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Abstract 
 
In this paper, Euler approximation is introduced for a broad class   of jump-diffusion equations, and 
the numerical approximation is studied  for  multidimensional  jump-diffusion   processes. We prove  
that  numerical solutions based on the Euler scheme will converge to the  analytic solution  if both 
remain within a  compact  set. Both of  analytic solution  and  the approximate solution   are bounded  
in  probability. The numerical solution is solved by this method, when  the  linear  growth and global 
Lipschitz conditions are not   satisfied by the system. An example is studied to illustrate the results. 
Keyword: Jump-diffusion equations; Euler scheme;  Numerical solution.  

I. Introduction 
 
We consider a n-dimensional jump-diffusion process  )}({ tx  satisfying 

),,(~)),(,())(,())(,()( dudtvutxtcdBtxtdttxttdx t ∫++= σµ                              (1) 

 where ),( xtµ  and ),,( uxtc are nR -valued and ),( xtσ  is mn× -matrix valued for nRux ∈, . }{ tB is 
a standard m-dimensional Brownian motion, and 

dsdydydsvdydsv )(),(),(~ Π−=  
is a compensated Poisson random measure on nR×∞).0[ which is independent of }{ tB . The solution 

)(tx  is interpreted as the stochastic integral  

).,(~)),(,())(,())(,()(
0000 dudsvusxscdBsxsdssxsxtx
tt

s

t

∫ ∫∫∫ +++= σµ                (2) 

In mathematical finance theory, one of the principal interest is focused on option pricing. Among the 
earliest investigations of continuous-time models of asset prices with jumps is the work of Merton[1]. 
In particular, jump-diffusion models described as Ito process disturbed by Poisson process or random 
measure are general enough to include most interesting cases that may arise. These models are 
discussed by Jeanblanc-Picque[2] and Sabrina[3]. In general, system (1) is analytically intractable. 
Most existing proofs of the convergence of the such numerical schemes rely on Global Lipschitz and 
Linear growth conditions and we here mention see Maghsoodi[4] and Kloeden[5]. Unfortunately  
there conditions  are often not met by system of interest. Federico[6] and  Protter[7]  relaxed the 
global Lipschitz condition and Linear growth condition. However, both results provide no 
information on the order of approximation. In this paper, we show that under certain conditions, 
weaker than Global Lipschitz  and Linear growth conditions, the Euler scheme applied to system (1), 
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converges to the analytic solution )(tx , and in doing so bound the order of this approximation. 

II. The Euler approximation 
 
For system (1) the discrete time Euler approximation on },,,0{ TtNtt =∆∆∈ L  is given by the 
iterative scheme 
        ∫ ∆+∆+∆+=∆+ ∆∆∆∆∆ ),(~)),(,()),())(,()()( dutvutxtcBxtttxttxttx tttttt σµ                          (3) 

with initial value 0)0( xx t =∆ . Here the time increment is t∆ , and the )()( tBttBBt −∆+=∆ represent 
N independent draws from an m-dimensional Normal distribution whose individual components 
have mean zero and variance t∆ . Furthermore, we shall rewrite )(tx t∆   as the integral 

∫ ∫∫ ∆∆∆ ++=
t

ts

t

tt dudsvusxscdBsxsxtx
000 ),(~)),(ˆ,())(ˆ,()( µ                    (4) 

where we have introduced the piecewise constant process 

∑
=

∆∆−∆∆ ∆−=
N

k
tktktt tItkxx

1
],)1[( )())1((ˆ                                                                      (5) 

and AI  is the indicator function for set A. 
The solution to (1), )(tx  is a member of the open set nRG ⊆ , for ],0[ Tt∈ and initial value Gx ∈0 . 
Define )(tx t∆ as the Euler approximation (3) and let GD ⊆  be any compact set. Expression (4) 
extends the definition of the Euler scheme to all ],0[ Tt∈ , and may also be expressed in the 
stochastic differential form 

∫ ∆∆∆∆ ++= ),,(~)),(ˆ,())(ˆ,())(ˆ,()( dudtvutxtcdBtxtdttxttdx ttttt σµ                                  (6) 

  with initial condition Gxx t ∈=∆ 0)0( . 

Suppose ∫ ∞<Π )(du  the following conditions are satisfied  

(i)(local Lipschitz condition)there exist a positive constant  )(1 DK  such that Dyx ∈,  
2

1

222 ||)()(|),,(),,(|||),(),(|||),(),(| xyDKduuytcuxtcytxtytxt −≤Π−∨−∨− ∫σσµµ  

(ii) there exists a 2C - positive function +→⋅ RGV :)( such that })(:{ rxVGx ≤∈  is compact for 
any 0>r ; 
(iii) Let )(),( 21 tt ψψ , be two continuous non-negative functions, and there exists a positive constant 

)(DK . Assume that for all Gx∈ , such that 
                                       )()()()()( 21 xVttDKxLV ψψ ++≤  
Where  

∫ Π−−++

+≡

)()},,()()()),,(({

)],()(),([),()()( 2
1

duuxtcxVxVuxtcxV

xtxVxttracxtxVxLV

x

xx
T σσµ

 

(iv)  there exists a positive constant )(3 DK such that for Dyx ∈,  
                          ||)(|)()(||)()(||)()(| 3 yxDKyVxVyVxVyVxV yyxxyx −≤−∨−∨−  
If condition (i) holds then there exists a positive constant )(2 DK  such that for Dyx ∈,  
                            )()(|),,(|||),(|||),(| 2

222 DKduuxtcxtxt ≤Π∨∨ ∫σµ .                                        (7)  

III. The main results 
 
In this section, the objective is that under the condition described above, We will prove the following 
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useful convergence result. 
Theorem 1.  If τ  is the first exist time of either the solution )(tx  or the Euler approximate solution 

)(tx t∆ from a bounded region D , and ))(,( txtµ , ))(,( txtσ  and )),(,( utxtc  satisfy conditions (i), 
then for 1<∆tT  

.)()(|)()(|sup )(
1

2

0

2 tDCteDCtxtxE TDC
t

Tt
∆=∆≤⎥⎦

⎤
⎢⎣
⎡ −∆

≤≤≤ τ
 

Thus, as long as )(tx t∆  and  )(tx  remain in D  the Euler scheme )(tx t∆  converges to the solution 
)(tx  of equation as 0→∆t . 

Proof. In order to prove this result, we consider only trajectories )(tx t∆  and )(tx  which remain 
within a bounded region D . To achieve this, introduce the stopping time θρτ ∧=   where 

})(:0inf{ Dtxt t ∉≥= ∆ρ   and })(:0inf{ Dtxt ∉≥=θ  
are the first time that )(tx t∆  and )(tx , respectively, leave D . We will define D  more precisely later. 
Let ],0[1 TT ∈  be an arbitrary time. We can derive that for any ],0[ 1Tt ∧∈ τ  

∫ ∫

∫

∫

−+

−+

−≤

−

∆
∧Γ≤≤

∆
∧Γ≤≤

∆
∧Γ≤≤

∆
∧Γ≤≤

t

t
Tt

t

st
Tt

t

t
Tt

t
Tt

dudsvusxscusxscE

dBsxssxsE

dssxssxsE

txtxE

0

2

0

0

2

0

0

2

0

2

0

|),(~))),(,()),(ˆ,((|sup3

|)))(,())(ˆ,((|sup3

|)))(,())(ˆ,((|sup3

]|)()(|sup[

1

1

1

1

σσ

µµ

                     (8) 

The Holder inequality shows that 

∫∫
∧

∆∆
≤≤≤

−≤− 1

1
0

2

0

2

0
|))(,())(ˆ,(|3|))(,())(ˆ,((|sup3

Tt

t

t

t
Tt

dssxssxsTEdssxssxsE µµµµ
τ

                (9) 

  whence applying the Burkholder-Davis-Gundy inequality to the second term of (8) leads to                

.||))(,())(ˆ,(||3|))(,())(ˆ,((|sup3 1

1
0

2
10

2

0
∫∫

∧

∆∆
∧≤≤

−≤−
T

t

t

st
Tt

dssxssxsECdBsxssxsE
τ

τ
σσσσ      (10) 

         

∫ ∫

∫ ∫
∧

∆

∆
∧Γ≤≤

Π−≤

−

1

1

0

2
2

0

2

0

)(|)),(,()),(ˆ,(|3

|),(~))),(,()),(ˆ,((|sup3

T

t

t

t
Tt

dsduusxscusxscEC

dudsvusxscusxscE

τ
                    (11) 

  where 1C  and 2C  are  constants.  If the coefficients of (1) are locally Lipschitz continuous (i.e. 
satisfy condition (i)), then since both )(tx  and )(sx t∆  are bounded we may write 

2
1

2

22

|)()(ˆ|)(|)),(,()),(ˆ,(|

||))(,())(ˆ,(|||))(,())(ˆ,(

sxsxDKduusxscusxsc

sxssxssxssxs

tt

tt

−≤−∨

−∨−

∆∆

∆∆

∫
σσµµ

 

 for ],0[ 1Ts ∧∈ τ . Substituting (9),(10) and (11),into (8) reveals that 

                    

.|)'()'(|sup))((6

|)()(ˆ|))((6

|)()(ˆ|))((3)|)()(|sup(

1

'

1

1

1

0

2

0
211

0

2
211

0

2
211

2

0

dssxsxECCTDK

dssxsxECCTDK

dssxsxECCTDKtxtxE

T

t
ss

T

tt

T

tt
Ts

∫

∫

∫

⎥⎦
⎤

⎢⎣
⎡ −+++

−++≤

−++≤−

∆
∧≤≤

∧

∆∆

∧

∆∆
∧≤≤

τ

τ

τ

τ

              (12)   

Inspection of (5) reveals that  )]/([)(ˆ ttsxsx tt ∆∆= ∆∆ , where ]/[ ts ∆  is the integer part of  ts ∆/ . We 
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can now use (4) to show that 

2

]/[

2
2

2
2

22

|),(~)),]/([,(|

|)]/([)(|)(3)(3

|)()]/([||)()(ˆ|

∫ ∫∆∆ ∆

∆∆∆∆

∆∆+

∆∆−+∆≤

−∆∆=−

s

tts t

tttt

dudvvuttsxvc

ttsBsBDKtDK

sxttsxsxsx

                                (13) 

whence applying the  Burkholder-Davis-Gundy inequality, condition (7) to the third term of (13) 
leads to 

tCDKdudvvuttsxvc
s

tts t ∆≤∆∆∫ ∫∆∆ ∆ 22
2

]/[
)(|),(~)),]/([,(| . 

If  1<∆tT  this inequality leads to 

tCmTDKdssxsxE
T

tt ∆++≤−∫
∧

∆∆ )1)((3|)()(ˆ| 220

21τ
.                     (14) 

  Using this result in (12) shows that 

dsrxrEDCtDCtxt
T

s
∫ ⎥⎦

⎤
⎢⎣
⎡ −+∆≤− ∆

∧≤≤
∆

∧≤≤

1

1
0

2
t

r0
21

2
t

Tt0
|)()(x|sup)()()|)()(x|supE(

ττ
 

 where )1)()(()(18)( 221211 CmTCCTDKDKDC ++++=  and  ))((6)( 2112 CCTDKDC ++= . 
On applying the Gronwall inequality we then have the following  inequality  

                                        .)()(|)()(|sup )(
1

2

0

2 tDCteDCtxtxE TDC
t

Tt
∆=∆≤⎥⎦

⎤
⎢⎣
⎡ −∆

≤≤≤ τ
 

 To proceed further we define the bounded domain 
GxrDD ∈≡= {)(    such that })( rxV ≤ . 

 Theorem 2 If  θ   is the first exist time of the solution )(tx   to  equation (1) from the domain 
)(rD ,and a function )(xV   exists which satisfies conditions (ii) and (iii), then 

                                                                    εθ −≥≥ 1)( TP . 
Proof. We assume the existence of the non-negative function )(xV   satisfying condition (ii). Since 

)(tx  is governed by equation (1), applying ˆIto s′  formula to )(xV   yields 
                   ).,(~])()),,(([))(,())(())(())(( dudtvxVuxtcxVdBtxttxVtxLVtxdV tx ∫ −+++≡ σ  

Integrating from 0 to θ∧t  and taking expectations  gives 

                               .))(()()))(((
00 dssxLVExVtxVE
t

∫
∧

+≤∧
θ

θ  

 Whence applying condition (iii) leads to  

                            .))(()()()(()()))(((
0 210 dssxVssDKExVtxVE
t

∫
∧

+++≤∧
θ

ψψθ  

 So by virtue of Gronwall lemma, we easily obtain that almost surely 

∫∫ ×++≤
TT

dssdssTDKxVtxVE
0 20 10 ))(exp())()()(()))((( ψψ . 

 Let  ∫∫ ×++=
TT

dssdssTDKxVM
0 20 10 ))(exp())()()(( ψψ .  

On noting that rxV =))(( θ , since )(θx  is on the boundary of  )(rD , the probability )( TP <θ  can 
now be bounded as follows. 

)()]())(([))](([ }{ TrPIxVEtxVEM T <≥≥∧≥ < θωθθ θ                                      (15) 
whence rearranging (15) leads to 
                                           ./)( εθ =≤< rMTP                                                                            (16) 
Here r can be made as large as required, for a given T and 0x , to accommodate any )1,0(∈ε . We 
note that the following useful result follows directly from  Theorem 2. 
Lemma 1.   Let θ   be the first exist time of the solution )(tx to equation (1) from the domain )(rD , 
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and let the   coefficients of (1) satisfy conditions (i). If a function )(xV  exists which satisfies 
conditions (ii) and (iii), then the limit of GrD

r
≡

∞→
)(lim   and, for ],0[ Tt∈  and Gx ∈0 , )(tx  remains 

in G . Furthermore, )(tx  is the unique solution of equation (1) on  ],0[ Tt∈  for  all finite T. 
Proof.  Proof of this result can be found in paper of Mao[8]. 
       We require a similar result to Theorem 2 for the Euler approximate solution )(tx t∆  . 
Theorem 3. Let ρ  be the first exit time of the Euler approximate solution (4) from the domain )(rD . 
Then if  )(xµ , )(xσ  and ),,( uxtc   satisfy conditions (i) and there exists a function )(xV  which 
satisfies conditions  (ii)-(iv), then (for sufficiently small t∆ ) 
                                                 ).)(1(1)( 2/1tDHTP ∆+−≥≥ ερ  
Proof. Noting that )(tx t∆  is the solution to (6). Applying the Ito formula to ))(( txV t∆   and condition 
(iii) we obtain 

).,(~))](())),(ˆ,()(([))(ˆ,())((

)()),(ˆ,()))(ˆ())((()()))(ˆ())(((

)())),(ˆ,()(ˆ())),(ˆ,()(((

))(ˆ,()))(ˆ())(())((ˆ,(

))(ˆ,())](ˆ())(([
))](())(ˆ()[())(()()()())((

2
1

221

dudtvtxVutxtctxVdBtxttxV

duutxtctxVtxVdutxVtxV

duutxtctxVutxtctxV

dttxttxVtxVtxt

dttxttxVtxV
dttxVtxVttxVttDKtxdV

ttttttx

ttxtxtt

tttt

ttxxtxxt
T

ttxtx

tttt

∫
∫∫

∫

∆∆∆∆∆

∆∆∆∆∆

∆∆∆∆

∆∆∆∆

∆∆∆

∆∆∆∆

−+++

Π−−Π−−

Π+−++

−+

−+
−+++≤

σ

σσ

µ
ψψψ

 

Integrating from 0 to t∧ρ and taking expectations, and invoking (7) and (iv) leads to                                         

dssxVsEdssxsxEDK

dulDKduDKdssTDKxV

txVE

t t

ttt

T

t

∫ ∫
∫ ∫∫

∧

∆∆∆

∆

∧+−×

Π+++Π+++≤

∧

ρ
ρψ

ψ

ρ

0 0 23

0 2
2/12/1

210

))(()(|)()(ˆ|)(

])(2)(2/1)))((1)(([)()()(

))](([

 

where   )(sup 2
0

tl
Tt
ψ

≤≤
=   

.])1)((3[|)()(ˆ| 2
1

2
1

220
tTCmTDKdssxsxE

t

tt ∆++≤−∫
∧

∆∆

ρ
 

Follows from Holders&&  inequality and equation (14) for ],0[ Tt∈  and 1<∆tT . 

             

.))(()(])1)((3)[(

])(2)(2/1)))((1)(([)()()(

))](([

0 2223

0 2
2/12/1

210

2
1

2
1

dssxEVstTCmTDKDK

dulDKduDKdssTDKxV

txVE

t

t

T
t

∫
∫ ∫∫

∧+∆++×

Π+++Π+++≤

∧

∆

∆

ρψ

ψ

ρ

 

Whence, on applying the Gronwall inequality 

                          2/1

0

)(

10 )())()()(())](([ 0 2 tDHedssTDKxVtxVE
T dss

t

T

∆+∫++≤∧ ∫∆

ψ
ψρ . 

.])1)((3)[(

])(2)()))((1)(([)(

2
1

0 2

223

22
12/12/1

2

)(

TCmTDKDK

dulDKduDKeDHwhere
dss

T

++×

Π+++Π+∫= ∫∫
ψ

                                  

An argument analogous to that used to prove Theorem 2 can now be used to bound )( TP <ρ . Since 
)(ρtx∆  is on  the boundary of )(rD  then rxV t =∆ ))(( ρ   which  leads to 

).()())()()(( 2/1)(

0 10
0 2 TrPtDHedssTDKxV

dssT
T

<≥∆+∫++ ∫ ρψ
ψ
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Defining dssTDKxVeDHH
Ts

T

)()()(/()(
0 10

)(
0 2

∫++∫=
−

ψ
ψ

reveals that  

ερ ))(1()( 2/1tDHTP ∆+≤< , 
where ε   is defined in equation  (16). Hence our claim is  proved. 
The significance of Theorem 2 and 3 is that both  )(tx  and  )(tx t∆  remain within the domain )(rD , 
and therefore by Theorem 1 the Euler scheme will converge to the )(tx , with probability 

.))(2()()()( 2/1 ερτ tDHTsPTPTP ∆+≤<+<≤<                                     (17) 
Theorem 4.  Let G  be an open subset of  nR , and denote the unique solution of (1) for ],0[ Tt∈  
given Gx ∈0  by Gtx ∈)( . Define )(tx t∆  as the Euler approximation (3) and let GD∈  be any 
compact set. Suppose conditions (i)-(iv) are satisfied. Then for any 0,0 >> δε  there exists 0* >∆t  
such that 

,)|)()(|sup( 2

0
εδ ≤≥−∆

≤≤
txtxP t

Tt
 

provided *tt ∆≤∆  and the initial value  Gx ∈0 . 
Proof. Introducing the event sub-space  },|)()(|sup:{ 2

0
δω ≥−=Ω ∆

≤≤
txtx t

Tt
 and using Theorem 1, we 

find that  

)].()([)]()([

]|)()(|sup)([]|)()(|sup[)(

}{}{

2

0
}{

2

0

2

TPPIIE

txtxIEtxtxEtDC

T

t
Tt

Tt
Tt

<−Ω≥≥

−≥−≥∆

Ω≥

∆
≤≤

≥∆
≤≤

τδωωδ

ω

τ

τ
 

Whence on using  (17)  we conclude that 

tDCtDHtxtxPP t
Tt

∆+∆+≤≥−=Ω ∆
≤≤ δ

εεδ )()(2)|)()(|sup()( 2/12

0
 

which for appropriate choice of t∆ , proves Theorem 4. 

IV. Example 
 
Consider the following stochastic  equation 

∫+

−+−=

).,()())(),((

)]())(())(())[(,),(()(

1

1

dudtvutxtxdiag

tdBtxDdttxAtxtxdiagtdx

n

n

δ

αα

L

L
                                (18) 

where T
n txtxtx ))(,),(()( 1 L= , T

n ),,( 1 ααα L= , nnijaA ×= )( , nnijdD ×= )( , T
n uuu ))(),(()( 1 δδδ L= . 

Suppose niduui ,,1,)(|)(| 2 L=∞<Π∫ δ . It is straightforward to see that neither the linear growth 
condition nor the global Lipschitz condition will be satisfied by this system. However, system (18) 

the functions )(),( xx σµ and ),( uxc  satisfy condition (i), In this case define )/()(
1

αα i

n

i
ii xhmxV ∑

=

= . 

where )ln(1)( sssh −−= , for n  positive constants nmm ,,1 L . This function satisfies conditions (ii) 
and (iv) of, whilst it is straightforward to show that   

       )())(())((
2
1)( xGtxHtxxLV T +−−−= αα ,where ,),,( 11 DccdiagDCACAH nn

TT αα L−−−=  

                  ),()])(())(1ln()([)(
1

duxuuuxmxG iiiiiiiii

n

i
i Π−−+−= ∫∑

=

αδδααδα  

).,,( 1 nmmdiagC L=  Thus, if the  n  positive  constants nmm ,,1 L  can be found such that the 
symmetric  matrix H  is non-negative definite and )()( 21 xVKKxG +≤ , then it follows that 
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)()( 21 xVKKxLV +≤  and condition (iii)  is satisfied. Therefore, the Euler scheme will converge to 
the true solution of (18) in the sense of Theorem 4, provided that the time step t∆ is sufficiently 
small.  

V. Conclusion 
 
In this paper, we demonstrated that the Euler approximation solution converge to the true solution 

)(tx  if both remain within a compact set. A compact set appropriate is introduced; the escape times 
from this set, both of )(tx  and the approximate solution are bounded in  probability. By these results, 
we  prove our convergence result of Theorem 4, namely that,  under certain conditions(conditions(i)-
(iv)), weaker than Global Lipschitz  and Linear growth conditions, the Euler scheme applied to 
system (1), converges to the analytic solution )(tx , and in doing so bound the order of this 
approximation. This method solve the numerical solutions which the linear growth and global 
Lipschitz conditions are not satisfied by systems. 
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