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Abstract 

rison of two artificial neural network methods for predicting the risk of insect pest species 
ment in regions where they are not normally found is presented. The ANN methods include 
own unsupervised learning algorithm and a relatively new supervised constructive method. 

Zealand pest species assemblage as an example was used to compare model predictions. 
thods gave similar results for already established and non-established species.  
d: Self-Organising Maps, Evolving Connectionist Systems, pest invasion prediction. 

uction 

ng rate of global tourism and trade is rapidly increasing the threat to human health, 
ral and horticultural production and biodiversity of many countries by unintended 
ions of exotic species. While each nation has regulatory methods that are intended to 
exotic or invasive species establishing there is a desperate need to develop methods that 
gher level of prediction to assist the pest risk assessment process. 
er of models and approaches have been designed to predict the establishment of species in 
here they are not normally found. These models are usually based on a combination of 

d environmental predictors. Such methods range from classical statistical approaches that 
ecies presence and absence at localities to environmental factors, to process models that 
species response to the environment. A neurocomputing approach that has often been 
o ecological questions is the unsupervised ANN algorithm, the Kohonen Self-Organising 

OM) [6]. Kohonen SOMs have been applied to classification problems in ecology, 
rly to detect patterns in communities of species (e.g. [1,3]). SOMs have recently been used 
igate the assemblages of insect pest species at global locations to predict their establishment 
reas [10]. In this study the species were ranked with regard to their risk of establishment. It 
however that such species ranking will change depending on the initial conditions of the 
algorithm. In this study we compare the SOM rankings together with those produced by a 
 new ANN method. 
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II. Predicting Pest Establishment with ANN 
 
The two types of ANN used in this study, Kohonen Self-Organising Maps (SOM) [6] and Simple 
Evolving Connectionist System (SECoS) [7], are both types that perform spatial clustering of 
training examples during learning. By determining the cluster to which a geographic region 
represented by its species assemblage belongs to, it is possible to predict which pest species may 
become established in that region. 
The rationale behind this approach is that regions that have similar assemblages are likely to have 
climatic or other environmental properties in common that allow the species to establish. If a 
particular region in a cluster does not have a pest species present, while other regions within the 
cluster do, it is hypothesised that it is likely that the region possesses an environment conducive to 
the establishment of that species if it were introduced. 
Central to the prediction of pest establishment is the meaning of the connection weights in the ANN. 
Each input neuron in the ANN represents one pest species. As the networks train, species that are 
seen more commonly in a particular cluster are assigned larger weights by the training algorithm. 
The weights are therefore a reflection of the frequency of the species in the training data for that 
particular cluster. Since each cluster represents geographic regions that are similar in terms of pest 
assemblages, the weights of each species are a reflection of the probability of each species being 
found in a geographic region within that cluster. The weights are thus an indicator of the risk [4] of 
each species establishing in regions that are present in that cluster. 
The following subsections describe how these risk weightings are extracted from the two types of 
ANN. For each type of network, a list of species is extracted where each species has a risk weighting 
or risk of establishment associated with it. 
 

A. Predicting Risk of Establishment with Kohonen SOM  

At the conclusion of training each cell in the output map represents the centre of a cluster of training 
examples. A list of risk weightings for a particular geographic region is created from a SOM by 
propagating through the network the vector that represents that region. The winning neuron is then 
identified and its weight vector taken as the list of species risk weightings. 
 

B. Predicting Risk of Establishment with SECoS 

Evolving Connectionist Systems (ECoS) [5] are a class of constructive ANN that are similar in the 
way in which they are constructed and learn. Advantages of ECoS are that they learn very quickly 
and are resistant to catastrophic forgetting. 
The SECoS ANN [7] is a minimalist implementation of the ECoS principles and consists of three 
layers of neurons. The first is the input layer. The second is the evolving or constructive layer: it is 
this layer to which neurons are added and in which learning takes place. The activation of the 
evolving layer neurons is based on the distance between the input to evolving layer weight vectors 
and the current input vector. The third layer is the output layer. 
Learning in the evolving layer takes place as a mixture of adding neurons and weight adjustment. 
Neurons are added if the current training vector is above a certain threshold level of dissimilarity. 
Connection weights in the input to evolving layer connections are adjusted such that the connection 
weights vector of the most highly activated (winning) evolving layer neuron are adjusted to be closer 
in space to the current training vector. Weight adjustment in the evolving to output layer is done via 
a simple error minimization algorithm. The details of the SECoS ANN and its learning algorithm are 
presented in the following section. 
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C. The SECoS Algorithm 
 
The activation A of an evolving layer neuron n is determined by Equation 1. 
 

nn DA −= 1  (1)

 
where: 

nA  is the activation of the neuron n, and  is the distance between the input vector and the 
incoming weight vector for that neuron.  

nD

Since SECoS networks are fully connected, the number of connections coming into an evolving 
layer neuron from the input layer is the same as the number of input neurons. Thus, the incoming 
weight vector has the same dimensionality as the vector input to the evolving layer. It is therefore 
possible to directly measure the distance in Euclidean space between the two vectors. Although the 
distance can be measured in any way that is appropriate for the inputs, this distance function must 
return a value in the range of [ . For this reason, the SECoS algorithm assumes that the input data 
will be normalised, as it is far easier to formulate a distance function that produces output in the 
desired range if it is normalised to the range 

]1,0

[ ]1,0 . 
Thus, examples which exactly match the exemplar stored within the neurons incoming weights will 
result in an activation of unity, while examples that are entirely outside of the exemplars region of 
input space will result in an activation of near zero. 
Whereas most ANN propagate the activation of each neuron from one layer to the next, in SECoS 
only the activation of the winning (most highly activated) evolving layer neuron is propagated to the 
following neuron layers. 
 

D. SECoS Training 
 

The SECoS Learning algorithm is based on accommodating within the evolving layer new training 
examples, by either modifying the weight values of the connections attached to the evolving layer 
neurons, or by adding a new neuron to that layer. The algorithm employed is described below: 
• Propagate the input vector I through the network. 
• Find the most highly activated (winning) neuron j and its activation . JA
• IF  is less than the sensitivity threshold .. JA thrS

o Add a neuron. 
• ELSE 

o Evaluate the errors between the calculated output vector  and the desired output 
vector . 

cO

dO
o IF the absolute error over the desired output is greater than the error threshold  thrE

 Add a neuron. 
o ELSE 

 Update the connections to the winning evolving layer neuron. 
• Repeat for each training vector. 

When a neuron is added, its incoming connection weight vector is set to the input vector I, and its 
outgoing weight vector is set to the desired output vector . dO
The weights of the connections from each input i to the winning neuron j are modified according to 
Equation 2.  
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where: 

)(, tW ji  is the connection weight from input i to j at time t, 1η  is the learning rate parameter for the 
input to evolving layer connections,  is the ith component of the input vector I, The weights from 
neuron j to output o are modified according to Equation 3.  

iI
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where: 

)(, tW oj  is the connection weight from j to output o at time t, 2η  is the learning rate parameter for the 
evolving to output layer connections,  is the activation of j,  is the signed error at o, as 
measured according to Equation 4. 

jA oE

 

odo AOE −=  (4)

 
where: 

dO  is the desired activation value of o and  is the actual activation of o.  oA
 
E. Extracting Risk Weightings from SECoS 

 
It is the spatial learning in the input to evolving layer connection weights that is most useful in the 
clustering of insect pest assemblages. At the completion of training over a data set, each evolving 
layer neuron represents the centre of a cluster of training examples, where the weights represent the 
coordinates of this centre. 
The way in which a list of risk weightings is created from a trained SECoS is similar to the way in 
which one is created from a SOM: the vector representing the geographic region of interest is 
propagated through the network and the winning evolving layer neuron identified. The incoming 
connection weights are then taken as the species weights for risk of establishment. 

III. Method 
 
The data used was taken from the Crop Protection Compendium (CPC) [2] and consisted of 
representations of 459 geographic regions. Each example consisted of 844 elements, where each 
element indicated the presence or absence in that region of a particular insect pest species. 
The SOMs were trained using the data described above. The SOM output maps had a twelve-by-nine 
neuron hexagonal topology and Euclidean distances were used [9]. Each SOM was trained for one 
thousand epochs. The training parameters were as in Table 1. 
 

Table 1 Kohonen SOM learning parameters 
Parameter Value
Ordering phase learning rate 0.9 
Tuning phase learning rate 0.02 
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Since SECoS is a supervised training algorithm, target values were needed for each of the species-
presence vectors. For this work, the target values were unity minus the Jaccard similarity coefficient 
of each vector as compared to the New Zealand vector. Thus, vectors that were identical to the New 
Zealand vector (that is, geographic regions that have the same pest assemblage as New Zealand) had 
a target value of unity, while regions that were mostly different to New Zealand had a target value of 
close to zero. The New Zealand vector was omitted from the training set for the SECoS networks to 
ensure that a separate evolving layer neuron was not added for New Zealand. The training 
parameters used for SECoS are presented in Table 2. 
 

Table 2 SECoS learning parameters 
 

Parameter Value
Sensitivity threshold 0.5 
Error threshold 0.1 

1η  0.5 

2η  0.5 
 
One thousand runs were carried out for both experiments. For each trained network created, a list of 
risk weightings for each species (a risk listing) was generated where each risk weight is a 
representation of the risk of establishment of the pest species. 

IV. Method 
 
The species in a particular risk list were ranked according to the mean risk weightings determined by 
the ANN. While each SOM had 108 neurons in the output map, the SECoS had an average of forty-
two neurons in the evolving layer, which corresponds to forty-two clusters formed in the SECoS 
evolving layer. The mean performance of the SECoS over the learning data set was a mean-squared 
error (MSE) of 0.0018 with a standard deviation of . 4102.4 −×
For the pest risk lists produced by each method, the highest ranks in the lists were overwhelmingly 
occupied by species that were already established in New Zealand, while the bottom ranks in the 
lists were overwhelmingly occupied by species that are recorded as absent. Table 3 presents a list of 
the top 20 ranked species for SOM, while Table 4 presents a list of the top twenty for SECoS. While 
the exact weightings and orderings of the species were different, fifteen of the species were common 
to both lists, while eight of those were in the top ten positions of both lists. This indicates that both 
SOM and SECoS were learning to cluster similar assemblages together. Of the species that were 
present in both lists, only one, Sitophilus zeamais is not recorded as being present in New Zealand. 
 

Table 3 List of top twenty ranked species for SOM 
Bayer Code Species Weight Bayer Code Species Weight
MYZUPE Myzus persicae 0.913 PSECAD Pseudococcus longispinus 0.779 
BRVCBR Brevicoryne brassicae 0.886 HYLEPL Delia platura 0.777 
PSECCI Planococcus citri 0.859 COCCHE Coccus hesperidum 0.773 
APHIGO Aphis gossypii  0.856 SAISHE Saissetia coffeae 0.772 
NEZAVI Nezara viridula 0.843 PHTOOP Phthorimaea operculella 0.767 
ERISLA Eriosoma lanigerum 0.825 AONDAU Aonidiella aurantii 0.766 
PLUTMA Plutella xylostella 0.822 SAISOL Saissetia oleae 0.756 
RHOPMA Rhopalosiphum maidis 0.799 THRITB Thrips tabaci 0.754 
ICERPU Icerya purchasi 0.794 RHOPPA Rhopalosiphum padi 0.744 
HELIAR Helicoverpa armigera 0.792 APHICR Aphis craccivora 0.744 
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Table 4 List of top twenty ranked species for SECoS 
Bayer 
Code 

Species Weight Bayer 
Code 

Species Weight

MYZUPE Myzus persicae 1 PHTOOP Phthorimaea operculella 1 
BRVCBR Brevicoryne brassicae 1 THRITB Thrips tabaci 1 
APHIGO Aphis gossypii  1 SAISOL Saissetia oleae 1 
PSECCI Planococcus citri 1 RHOPPA Rhopalosiphum padi 1 
NEZAVI Nezara viridula 1 TOXOCI Toxoptera citricida 1 
ERISLA Eriosoma lanigerum 1 HELTHA Heliothrips 

haemorrhoidalis 
1 

PLUTMA Plutella xylostella 1 PANMCE Pantomorus cervinus 1 
RHOPMA Rhopalosiphum maidis 1 LISTCO Listroderes costirostris 1 
PSECAD Pseudococcus 

longispinus 
1 AONDAU Aonidiella aurantii 0.999 

SAISHE Saissetia coffeae 1 CALAZM Sitophilus zeamais 0.999 
 
The twenty highest ranked species that are recorded as absent from New Zealand as identified by the 
Kohonen SOM are presented in Table 5, while those identified by SECoS are presented in Table 6. 
 It is interesting to note that S. zeamis, which was the only species in the top twenty not already 
present in New Zealand, was at the top of both lists. Ten of the species were common to both lists, of 
which seven were in the top ten of both lists. Again, this supports the interpretation that both SOM 
and SECoS were learning to cluster similar assemblages together. 
 

Table 5 List of top twenty species, that are recorded as absent from New Zealand, for SOM 
Bayer 
Code 

Species Weight Bayer 
Code 

Species Weight

CALAZM Sitophilus zeamais 0.562 APHIFA Aphis fabae 0.337 
DROSME Drosophila melanogaster 0.49 PHYNCI Phyllocnistis citrella 0.333 
MELHSA Melanaphis sacchari 0.469 AGROSE Agrotis segetum 0.324 
LAPHEG Spodoptera exigua 0.465 LEPSBE Lepidosaphes beckii 0.314 
CERTCA Ceratitis capitata 0.445 TAYLPA Taylorilygus pallidulus 0.301 
CHYSFI Chrysomphalus aonidum 0.425 PSEAPE Pseudaulacaspis 

pentagona 
0.300 

FRANSC Frankliniella schultzei  0.412 TRIPNI Trichoplusia ni 0.300 
AONDCI Aonidiella citrina 0.403 OTIOCR Otiorhynchus cribricollis 0.284 
UNASCI Unaspis citri 0.369 PECTGO Pectinophora gossypiella 0.282 
CHYSDI Chrysomphalus 

dictyospermi 
0.352 LEPSUL Lepidosaphes ulmi 0.278 

 
V. Discussion 
 
A difficulty with this work is validating the results. It is encouraging that the top positions in the list 
are mostly filled by species that are present in New Zealand, while the bottom slots are filled with 
species that are recorded as absent. 
The interpretation of the weights also requires some caution. Risk weightings are not the same as 
probabilities. If a species is established in a region, its probability of establishment is unity, yet the 
ANN may assign a weight to that species that is not unity. 
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Despite this, the results were encouraging, as the top positions in the risk lists were mostly filled by 
species that are present in New Zealand, while the bottom slots were filled with species that are 
recorded as absent. However it is clear that it is difficult to say which of the two ANN models used 
performed best. The advantage of SOM is that it is easy to visualise the clusters that are formed. The 
disadvantages are that training is extremely slow and the number of clusters is fixed. The advantages 
of SECoS are the number of clusters is determined automatically during training and the speed with 
which training occurs. Methods also exist for extracting fuzzy rules from SECoS [8]. However, since 
there is no quantisation in SECOS, it is much more difficult to visualise the clusters that form. 
 

Table 6 List of top twenty species, that are recorded as absent from New Zealand, for SECoS 
Bayer 
Code 

Species Weight Bayer 
Code 

Species Weight

CALAZM Sitophilus zeamais 0.999 EPILVG Epilachna 
vigintioctopunctata 

0.562 

MELHSA Melanaphis sacchari 0.941 CHYSFI Chrysomphalus aonidum 0.552 
DROSME Drosophila 

melanogaster 
0.924 OTIOCR Otiorhynchus cribricollis 0.460 

FRANSC Frankliniella schultzei   0.645 LEPSUL Lepidosaphes ulmi 0.425 
AONDCI Aonidiella citrina 0.632 ALEDDE Aleurodicus destructor 0.408 
LAPHEG Spodoptera exigua 0.586 COSPFL Anomis flava   0.386 
CERPRB Ceroplastes rubens 0.585 HYALPR Hyalopterus pruni 0.365 
IPSXGR Ips grandicollis 0.585 CARHHU Carpophilus humeralis 0.326 
PAPLDE Papilio demoleus 0.585 THEROL Theretra oldenlandiae 0.326 
UNASCI Unaspis citri 0.573 PERGMA Peregrinus maidis   0.314 
 
VI. Conclusion 
 
Models for predicting the risk of insect pest species establishing in a particular geographic region are 
presented. The models comprise two types of ANN, Kohonen SOMs and a constructive network, 
ECoS. Both models were found to produce ranked lists of species that appear to be plausible and 
both gave similar clusters of assemblages at the higher rankings. The use of both methods for pest 
risk assessment has value as each method confirms the output of the other adding weight to an 
overall assessment for a particular species. 
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