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Abstract 
 
The paper presents a modified structure of Takaga-Sugeno-Kang (TSK) network with a fully 
automated building and learning algorithm. The modification has resulted in a great reduction of 
nonlinear parameters of the network (almost three times). The modified network can be initiated 
using Gustafson-Kessel clustering algorithm. After initiation all parameters are further fine-tuned by 
an gradient learning algorithm. With the proposed method of building and learning modified TSK 
network, users can easily generate automatically an effective TSK network for practical problems 
without needing deep knowledge of the fuzzy reasoning theory. As a numerical experiment, the 
solution has been tested in the problem of gas recognition as a fuzzy reasoning system with very 
high accuracy.  
Conclusions: The modified TSK network is a new fuzzy reasoning system which is more effective 
than the classical one. The simpler structure leads to shorter time of parameters adaptation. 
Keywords: Modified TSK Network, Artificial Nose, Fuzzy Rules Number Generation.  

I. Introduction 
 
The neuro-fuzzy reasoning systems are now applied widely in almost every domain of technical 
problems, such as: approximation, classification, model identification or process control [2,5]. 
Typically the fuzzy system contains many of the so called inference rules of reasoning, whose 
answers are then aggregated and defuzzified to give the final answer of the system. The classical 
TSK network belongs to these systems, which is characterized by the lack of defuzzification block 
[1,2]. The general structure of TSK network is presented on Fig. 1. The network can be characterized 
by triple (N; M; K), where N - the dimension of input vectors, M - the number of inference rules and 
K - the output signals. Each inference rule has a vector form: 

          ( )i iif is then y f=x A x  (1)

In the case of many rules, when a new input vector x is presented as the input of the network, the 
ith rule produces its answer  with a so called fire strength . This fire strength should 
be maximum 1 if the input x is at the center  of the rule (

( )iy f= x ( )iw x

iA ( ) 1iw ≈x  when 0i− →x A ) and should 

decrease when x tends away from  (iA ( ) 0iw ≈x  when i− →∞x A ). The answer of each rule in a 
TSK network has a linear form  

 78



International Journal of Information Technology, Vol.12 No.6  2006  

 

Fig. 1. The structure of classical TSK network  
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The premise “ ” is implemented as the fuzzifier, producing the fire strength, taken here in 
the generalized bell function form [2,4,6] 
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where , ic iσ  and  are the center, width and exponent coefficient, respectively, of the function for 
ith input variable 

ib

ix . Finally, at the existence of M rules, the neuro-fuzzy TSK system output signal 
, upon the excitation by the vector , is described by the equation [2] ( )y x x
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The adjusted parameters of the system are the nonlinear parameters ( , ic iσ , ) of the fuzzifier 
functions and the linear parameters (weights 

ib

ijp ) of TSK functions. The network structure 
corresponding to the equation (4) is referred as the neuro-fuzzy TSK network [1,2]. The difficult 
problem of learning TSK network is its complexity in the cases of multi-input vectors, which is the 
most popular ones.  In traditional model with N inputs, 1 output and M fuzzy rules, the number of 
linear parameters equals . At the same time each fuzzifier for every input signal in every 
rule is characterized by 3 nonlinear coefficients , 

( 1M N⋅ + )

ic iσ  and , i.e. the network has 3ib M N⋅ ⋅  
nonlinear parameters to be adapted in the learning process. In this paper we propose a simplified 
network with fewer parameters and new method of calculating the fire strength of fuzzy rules, which 
has similar effectiveness of operation in learning and testing modes. 

II. Modified structure and learning algorithm of TSK network 
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In classical model, the fire strength of the r-th fuzzy rule is depended on the distance between the 
input vector and the center of the rule, a vector of adaptive widths and a vector of exponent 
coefficients  for all input signals. These coefficients are needed to scale the data in each 
dimension, but at the same time they also complicate the structure of network and increase the 
number of nonlinear parameters. To reduce the number of these parameters we have used another 
distance measure, which combines all the scaling in one. This measure is defined in general by 
[4,5,6] 

)(rc )(rσ
)(rb

( ) ( ) ( )2 ( ) ( ) ( ),
Tr r

rd = − ⋅ ⋅ −x c x c A x c r

I

 (5)

where Ar is a positive, symetric, scaling matrix. It can be easily recognized that (5) is an extension of 
euclidian measure, where . With such measure, the new fire strength of the r-th rule can be 
calculated using the relation containing only one global pair of width 

r =A

rσ  and exponent  
coefficients common for all N variables. The scaling matrix A

rb
r fulfills the role of scaling for each 

dimension. The modified fuzzifier function is then defined by 
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The modified model of TSK network is presented on Fig. 2. It has only  nonlinear 
adapted , 

( 2)M N⋅ +
( )ic iσ  and   for i=1,..., M (the matrixes Aib i can be deterministically calculated on the 

basis of the locations of centers). This means a significant reduction of number of nonlinear 
parameters (instead of 3 M N⋅ ⋅ ). For this new defined measure, we have proposed an algorithm of 
automatic building TSK network including the structure identification (setting up the number of 
inference rules), parameter initialization (start values for nonlinear parameters , A( )ic i , iσ  and  
and the linear parameters for TSK functions). 

ib

 

 
Fig. 2. The structure of the modified TSK network 

 
The schema of the algorithm is presented on Fig. 3. As it can be seen, the first stage of the 

algorithm is the determination of the number M of the clusters and their locations  using fuzzy 
clustering algorithm. In the next stage, the nonlinear parameters 

( )ic
iσ ,  and the linear ones ib ijp  are 

initialized. After initialization, these parameters are adapted with the hybrid algorithm [6]. The 
model is then validated on the basis of the error functions in learning and testing modes. If the errors 
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are too high (especially in testing mode), the model is rejected and the algorithm is repeated with 
another range of the centers number. In the whole process, the only parameter need to be set up by 
the user is the maximum of the range, in which the number of centers is looked up. 

 

 

Fig. 3. The schema of automatic building of TSK network 

III. Automatic generation of rules using fuzzy self-organization and supervised 
learning algorithm 
 
The most important problem in TSK network is the determination of the number of rules that should 
be used in the modeling of data. More rules means better representation of data, but at the same time 
it will also increase the complexity of the neural network and will result in higher cost of data  
processing. Too complex neural network may also lead to the decrease of the generalization ability 
and the deterioration of quality of the network operation in the testing mode. Hence the most 
important problem is to reduce the number of inference rules, by eliminating the combinations 
corresponding to the empty data space regions. We have solved this problem here by applying fuzzy 
self-organization of the data. Therefore procedures for automatic calculation of the number of 
clusters, irrespective of dimensionality and distribution of data are required. In this paper we present 
the Gustafson - Kessel (GK) clustering algorithm to determine the locations of a number of centers, 
a quality global measure to fix the number of the centers, and the algorithm of setting up the initial 
values of fuzzifier functions [3,4,6]. 
 

III.1 The GK clustering algorithm 

In the GK algorithm, the distance from the input vector  to the center  is defined by the 

equation (5). The degree, with which the vector  belongs to the center , is 
jx ( )ic

jx ( )ic

2

1
1ij

ij

u
d

=
+

 (7)

The fuzzy clustering algorithms search for the partition matrix and cluster centers such that the 
objective function E is minimized [2,3,4] 
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= =
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subject to  for j = 1, 2, ..., p and 
1

1C
iji

u
=

=∑ 0 iju≤ ≤  for i = 1, 2, ..., C; j = 1, 2, ..., p. The algorithm 
has proved to behave well on different classification problems of data distributed within flat, 
elongated clusters. 
 

III.2 Determination of the number of clusters 

To control the number of clusters we will apply here the so called validity measures [3] that assess 
different qualities of the clusters, on the basis of which the optimal number of clusters can be  
determined. Four different validity measures have been applied to the solution of the problem. 

− fuzzy hypervolume measure 
1
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= ∑ F  where  - the cluster covariance matrix, 
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 where the parameter Si (i = 1, 2, ..., C)  is 

calculated only for these vectors  that lie within a hyperellipsoid, whose radii are the 

standard deviations of the cluster features and are defined as for such k, that 
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=  and  λij - the j-th eigenvalue of the 

cluster covariance matrices Fi, arranged in a descending order, i.e., λi1≥ λi2 ≥... ≥ λiN.  
 

A good partition is indicated by small values of Vh and tA and high values of DA and Dw. An 
example of values of the validity as a function of center number is shown on Fig. 4.  

In our solution we aim at simultaneous satisfaction of all these four quality measures. To get one 
quality measure we define one heuristic global quality factor α in the following way 

AwAh taDaDaVa 4321 +−−=α  (9)

where ai (for i = 1, 2, 3, 4) are positive scaling coefficients. The minus signs for a2 and a3 mean we 
prefer the smaller values of the heuristic global quality factor. The local minima of this measure 
indicate the suboptimal numbers of cluster centers. The procedure of finding those minima relies on 
calculating the quality factor for different number of clusters and choosing those corresponded to the 
local minima.  
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Fig. 4. Values of 4 validity measures as a function of center number 

 Figure 5 presents the values of the heuristic global quality factor α  as a function of center 
number. The curve has some minima (located at center number equal 5, 11 or 16). These values 
indicate the potential center number of the input data. 
 

 
Fig. 5. Values of final heuristic measure as a function of center number 

The clustering procedure applied for grouping the data is an important step in building inference 
rules for fuzzy TSK system. Each cluster center is associated with the center of the appropriate 
inference rule and the number of cluster indicates the number of applied rules. 

III.3 Initialization the inference functions 

The previous subsections have presented the algorithm of determination the number of centers and 
their first locations ci. Therefore the other two parameters of inference function, i.e. the width σi and 
the exponent bi coefficients, are still needed to be initialized. From our observations, it has resulted 
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that the start value of the exponent coefficient bi equal 1 is sufficient for most of cases. It means that 
the antecedent part of each rule can start with the bell form. The other situation is for the width 
coefficient σi. In making the inference rules more sensible on the input range, this coefficient is 
much stronger than the exponent one. A small value of σi makes the rule to be more 'crisp', but a 
bigger value makes the rule to be more active for wide range of input. Its value should depend on the 
data distribution and the distances between center locations. We have proposed a method to initialize 
the values of σi. The algorithm is following  

• For every center ci, calculate the distances to all other centers using  (5).  
• Calculate the effective ratio  as the average distance from center cef

iR i to some nearest 
neighbors (usually up to 5).  

• Set the initial value σi to  (this value will assign the value of membership function 
equal 0.2 for the data points at distance ). 

2/ef
iR

ef
iR

III.4 Parameters adaptation 

After initialization, the modified TSK network needs further fine-tuning to increase its performance. 
This tuning can be done by a learning process, which is very typical for the neural networks. In 
adaptation of the parameters of the network we have applied the hybrid algorithm [2], which 
contains two stages: learning the linear parameters and learning the nonlinear parameters. The hybrid 
learning algorithm of TSK neuro-fuzzy network belongs to the supervised ones, which perform the 
minimization of the cost function [2] 

( )∑
=

−=
p

l

ll dyE
1

2)()( )(
2
1 x  (10)

In the first stage, the linear parameters are adapted using the SVD algorithm and the pseudo-
inversion of a matrix [6]. This method will lead us to the global optimal values of linear parameters 
subject to the actual values of nonlinear parameters. The nonlinear parameters are adapted using the 
steepest descent method of minimization of this function. For example, the relation for adapting the 
center c(k)=[ck1,…, ckN] parameter is as follows [1,2] 
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kj
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Ecc

∂
∂

−=+ η  (11)

where n means the consecutive iteration. Due to the small effectiveness of gradient method in 
comparing with SVD decomposition in learning process, each stage of learning linear parameters is 
associated with a number of gradient learning iterations (in our experiments the ratio was 20/1). 

IV. Numerical experiments 
 
The modified TSK network has been applied for the estimation of the concentration of the gas 
mixture components by applying the matrix of semiconductors sensors. The technical data of 
performed experiments are as follows: 

• number of gases in the mixture - 4 (carbon oxide, methane, propane/butane and methanol). 

• number of sensors - 5 (TGS-815, TGS-822, TGS-842 Figaro sensors and NAP-11A, NAP-
11AE Nemoto sensors). 

• 216 known gas mixtures for learning purposes. 
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• 204 gas mixtures for testing purposes. 

 

 
Fig. 6. Values of final heuristic measure for the gas mixture problem 

At five sensors, the number of inputs of the network is also 5. In the learning data set, we have 
prepared different combination of components presence (from mixture with all 4 components to the 
mixture with none of those under consideration components), as well as different concentrations at 
each component. The GK clusterization procedure applied to the data set has allowed obtaining the 
suboptimal number of inference rules, which in this case was equal 3, 5, 8 and 12 as seen in the Fig. 
6. In further experiments we have chosen those numbers. In Table 1 the number of misclassifications 
in learning and testing process at different numbers of interference rules is presented. 

Table 1. Results of learning and testing the modified TSK network with different number of rules 

No of 
rules 

No of 
learning error 

Learning error 
percentage 

No of 
testing error 

Testing error  
percentage 

3 8 3.70% 12 5.88% 
5 5 2.31% 3 1.47% 
8 2 0.93% 7 3.43% 
12 0 0.00% 6 2.94% 

   
As it can be seen from this table, by increasing the number of interference rules we can decrease 

the learning error. However in testing phase, too many rules will lead to the “over learning” effect. 
From this table it is resulted that 5 is the optimal number of rules (it is also the minimum of the 
heuristic value α). 

V. Conclusions 
 
The paper has presented a modification of the classical TSK network and the algorithm of building 
an effective structure of this modified network including selecting the optimal number of cluster 
centers and initializing the parameters of fuzzifier functions. The modified network has been 
implemented and successfully tested. The results of numerical experiments of the classification of 
toxic gas components have been presented and discussed. The obtained accuracy of classification is 
very good after a fully automatic algorithm. The only parameter required in this algorithm is the 
maximum of the range, where the center number is searched. 
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