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Abstract 
 
In this paper several multiagent reinforcement learning algorithms are investigated, compared and 
analyzed. An effective reinforcement learning algorithm based on non Markov environment is 
proposed. This algorithm uses linear programming to find the best-response policy, and avoids 
solving multiple Nash equilibria problem. The algorithm involves simple procedures and easy 
computations, and can guarantee good learning convergence in some situations. Experiment results 
show that this algorithm is effective. 
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I. Introduction 
 
Especially, reinforcement learning techniques (Sutton and Barto, 1998) have attracted many 
researchers in investigating learning in multiagent systems. The progress made on reinforcement 
learning has opened the way for designing autonomous agents capable of acting in unknown 
environments by exploring different possible actions and their consequences. In single-agent 
systems, Q-learning (Watkins and Dayan, 1992) is an available reinforcement learning technique 
which possesses a firm foundation in the theory of Markov decision processes. However, to apply 
single-agent Q-learning to a multiagent system in a straightforward fashion is very difficult. 
In researching multiagent Q-learning, most researches adopt the framework of general-sum 
stochastic games. Hu and Wellman define optimal Q-values as Nash Q-values [Hu and Wellman, 
1998]. This algorithm needs Nash equilibria to be globally optimal or saddle points, and it might fail 
to converge if multiple equilibria exist. Greenwald and Hall proposed a correlated equilibrium (CE) 
learning algorithm [Greenwald and Hall, 2003]. This algorithm is more general than a NE, because it 
resolves the equilibrium selection problem by introducing four variants of CE-Q, based on four 
equilibrium selection functions, i.e. utilitarian, egalitarian, republican, and libertarian CE-Q learning. 
A CE can be computed easily via linear programming. Bowling and Veloso considered the rational 
and convergent learning problem, and proposed a “win or learn fast”(WoLF) policy hill-climbing 
(PHC) learning algorithm [Bowling and Veloso, 2001]. The algorithm has good convergence 
properties; however its definition of Q-values is single-agent style not joint action style. So far 
multiagent reinforcement learning is less mature in many areas [Nikos Vlassis, 2003]. 

 60



International Journal of Information Technology     Vol.12   No.6  2006   

In this paper, we compare and analyse several multiagent learning algorithms, and attempt to 
combine Nash-Q, CE-Q and PHC algorithms’ thoughts, and propose an improved reinforcement 
learning algorithm. The algorithm makes use of the linear programming ideas of CE-Q learning and 
the expression types of NE-Q learning in updating Q-values; and of the policy hill-climbing 
technique of PHC in updating π – values. The experiment results show this algorithm is effective in 
some situations. 

II. Reinforcement Learning Algorithms 
 

A. Definitions of stochastic games 
A stochastic game is a tuple , where n is the number of agents, 

is the set of states, 

1 1( , , , , , , )n nn S A A r r pL L

S iA  is the set of actions available to agent , and  
is the reward function for agent i ,  is the state transition probability 
map, where  is the set of probability distributions over the state space . 

i 1:i nr S A A R× × × →L
1: np S A A S× × × → ∆L ( )

( )S∆ S
The goal of Stochastic games (SGs) is to maximize the discounted future reward of each agent. 
Each state in a stochastic game can be viewed as a matrix game with the reward ( , )ir s ar  to 
player i determined by joint action ar  in state s , where 1 2( , , , )na a a a=

r
L is the joint actions 

of all agents. After playing the matrix game and receiving the payoffs, the players are 
transitioned to another state (or matrix game) determined by their joint actions. Therefore SGs 
contain both MDPs (  and matrix games 1n = ) ( 1s )=  as subsets of the framework [Bowling 
and Veloso, 2002]. 

B. Single agent Q –learning 
In single-agent Q-learning [Watkins and Dayan, 1992], the goal of the agent is to learn the 
optimal Q-values,   defined as  

* ( , ) ( , ) ( | , ) ( , )
s

Q s a r s a p s s a v sβ π ∗
′

′ ′= + ⋅ ⋅∑  
(1) 

Where  is the sum of the immediate reward obtained at state s  for taking action a and 
the total discounted expected future rewards obtained by following the optimal policy 
thereafter. 

* ( , )Q s a

β  is a discount factor, with 0 1β≤ < . *( , )v s π′ is a value function that maximizes 
 over all actions a . * ( , )Q s a *π is the optimal policy that maximize  at each state s . 

Then 
* ( , )Q s a

* *( , ) max ( , )
a

v s Q s aπ′ =  (2) 

The agent starts with arbitrary Q-values, and updates them as follows: 

1 1,( , ) (1 ) ( , ) [ max ( )]t t t t t t t t tb
Q s a Q s a r Q s bα α β+ += − ⋅ + ⋅ + ⋅  (3) 

Under standard RL assumptions, the sequence  converges to  with probability 1, and the 
optimal policy is simply taking the action to maximize  at any state . 

tQ *Q
( , )tQ s a s

C. Multiagent Q – learning 
In multiagent Q-learning, the Q-function of agent i  is defined over states and joint- action 
vectors , rather than state-action pairs. Then, the updating of Q value 
proceed as following: 

1 2( , , , )na a a a=
r

L

1 1( , ) (1 ) ( , ) ( )i i i
t t tQ s a Q s a r V sα α β+ +

i
t⎡ ⎤= − + + ⋅⎣ ⎦

r r
 

(4) 

Where   is state value functions, and 1(i
tV s + )
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1 1( ) max ( ( , )
i i

i i i
t t

a A
V s f Q s a+ +

∈
= )t

r
 

(5) 

In this generic formulation, the keys elements are the learning policy, i.e. the selection method 
of the action a , and the determining of the value function . The different action 
selection / value function computation methods generate different multiagent learning 
algorithms. 

r
1(i

tV s + )

)i

i

)

2 2
1t+−

D. Several multiagent Q-learning algorithms 
We have pointed out in section C that different computation methods will generate different 
multiagent Q-learning algorithms. 
If using a simple extension from the single-agent MDP to the multiagent SGs environment, the 
following formulation can resolve general multiagent Q-learning problems. 

1 1( , ) (1 ) ( , ) [ ( , ) ( )]i i i i i i i
t t t t t t tQ s a Q s a r s a V sα α β+ += − + +  (6) 

1 1( ) m a x ( ,
i i

i i
t t t

a A
V s Q s a+ +

∈
=  (7) 

This method has very good convergence and occupies less memory space than the Q- values 
defined by joint actions. However, it can only be used in the limited context where every agent 
just considers its own maximum benefit but does not consider the other agents at all. 
Another definition of multiagent Q-values is a function of all agents’ joint actions: 

1 1( , ) (1 ) ( , ) [ ( , ) ( )]i i i
t t t t t t tQ s a Q s a r s a V sα α β+ += − + +

r r r
 (8) 

The key of the method is how to calculate  and update the Q-values. 1(i
tV s +

a. Zero-sum SGs framework 
For strictly competitive game, or the zero-sum SGs framework, Littman suggested the 
minimax-Q learning algorithm, in which the state value is updated with the minimax of the Q 
values [Littman, 1994]. Then  

1 12 21 1

1 1 1 1 1
1 1

( )
( ) max min ( ) ( , , ) ( )t t ta Aa AP A

V s P a Q s a a V s+ +∈∈∈
= =

∏ ∑  (9) 

where  is the mixed strategy of agent 1 and 1P 1 1( )P a  is the probability of agent 1 playing 
action . 1a

b. Full cooperative SGs framework 
Littman’s Friend-Q learning algorithm can be used in the strictly cooperative, or team games, 
SGs framework. In this method all the players’ reward functions are equivalent – with uniquely 
valued equilibria [Littman, 2001]. 

1 1( ) m ax ( ,i i
t t ta A

V s Q s a+ +∈
= r )r  (10) 

c. General-sum SGs framework 
In general-sum SGs framework, there are several different Q-learning algorithms, such as Nash 
Q-learning, CE Q-learning, and WoLF’s policy hill-climbing etc. 
1. Figures and Tables 

In Nash Q-learning, the agent attempts to learn its equilibrium Q-values, starting from an 
arbitrary guess. To this end, the Nash Q-learning agent maintains a model of other agents’ Q-
values and uses this information to update its own Q-values. The updating rule is based on the 
expectation that agents would take their equilibrium actions in each state. Based on the learned 
Q-values, agents can then derive the Nash equilibrium and choose their actions accordingly [Hu 
and Wellman, 1998; Hu and Wellman, 2003]. 

1
1 1( ) ( ( ), , ( ))i n

t i tV s N A SH Q s Q s+ +∈ L 1t +  (11) 

A Nash equilibrium is a collection of strategies for each of the players such that each player’s 
strategy is a best-response to the other players’ strategies. So, no player can get a higher payoff 
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by changing strategies given that the other players don’t change strategies either [Bowling and 
Veloso, 2001]. Despite its limitations, such as non-uniqueness, the Nash equilibrium serves as 
the fundamental solution concept for general-sum games. 
2. CE Q-learning 

Greenwald and Hall proposed a multiagent Q-learning algorithm, i.e. Correlated-Q (CE-Q) 
learning, based on the correlated equilibrium (CE) solution concept. CE-Q generalizes both 
Nash-Q and Friend-and-Foe-Q in general-sum games, and the set of correlated equilibria 
contains the set of Nash equilibria; in constant-sum games, the set of correlated equilibria 
contains the set of minimax equilibria [Greenwald and Hall, 2003]. 

1
1 1( ) ( ( ), , ( ))i n

t i t tV s CE Q s Q s+ +∈ L 1+

1+

1 )t

 (12) 

Where  denotes the ith player’s reward according to some 
correlated equilibrium determined by the rewards

1
1( ( ) , , ( ) )n

i t tC E Q s Q s+ L
1

1( ), , (n
tQ s Q s+ +L  in the general-sum 

game. CE Q-learning generalizes Nash Q-learning, since a Nash equilibrium is a correlated 
equilibrium that can be factored into independent distributions over each individual agent’s 
action space. 
3. WoLF policy hill-climbing algorithm 

The win-or-learn-fast (WoLF) policy hill-climbing algorithm (PHC), also called the variable 
learning rate algorithm, was proposed by Bowling and Veloso [Bowling and Veloso, 2001; 
Bowling and Veloso, 2003]. The basic idea is to vary the learning rate used by the algorithm in 
such a way as to guarantee convergence, without sacrificing rationality. The principle has a 
simple intuition, i.e., learn quickly while losing and slowly while winning. The method of 
determining when the agent is winning is to compare the current policy’s expected payoff with 
that of the average policy over time. This principle aids in convergence by giving more time for 
the other players to adapt to changes in the player’s strategy that at first appear beneficial, while 
allowing the player to adapt more quickly to other players’ strategy changes when they are 
harmful.This algorithm is the same as the simple extending from single-agent to multiagent Q-
learning algorithm in update Q-values – formulations (6) and (7). But the update of the π -
values is as follows: 

              i f   a r g m a x ( , )
( , ) ( , )       o th e r w is e

1

δ
δπ π

′ ′⎧ =
⎪

−← + ⎨
⎪ −⎩

i
a t

i i

i

a Q
s a s a

A

s a
 

 
(13) 

  
            i f    ( , ) ( , ) ( , ) ( , )

             o t h e r w i s e

δ π π
δ

δ

⎧ >⎪= ⎨
⎪⎩

∑ ∑i i i i
w a a

l

s a Q s a s a Q s a  
 
(14) 

Where ( , )i s aπ is estimate of average policy. 
This algorithm requires two learning rate parameters, lδ  and wδ , with l wδ δ> . This can be 
determined by comparing the expected Q-value estimates of following the current policy π  in 
the current state with that of following the average policy π . If the expectation of the current 
policy is smaller (i.e. the agent is “losing”) then the larger learning rate, lδ  is used 
This algorithm’s convergence properties are good, but the definition of Q-values is not based on 
the joint action, so it is suitable for self-interested multiagent situations. 

III. An improved multiagent reinforcement learning algorithm 
 
To overcome the disadvantage of the above algorithms, we combine the thoughts of WoLF, Nash Q-
learning and CE Q-learning algorithms, and propose an improved multiagent reinforcement learning 
algorithm. 
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The algorithm makes use of the linear programming ideas of CE-Q learning and the expression types 
of NE-Q learning in updating Q-values; and makes use of the policy hill-climbing technique of 
WoLF in updating π – values.The definition of Q values use the type of joint actions, and the 
updating of Q values is following 

1
1 1( , , , ) (1 ) ( , ) [ ( , ) ( )]i n i i i

t t t t t t t t tQ s a a Q s a r s a V sα α β+ += − + +
r r

L  (15) 

Where is the state value function, and is determined by the following: 1(i
tV s + )

1 )t +

)

1 * 1
1

( ) ( , ) ( ,
n

i j j i
t t t

ja

V s s a Q s aπ+ +
=

= ⋅∑ ∏r

r
 

 
(16) 

* 1( , )( 1, 2,i i
ts a i nπ + = L  are obtained by maximizing the following: 

* 1 1 1 1
1,

( , ) arg m ax ( , ) ( , ) ( ,
i

n
i i i i j j i

t t t t
j j ia

s a s a s a Q s a
π

π π π+ + +
= ≠

= ⋅ ⋅∑ ∏r

r )t t +  
 

(17) 

π  values update as follows: 

1 ( , ) ( , )i i
t ts a s a saπ π δ+ = + ∆  (18) 

  

( )( )
( )( )

1min ( , ),  / 1      if arg max ( , , , , , )

min ( , ),  / 1   otherwise
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i i
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′
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    otherwise
i i

i i i i n i i i i n
w a a

l

s a Q s a a a s a Q s a a aδ π π
δ

δ

⎧ >⎪=⎨
⎪⎩

∑ ∑L L L L
 

 
(20) 

This improved algorithm is following as Table 1. It extends the WoLF-PHC algorithm to multiagent 
joint action Q- values. In the updating of Q-values it only uses linear programming to calculate *π , 
so the computation is simple. The convergence properties of this method are almost the same as that 
of the Nash Q-learning and WoLF-PHC algorithms, furthermore, this algorithm avoids resolving 
complex multiple Nash equilibria problem. 
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Table 1. Improved multiagent reinforcement learning algorithm 
1. Initialize: 

(a)   Select initial learning rate α , wδ ,δ l and discount factor β and ε  
(b)   Let  0t =
(c)   For all 1 1 2 2,  ,  , ,  n ns S a A a A a A∈ ∈ ∈ ∈L , 

    Let 1 2
0 ( , , , , ) 0i nQ s a a a =L  

    0
1( , )i i

i
s a

A
π = ,   

0
1( , )i i

i
s a

A
π = ,   ( ) 0iC s =  

(d)   Initialize 0s  
(e) Choose action  based on probability 1 2, , , na a aL ( , )s aπ with some 

exploration in state 0s  
2. Loop 

(a)   Execute action  in state 1 2, , , na a aL ts  
(b)   Observe reward ( ) and new state 1, , n

tr rL t 1ts +  
(c)   Update Q values using the following rule for 1, 2 , ,i n= L  

1
1 * 1 11
( , , , ) (1 ) ( , ) [ ( , ) ( , )]ni n i i i i i

t t t ti
Q s a a Q s a r s a Q s aα α β π+ + +=

= − + + ⋅ ⋅ t t∏r r
L  

Where * 1( ,i
t )is aπ + is calculated by (17) 

(d)   Update estimate of average policy iπ  for 1, 2 , ,i n= L  
( ) ( ) 1i iC s C s= +  

ia A′∀ ∈ ,    ( , ) ( , )( , ) ( , )
( )

i i
i i

i

s a ss a s a
C s

π ππ π a′ ′−′ ′= +  

(e)   Update  by (18) and ( , )i s aπ δ  selected by (20) 
(f)   Choose the next action for new states 1ts +  according to ( , )i s aπ  

3. Loop end 
 

IV. Experiments and Results 
 

A. Grid world examples 
We examined our improved multiagent reinforcement learning algorithm on a 6×6 gridworld 
without obstacles and with 4 obstacles as shown in Figure 1 and Figure 2, respectively. Two 
agents play these games – denoted as agent 1 and agent 2. Each agent has 6×6 = 36 states in 
Figure 1, but in Figure 2, two agents can not enter the cells occupied by obstacles, so each 
agent only has 32 states. Two agents start from the two lower corners, trying to reach their goal 
cells G1 and G2 opposite to them in the top row. An agent can move only one cell a time, and in 
four possible compass directions: Left, Right, Down, Up. Actions are executed simultaneously. 
If the agents stay in the previous cell (excluding a goal cell), they receive a negative -1 payoff. 
The game ends when any one agent reaches its goal.  Reaching the goal earns a positive 10  
points reward. 
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Fig. 1. Grid World 6×6 without obstacles     Fig. 2. Grid World 6×6 with 4 obstacles 
In case both agents reach their goal cells at the same time, they both obtain a reward of 10 
points. In other cases agents do not earn any payoff. The objective of each agent in this game is 
to reach its goal with a minimum number of learning steps. We Assum that the agents do not 
know the locations of their goals at the beginning of the learning period, and that they do not 
know their own and the other agent’s payoff functions. Agents choose their actions 
simultaneously, and can observe the previous actions of both agents and the current state. They 
also observe the immediate rewards after both agents choose their actions. 

B. Experiment results 
In this example problem experiment, we use the following initial parameters: 

    0.3α = ;  0.95β = ;  0.004lδ = ; 0.001wδ = ;  0.3ε = ; 
Whereα , lδ , wδ  and ε  are all decaying gradually in iterations. The decaying formula of lδ  
and wδ  is the same as PHC algorithm. 

    1
1 / 500k k

α =
+

;  / episodesε ε= ;  1
1000 /10w k

δ =
+

;  4l wδ δ=  

We measure learning time in episodes (trials). We train the agents over 50 and 100 episodes on 
the gridworlds in figures 1 and 2, respectively. 
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Fig. 3. The number of learning steps vs the number of learning iterations (without obstacles) 
episodes 

 
Both agents choose their actions by using ε -greedy action selection with random exploration. 
In the experiment we compared our improved multiagent learning algorithm with the WoLF-
PHC and the Nash Q-learning algorithms. The comparison is in terms of the number of steps 
taken to reach the goal as a function of the count of learning episodes. In each game both agents 
start up from their initial positions and the game runs until the both agents all reach their goal 
positions. Every such game constitutes one learning trial, also called as an episode, and the 
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learned Q-values are passed from iteration to iteration. The experiment results are shown as 
Figure 3 and Figure 4, respectively. 
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Fig. 4. The number of learning steps vs the number of learning iterations (with 4 obstacles) 

V. Conclusion 
 
In this paper we overview several multiagent reinforcement learning algorithms, compare the 
WoLF-PHC algorithm with Nash Q-learning and proposed an improved multiagent reinforcement 
learning algorithm. This improved algorithm only uses linear programming to calculate the optimal 
policies *π  in each state, so the computation is simple. The convergence properties of this method 
are almost the same as those of Nash Q-learning and WoLF-PHC , but this algorithm avoids 
resolving complex multiple Nash equilibria problem. Two 6×6 grid games,one without obstacles and 
one with 4 obstacles were used as example problems for validating the algorithm. The results show 
the algorithm is effective and  converges well. 
We will continue researching the convergence condition in theory and real applications in future 
work. 
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