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Abstract

In this paper, Euler approximation is introduced for a broad class of jump-diffusion equations, and
the numerical approximation is studied for multidimensional jump-diffusion processes. We prove
that numerical solutions based on the Euler scheme will converge to the analytic solution if both
remain within a compact set. Both of analytic solution and the approximate solution are bounded
in probability. The numerical solution is solved by this method, when the linear growth and global
Lipschitz conditions are not satisfied by the system. An example is studied to illustrate the results.
Keyword: Jump-diffusion equations; Euler scheme; Numerical solution.

l. Introduction

We consider a n-dimensional jump-diffusion process {x(t)} satisfying
dx(t) = u(t, x(t))dt + o (t, x(t))dB, +.[c(t, X(t),u)v (dt,du), Q)
where u(t,x) and c(t,x,u)are R"-valued and o (t,x) is nxm-matrix valued for x,u e R". {B,}is

a standard m-dimensional Brownian motion, and
vV (ds,dy) = v(ds,dy) — I1(dy)ds

is a compensated Poisson random measure on [0.c0) x R"which is independent of {B,}. The solution
X(t) is interpreted as the stochastic integral

X(t) = X, + j; 21(s, x(s))ds + j; (s, x(s))dB, + j; [e(s,x(),u)¥ (ds, du). @)

In mathematical finance theory, one of the principal interest is focused on option pricing. Among the
earliest investigations of continuous-time models of asset prices with jumps is the work of Merton[1].
In particular, jump-diffusion models described as Ito process disturbed by Poisson process or random
measure are general enough to include most interesting cases that may arise. These models are
discussed by Jeanblanc-Picque[2] and Sabrina[3]. In general, system (1) is analytically intractable.
Most existing proofs of the convergence of the such numerical schemes rely on Global Lipschitz and
Linear growth conditions and we here mention see Maghsoodi[4] and Kloeden[5]. Unfortunately
there conditions are often not met by system of interest. Federico[6] and Protter[7] relaxed the
global Lipschitz condition and Linear growth condition. However, both results provide no
information on the order of approximation. In this paper, we show that under certain conditions,
weaker than Global Lipschitz and Linear growth conditions, the Euler scheme applied to system (1),
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converges to the analytic solution x(t), and in doing so bound the order of this approximation.

I1. The Euler approximation

For system (1) the discrete time Euler approximation on t €{0,At,---,NAt =T} is given by the
iterative scheme

Xy (t+ AL) = X, (1) + p(t, X, (1) AL+ o (L, X, )AB, + jc(t, X, (), u)V (At, du) (3)
with initial value x,, (0) = x,. Here the time increment isAt, and the AB, = B(t + At) — B(t) represent

N independent draws from an m-dimensional Normal distribution whose individual components
have mean zero and variance At. Furthermore, we shall rewrite x, (t) as the integral

t ~ t ~ ~
Xat (1) =X, + [ (5, %y, (8))dB, + [ [ (s, R, (5), u)¥ (s, du) (4)
where we have introduced the piecewise constant process
N
Rae = D X (K =DA) 00 (1) (%)
k=1

and 1, is the indicator function for set A.
The solution to (1), x(t) is a member of the open set G — R", fort €[0,T]and initial value x, € G.
Define x,, (t) as the Euler approximation (3) and let D = G be any compact set. Expression (4)
extends the definition of the Euler scheme to all t [0, T], and may also be expressed in the
stochastic differential form
A () = 228, R )t + o (8, %, ()dB, + [ c(t, R, (1), u)¥(dt, du), (6)

with initial condition x,,(0) =%, €G.
SupposefH(du) < oo the following conditions are satisfied
(i)(local Lipschitz condition)there exist a positive constant K, (D) such that x,y € D

| 1t %) = (6, Y) [P v L o (6, %) — o (t, y) | VII c(t,x,u) —c(t, y,u) | TI(du) < K, (D) |y —x[*
(i) there exists a C2- positive function V(-):G — R* such that {x € G:V(x) <r} is compact for
any r >0;
(iif) Let y, (t), w,(t), be two continuous non-negative functions, and there exists a positive constant
K (D). Assume that for all x € G, such that

LV (x) < K(D) +, (1) +, (V (¥)
Where
LV (X) =V (X) u(t, x) + %trac[aT (t, X))V, (x)o(t,x)]
+J'{V(x+c(t,x,u)) =V (x) =V, (X)c(t, x,u)HI(du)
(iv) there exists a positive constant K, (D) such that forx,y € D

V)=V VIV )=V, (V) [ VIV (X) =V, (Y) [ Ky (D) [ x -y |
If condition (i) holds then there exists a positive constant K, (D) such that for x,y € D
| 1) v ot ) [I° v et xu) TI(du) <K, (D). (7)

I11. The main results

In this section, the objective is that under the condition described above, We will prove the following
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useful convergence result.
Theorem 1. If 7 is the first exist time of either the solution x(t) or the Euler approximate solution

X, (t) from a bounded region D, and wu(t,x(t)), o(t,x(t)) and c(t,x(t),u) satisfy conditions (i),
then for AtT <1
E[ sup | X, (t) — x(t) |Z}£C1(D)e°2(D)TAt = C(D)At.

0<t<z<T

Thus, as long as x,, (t) and x(t) remainin D the Euler schemex,, (t) converges to the solution

X(t) of equation as At — 0.

Proof. In order to prove this result, we consider only trajectories x,,(t) and x(t) which remain

within a bounded region D . To achieve this, introduce the stopping time z = p A8 where
p=inf{t>0:x,(t) 2 D} and & =inf{t >0: x(t) ¢ D}

are the first time that x, (t) and x(t), respectively, leave D.We will define D more precisely later.

Let T, €[0,T] be an arbitrary time. We can derive that for any t €[0,7 AT, ]

E[ sup |x,(t)=x(®)[]

0<t<T'AT;

<3E sup | [ (u(s, %, ()~ (s, X(9))ds

O0<t<T"AT;

C , 8)
+3E sup | [ (65,5, (5)) — o (s, X(s)))dB, |
+3E sup | [ [ (c(s, Ry (s),u) — (s, X(s),u))V(ds, du) |
The Holder inequality shows thaiti 1
3E sup || (u(s, Ry (5)) — (s, X(8))ds [P <3TE [ pu(s, %, (8)) - pu(s, X(3)) |* ds ©)

0<t<7r<T;

whence applying the Burkholder-Davis-Gundy inequality to the second term of (8) leads to
3E sup | j;(a(s,im(s))—a(s,x(s))des | <3C,E j;”lna(s,)zm (s)) = o (s, X(s)) |I? ds. (10)

0<t<zAT;

3E sup | [ [ (c(s, R, (8).u) — (s, X(5),u))¥(ds, du) *
ost<raT, 0 (11)

<3C,E jOT [le(s, Ry (5),u) = (s, x(s),u) |” T1(du)ds
where C, and C, are constants. If the coefficients of (1) are locally Lipschitz continuous (i.e.
satisfy condition (i)), then since both x(t) and X, (s) are bounded we may write
1(5. Ry, (5)) = (5, X(8)) [* v | (5, Ry (5)) — (5, X(5)) |1
v jl c(s, R (8),u) = €(s, X(s),u) |"du < K (D) | R, (8) = X(5) I
for s [0,z AT,]. Substituting (9),(10) and (11),into (8) reveals that
E( sup_ [ X, (1) = x(t) [F) <3K,(D)(T +C, +C,)E[ " &, (8) ~ X(5) [ ds

0<s<7ATy

<6K,(D)(T +C, +C,)E[ [ %, (8) =X, (9) | ds (12)

+6K,(D)(T +C, +C,)[ E[ sup | X, (8) — X(5") |2}ds.

0<s <7AS

Inspection of (5) reveals that X, (s) = X, ([s/ At]At), where [s/At] is the integer part of s/At. We
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can now use (4) to show that

| im (S) — Xat (S) |2:| Xat ([S/At]At) — Xpt (S) |2
< 3K, (D)At? + 3K, (D) | B(s) - B([s/ At]AL) |2 (13)

* | J.[SS/At]AtJ.C(V’ Xat ([S/At]At)’U)v(dV, du) |2

whence applying the Burkholder-Davis-Gundy inequality, condition (7) to the third term of (13)
leads to

| j[ i j c(v, X, ([s/ At]At), u)¥ (dv, du) |*< K, (D)C ,At .
If TAt <1 this inequality leads to
E["1 %,(5) ~ X, (5) ['ds < 3K, (D)(MT +1+C,)At. (14)
Using this result in (12) shows that

E(sup. [, (0)-X()) <C, (D)t +C, )] E| sup %, ()X fs

0<t<zAT, 0<r<zAs
where C, (D) =18K,(D)K, (D)(T +C, +C,)(mT +1+C,) and C,(D)=6K,(D)(T +C, +C,).
On applying the Gronwall inequality we then have the following inequality

E[ sup | x,, (t) = x(t) |2} <C,(D)e%™" At = C(D)At.

0<t<z<T
To proceed further we define the bounded domain
D=D(r)={xeG suchthat V(x)<r}.
Theorem 2 If @ is the first exist time of the solution x(t) to equation (1) from the domain
D(r) ,and a function V (x) exists which satisfies conditions (ii) and (iii), then
PO>T)>1-¢.
Proof. We assume the existence of the non-negative function V (x) satisfying condition (ii). Since
x(t) is governed by equation (1), applying 1t6's formulato V (x) yields
dVv (x(t)) = LV (x(t)) + V, (x(t))o(t, x(t))dB, + ﬂ\/(x +c(t, x,u)) =V (x)]v (dt, du).
Integrating from O to t A @ and taking expectations gives
E(V(X(tAB)<V(X,)+E L‘H LV (x(s))ds.
Whence applying condition (iii) leads to
tAl
EV (x(t A 0))) <V (x,) + EL (K(D) + () + w, (s)V (x(s))ds.
So by virtue of Gronwall lemma, we easily obtain that almost surely

EQV(X()) < (V (%) + K(D)T + [y, (5)ds) x exp([] v, (5)ds).

T T
Let M =(V(x,)+K(D)T + jo w,(s)ds) xexp(j0 w,(s)ds).
On noting that V (x(@)) =r, since x(8) is on the boundary of D(r), the probability P(6 <T) can
now be bounded as follows.

M > E[V (x(t A 0))]> EV (X(O))] 7y (@)] = rP(O <T) (15)
whence rearranging (15) leads to
PO<T)<MI/r=¢. (16)

Here r can be made as large as required, for a given T and x,, to accommodate any ¢ € (0,1). We

note that the following useful result follows directly from Theorem 2.
Lemma 1. Let & be the first exist time of the solution x(t) to equation (1) from the domain D(r),
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and let the coefficients of (1) satisfy conditions (i). If a function V (x) exists which satisfies
conditions (ii) and (iii), then the limit of limD(r)=G and, for t €[0,T] and x, € G, x(t) remains

r—oo

in G . Furthermore, x(t) is the unique solution of equation (1) on t [0, T] for all finite T.

Proof. Proof of this result can be found in paper of Mao[8].
We require a similar result to Theorem 2 for the Euler approximate solution x,, (t) .

Theorem 3. Let p be the first exit time of the Euler approximate solution (4) from the domain D(r) .
Then if u(x),o(x) and c(t, x,u) satisfy conditions (i) and there exists a function V(x) which
satisfies conditions (ii)-(iv), then (for sufficiently small At)
P(p>T)>1-&(+ H(D)At"?).

Proof. Noting that x,, (t) is the solution to (6). Applying the Ito formula to V (x,, (t)) and condition
(iii) we obtain

dV (X, (1)) < K(D) + 7, (€) + 17, (OV (X5 (1)) + 17, (DIV (X (1)) =V (X, (1))]dt

+ [V, (X0 (1)) =V, (R (D)1t X, (1))t

+507 (6 Ry )V (X (1) = Vi R (D)) (E, R, (1))t

[V 00 (1) + S8 Ry (0,U)) V(R (8) + €8, Ry (1), U)TT(u)

— [V (0 () V (R ()T = [ (V, (X, (0)) V., (R (DD))C(E, Ry (1), U)TT(d)

#V, (X (0)o(t, Ry (0)dB, + [V (X, (6) + C(t, Ry (£),U)) =V (X, ()] (dt, du).
Integrating from 0 to p At and taking expectations, and invoking (7) and (iv) leads to

E[V (Xy (0 AD)]
<V (x,)+ K(D)T + jOT w,(S)dS[K Y2 (D)(1+ (jn(du))“z) +1/2K, (D) +1 + 2jn(du)]

xKy(D)E[""| %, (8) = X, (s) | ds + E [, (SIV (xy (9 A $))ds
where | =supy, (t)

0<t<T
jo”“ E | R, (s) - X, (s) [ds < [3K, (D)(mT +1+C,)T]? At".

Follows from Hdlders inequality and equation (14) for t €[0,T] and AtT <1.
EIV (X (o AD)]

<V (x,)+ K(D)T + jOT w, (S)ds[K Y2 (D)(1+ (J.H(du))“z) +1/2K, (D) +1 + 2jn(du)]
x K, (D)[3K, (D)(MT +1+C,)T At* + j;;yz (S)EV (X, (p A 3))ds.
Whence, on applying the Gronwall inequality
EIV (X, (0 AD)I < (V (%) + K(D)T + [y (s)ds)e

i d
[[vatsns

[l (syas

0 +H(D)AtY?.

where H(D) = e [KY?(D)1+ (jn(du))“z) +1K,(D)+1+ ZJ'H(du)]

x K, (D)[3K,(D)(MT +1+C,)TT-.
An argument analogous to that used to prove Theorem 2 can now be used to bound P(p <T). Since
X, (p) ison the boundary of D(r) then V(x,,(p)) =r which leads to

V(%) + K(D)T + LT l//l(s)ds)eﬂ‘“(”ds + H(D)AtY? > rP(p <T).
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[

Defining H = H(D)e IV (%) + K(D)T + J'OT v, (s)ds reveals that

P(p<T)<(l+H(D)AtY?)e,

where ¢ is defined in equation (16). Hence our claim is proved.
The significance of Theorem 2 and 3 is that both x(t) and x,, (t) remain within the domain D(r),

and therefore by Theorem 1 the Euler scheme will converge to the x(t), with probability
P(r<T)<P(p<T)+P(s<T)<(2+H(D)At"?)e. (17)

Theorem 4. Let G be an open subset of R", and denote the unique solution of (1) for t €[0,T]

given X, € G by x(t) € G . Define x,(t) as the Euler approximation (3) and let D € G be any

compact set. Suppose conditions (i)-(iv) are satisfied. Then for any & >0, § > 0 there exists At" >0
such that
P(sup | X, (t) —x(t) |°> ) < ¢,

0<t<T
provided At <At and the initial value x, €G.

Proof. Introducing the event sub-space Q ={w: sup | x,, (t) — x(t) |°> 8}, and using Theorem 1, we
0<t<T

find that
C(D)At” 2 E[OSlth | X (©) = X(1) [*12 E[l .1y (@) sup | X (€)= X(1) [°]
2 [l ory (@) g (@0)] = S[P(Q)-P(r <T)].
Whence on using (17) we conclude that
P(Q) = P(sup | X, (t) — x(t) |’> &) < 2¢ + &H (D)At"'? +?At
0<t<T

which for appropriate choice of At, proves Theorem 4.

IVV. Example
Consider the following stochastic equation
dx(t) = diag(x, (t),---, x, ())[A(X(t) — e)dt + D(x(t) — r)dB(t)]
+diag(x, (t),---x, (t))f&(u)V(dt,du).
where x(t) = (% (1), X, ()", & = (@, @) A= (@) s D= (dyj) s SU) = (8, (U),+ 5, ()"
Suppose .|'| 5, (u)|? TI(du) < oo, i =1,---,n. It is straightforward to see that neither the linear growth

(18)

condition nor the global Lipschitz condition will be satisfied by this system. However, system (18)

the functions u(x), o(x)and c(x,u) satisfy condition (i), In this case define V (x) = Zmiozih(xi la).
i=1

where h(s) =s—-1-In(s), for n positive constants m,,---,m_. This function satisfies conditions (ii)

and (iv) of, whilst it is straightforward to show that

LV (X) = —%(x(t) —a)" H(x(t) —a) + G(x) ,where H =-CA— A"C - D"diag(c,a,, --,C,,)D,

G0 = 3m, [l X, &, () -t In(L+ 4,8, (6)) ~ &, ()(x, — e JII(cl),

C =diag(m,,---,m,). Thus, if the n positive constants m,,---,m, can be found such that the
symmetric matrix H is non-negative definite and G(x) <K, +K,V(x), then it follows that
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LV (x) < K, + K,V (x) and condition (iii) is satisfied. Therefore, the Euler scheme will converge to

the true solution of (18) in the sense of Theorem 4, provided that the time step Atis sufficiently
small.

V. Conclusion

In this paper, we demonstrated that the Euler approximation solution converge to the true solution
x(t) if both remain within a compact set. A compact set appropriate is introduced; the escape times

from this set, both of x(t) and the approximate solution are bounded in probability. By these results,

we prove our convergence result of Theorem 4, namely that, under certain conditions(conditions(i)-
(iv)), weaker than Global Lipschitz and Linear growth conditions, the Euler scheme applied to
system (1), converges to the analytic solution x(t), and in doing so bound the order of this

approximation. This method solve the numerical solutions which the linear growth and global
Lipschitz conditions are not satisfied by systems.
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