In fact, 
we can not assure the scale of NCIS does not exceed the applied range of discernibility matrix, and 
thus under the enlightenment of computing the reduct of CIS, we get the minimal reduct algorithm 
of CIS. 
According to discernibility matrix, the cores of information system are the entries having single 
attribute in discernibility matrix. Because the relativity positive region will change if we get rid of 
these entries, thus they must exit in every reduct. 
However the entries having multi-attribute in discernibility matrix do not have this character. But 
there is one attribute at least in every entry having multi-attribute, which is the element of some 
minimal reduct. 

The algorithm for NCIS is as follows: 
1. To get the discernibility matrix of NCIS. 
2. Find out a entry that has the least attributes in discernibility matrix. 
3. Extract every attribute from this entry in return as preparative core, then according to the 

minimal reduct algorithm of CIS to compute the minimal reduct. 
4. The reduct having the least number in all the minimal reduct based on every preparative core 

is the minimal reduct of NCIS. 
In the minimal reduct algorithm of CIS, we propose the concept of preparative core. The minimal 
reduct of information system based on preparative core is equivalent to the minimal reduct of 
information system based on hypothetic condition, when it is assumed that preparative core exits in 
the minimal reduct. From the above analysis, we know that this condition is not always satisfied. 
However, if we extract every attribute in the entry having the least number of attributes in 
discernibility matrix in return as preparative core, then this condition will be satisfied once at least. 
That is to say, the results that are computed by step 3 and step 4 in above algorithm must be the 
minimal reduct. 
In CIS, if the SISs is still large, then it will produce data overflow in the process of computing. From 
above section we know SISs is the NCISs. So it can be separated further by the minimal reduct 
algorithm of NCIS until it can be computed. 

. ExampleⅤ  
 
Take CTR (Car Test Results) database [5]  for example. Using the minimal reduct algorithm of CIS 
proposed in the paper to compute its minimal reduct. 
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In CRT database, 10 attributes are given in Table 1: a—the whole length, b—the number of bicycle 
pump, c—existence of turbocharger, d—types of fuel system, e—tonnage of engine, f—
compressibility, g—power, h—types of driver, i—weight, y—miles. 
Attribute values: c—roadlouse, s—mini car, sm—small, y—yes, n—no, E—2-BBL, m—middle, 
ma—manual, h—high, he—weight, l—light, lo—low, a—auto 
Information system is { , , , }aS U C D V f= U , where {1,2, 21}U = L , { , , }C a b i= L , { }D y= . 

1. To get core of S. ( ) { , }core C d i= . 
2. According to { , }d i we separate S, /{ , }U d i  ={{1,2,3,5,12,14,16,17,18,19, 

20}{4,11},{6},{7},{8},{9,10,13,15,21}} . According to theorem 8, we only need to consider SISs 
constructed by the equivalence class whose records are larger than or equal to 2. In this 
example, there are 3 equivalence classes whose records larger than 2, mark them 1 2 6, ,Z Z Z  
respectively. And because all records in equivalence class 2Z  are equal, we only need to 
consider two SISs 1 1( , { , }, , )aS Z C d i V f= − and 6 6( , { , }, , )aS Z C d i V f= − . 

3. The reducts of 1S  are: { , },a e { , , },a f g { , , },a b f { , , },a b g { , , },b e g { , , },b f g  
{ , , , },b c e h { , , , },b c f h { , , , }a b c h . 
The reducts of SIS 6S  are: { },{ , },{ , }a e f f g . 

4.  According to theorem 9, we have ZX=2. According to theorem 10, we have a ae∧ = ae , 
ZD=2. Thus ZD=ZX, hence { , } { , } { , , , }d i a e a d e i=U  is a minimal reduct of S.  

If we want to get all the minimal reduct, it need still the reduct whose attributes are lower than or 
equal to ZD in SISs 1S  and 6S  to construct discernibility function ( )a ef fg ae∨ ∨ ∧ = ae aef aefg∨ ∨ , the 
reduct whose the number of attributes equal to 2 have only one. Thus, there is only one minimal 
reduct in S, that is { , } { , }d i a e =U  { , , , }a d e i . 

Table 1. CRT Information System 

U/C       a          b          c          d           e            f           g            h           i            y 
1 c 6 y E m h h a m M 
2 c 6 n E m m h ma m M 
3 c 6 n E m h h ma m M 
4 c 4 y E m h h ma l H 
5 c 6 n E m h m ma m M 
6 c 6 n B m m m a he Lo 
7 c 6 n E m m h ma he Lo 
8 s 4 n B sm m lo ma l H 
9 c 4 n B sm h lo ma m M 
10 c 4 n B sm h m a m M 
11 s 4 n E sm h lo ma l H 
12 s 4 n E m m m ma m H 
13 c 4 n B m m m ma m M 
14 s 4 y E sm h h ma m H 
15 s 4 n B sm m lo ma m H 
16 c 4 y E m m h ma m M 
17 c 6 n E m m h a m M 
18 c 4 n E m m h a m M 
19 s 4 n E sm h m ma m H 
20 c 4 n E sm h m ma m H 
21 c 4 n B sm h m ma m M 
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From this example we can see that using the concepts of ZD, ZX to compute the minimal reduct can 
minish the searching range conspicuously. In this example there are only two SISs. If there are more 
SISs, then the degree of decrease will be more conspicuously. 

. ConclusionⅥ  
 
In this paper, we find the condition that the certain increment operator equals zero in the aspect of 
rough set data analysis and furthermore develop the theory and introduce a algorithm of rough set 
reduct based on this condition. Firstly, transform the huge information system into smaller 
manageable information subsystem; secondly, reduce the information subsystem; and lastly, 
synthesize the results of information subsystem reduct, and obtain the reduct of the huge information 
system. All of which have been proven sufficiently by the 11 theorems in this paper. We believe that 
the discussion of certain increment operator is worthwhile, which would propel the development of 
rough set data analysis theory. However, for some special information system, the users or decision 
makers may consider some special conditions which lead the minimal reduct is not always necessary 
for users. For this problem, we will use the idea of hierachical reduct and the concepts of the 
minimum and the maximum to discuss it according to user’s requirement in latter works. 
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