
Xiangping Meng, Robert Babuška, Yu Chen, and Lucian Busoniu
Multiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment

Multiagent Reinforcement Learning Algorithm Research

Based on Non Markov Environment

 Xiangping Meng1, Robert Babuška2, Yu Chen3, and Lucian Busoniu2

Abstract

In this paper several multiagent reinforcement learning algorithms are investigated, compared and
analyzed. An effective reinforcement learning algorithm based on non Markov environment is
proposed. This algorithm uses linear programming to find the best-response policy, and avoids
solving multiple Nash equilibria problem. The algorithm involves simple procedures and easy
computations, and can guarantee good learning convergence in some situations. Experiment results
show that this algorithm is effective.

1 Department of Electrical Engineering, Changchun Institute of
Technology, P. R. China

xp_meng@ccit.edu.cn, mxp_1961@hotmail.com
2 Delft Center for Systems and Control, Delft University of Technology,

The Netherlands
{r.babushka, i.l.busoniu}@dcsc.tudelft.nl

3 Department of Computer Engineering, Northeast China Institute of
Electric Power, P.R.China

cycnen@sohu.com

Keywords: multiagent; reinforcement learning; markov environment; nash equilibria

I. Introduction

Especially, reinforcement learning techniques (Sutton and Barto, 1998) have attracted many
researchers in investigating learning in multiagent systems. The progress made on reinforcement
learning has opened the way for designing autonomous agents capable of acting in unknown
environments by exploring different possible actions and their consequences. In single-agent
systems, Q-learning (Watkins and Dayan, 1992) is an available reinforcement learning technique
which possesses a firm foundation in the theory of Markov decision processes. However, to apply
single-agent Q-learning to a multiagent system in a straightforward fashion is very difficult.
In researching multiagent Q-learning, most researches adopt the framework of general-sum
stochastic games. Hu and Wellman define optimal Q-values as Nash Q-values [Hu and Wellman,
1998]. This algorithm needs Nash equilibria to be globally optimal or saddle points, and it might fail
to converge if multiple equilibria exist. Greenwald and Hall proposed a correlated equilibrium (CE)
learning algorithm [Greenwald and Hall, 2003]. This algorithm is more general than a NE, because it
resolves the equilibrium selection problem by introducing four variants of CE-Q, based on four
equilibrium selection functions, i.e. utilitarian, egalitarian, republican, and libertarian CE-Q learning.
A CE can be computed easily via linear programming. Bowling and Veloso considered the rational
and convergent learning problem, and proposed a “win or learn fast”(WoLF) policy hill-climbing
(PHC) learning algorithm [Bowling and Veloso, 2001]. The algorithm has good convergence
properties; however its definition of Q-values is single-agent style not joint action style. So far
multiagent reinforcement learning is less mature in many areas [Nikos Vlassis, 2003].

 60

International Journal of Information Technology Vol.12 No.6 2006

In this paper, we compare and analyse several multiagent learning algorithms, and attempt to
combine Nash-Q, CE-Q and PHC algorithms’ thoughts, and propose an improved reinforcement
learning algorithm. The algorithm makes use of the linear programming ideas of CE-Q learning and
the expression types of NE-Q learning in updating Q-values; and of the policy hill-climbing
technique of PHC in updating π – values. The experiment results show this algorithm is effective in
some situations.

II. Reinforcement Learning Algorithms

A. Definitions of stochastic games
A stochastic game is a tuple , where n is the number of agents,

is the set of states,

1 1(, , , , , ,)n nn S A A r r pL L

S iA is the set of actions available to agent , and
is the reward function for agent i , is the state transition probability
map, where is the set of probability distributions over the state space .

i 1:i nr S A A R× × × →L
1: np S A A S× × × → ∆L ()

()S∆ S
The goal of Stochastic games (SGs) is to maximize the discounted future reward of each agent.
Each state in a stochastic game can be viewed as a matrix game with the reward (,)ir s ar to
player i determined by joint action ar in state s , where 1 2(, , ,)na a a a=

r
L is the joint actions

of all agents. After playing the matrix game and receiving the payoffs, the players are
transitioned to another state (or matrix game) determined by their joint actions. Therefore SGs
contain both MDPs (and matrix games 1n =) (1s)= as subsets of the framework [Bowling
and Veloso, 2002].

B. Single agent Q –learning
In single-agent Q-learning [Watkins and Dayan, 1992], the goal of the agent is to learn the
optimal Q-values, defined as

* (,) (,) (| ,) (,)
s

Q s a r s a p s s a v sβ π ∗
′

′ ′= + ⋅ ⋅∑
(1)

Where is the sum of the immediate reward obtained at state s for taking action a and
the total discounted expected future rewards obtained by following the optimal policy
thereafter.

* (,)Q s a

β is a discount factor, with 0 1β≤ < . *(,)v s π′ is a value function that maximizes
 over all actions a . * (,)Q s a *π is the optimal policy that maximize at each state s .

Then
* (,)Q s a

* *(,) max (,)
a

v s Q s aπ′ = (2)

The agent starts with arbitrary Q-values, and updates them as follows:

1 1,(,) (1) (,) [max ()]t t t t t t t t tb
Q s a Q s a r Q s bα α β+ += − ⋅ + ⋅ + ⋅ (3)

Under standard RL assumptions, the sequence converges to with probability 1, and the
optimal policy is simply taking the action to maximize at any state .

tQ *Q
(,)tQ s a s

C. Multiagent Q – learning
In multiagent Q-learning, the Q-function of agent i is defined over states and joint- action
vectors , rather than state-action pairs. Then, the updating of Q value
proceed as following:

1 2(, , ,)na a a a=
r

L

1 1(,) (1) (,) ()i i i
t t tQ s a Q s a r V sα α β+ +

i
t⎡ ⎤= − + + ⋅⎣ ⎦

r r

(4)

Where is state value functions, and 1(i
tV s +)

 61

Xiangping Meng, Robert Babuška, Yu Chen, and Lucian Busoniu
Multiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment

1 1() max ((,)
i i

i i i
t t

a A
V s f Q s a+ +

∈
=)t

r

(5)

In this generic formulation, the keys elements are the learning policy, i.e. the selection method
of the action a , and the determining of the value function . The different action
selection / value function computation methods generate different multiagent learning
algorithms.

r
1(i

tV s +)

)i

i

)

2 2
1t+−

D. Several multiagent Q-learning algorithms
We have pointed out in section C that different computation methods will generate different
multiagent Q-learning algorithms.
If using a simple extension from the single-agent MDP to the multiagent SGs environment, the
following formulation can resolve general multiagent Q-learning problems.

1 1(,) (1) (,) [(,) ()]i i i i i i i
t t t t t t tQ s a Q s a r s a V sα α β+ += − + + (6)

1 1() m a x (,
i i

i i
t t t

a A
V s Q s a+ +

∈
= (7)

This method has very good convergence and occupies less memory space than the Q- values
defined by joint actions. However, it can only be used in the limited context where every agent
just considers its own maximum benefit but does not consider the other agents at all.
Another definition of multiagent Q-values is a function of all agents’ joint actions:

1 1(,) (1) (,) [(,) ()]i i i
t t t t t t tQ s a Q s a r s a V sα α β+ += − + +

r r r
 (8)

The key of the method is how to calculate and update the Q-values. 1(i
tV s +

a. Zero-sum SGs framework
For strictly competitive game, or the zero-sum SGs framework, Littman suggested the
minimax-Q learning algorithm, in which the state value is updated with the minimax of the Q
values [Littman, 1994]. Then

1 12 21 1

1 1 1 1 1
1 1

()
() max min () (, ,) ()t t ta Aa AP A

V s P a Q s a a V s+ +∈∈∈
= =

∏ ∑ (9)

where is the mixed strategy of agent 1 and 1P 1 1()P a is the probability of agent 1 playing
action . 1a

b. Full cooperative SGs framework
Littman’s Friend-Q learning algorithm can be used in the strictly cooperative, or team games,
SGs framework. In this method all the players’ reward functions are equivalent – with uniquely
valued equilibria [Littman, 2001].

1 1() m ax (,i i
t t ta A

V s Q s a+ +∈
= r)r (10)

c. General-sum SGs framework
In general-sum SGs framework, there are several different Q-learning algorithms, such as Nash
Q-learning, CE Q-learning, and WoLF’s policy hill-climbing etc.
1. Figures and Tables

In Nash Q-learning, the agent attempts to learn its equilibrium Q-values, starting from an
arbitrary guess. To this end, the Nash Q-learning agent maintains a model of other agents’ Q-
values and uses this information to update its own Q-values. The updating rule is based on the
expectation that agents would take their equilibrium actions in each state. Based on the learned
Q-values, agents can then derive the Nash equilibrium and choose their actions accordingly [Hu
and Wellman, 1998; Hu and Wellman, 2003].

1
1 1() ((), , ())i n

t i tV s N A SH Q s Q s+ +∈ L 1t + (11)

A Nash equilibrium is a collection of strategies for each of the players such that each player’s
strategy is a best-response to the other players’ strategies. So, no player can get a higher payoff

 62

International Journal of Information Technology Vol.12 No.6 2006

by changing strategies given that the other players don’t change strategies either [Bowling and
Veloso, 2001]. Despite its limitations, such as non-uniqueness, the Nash equilibrium serves as
the fundamental solution concept for general-sum games.
2. CE Q-learning

Greenwald and Hall proposed a multiagent Q-learning algorithm, i.e. Correlated-Q (CE-Q)
learning, based on the correlated equilibrium (CE) solution concept. CE-Q generalizes both
Nash-Q and Friend-and-Foe-Q in general-sum games, and the set of correlated equilibria
contains the set of Nash equilibria; in constant-sum games, the set of correlated equilibria
contains the set of minimax equilibria [Greenwald and Hall, 2003].

1
1 1() ((), , ())i n

t i t tV s CE Q s Q s+ +∈ L 1+

1+

1)t

 (12)

Where denotes the ith player’s reward according to some
correlated equilibrium determined by the rewards

1
1(() , , ())n

i t tC E Q s Q s+ L
1

1(), , (n
tQ s Q s+ +L in the general-sum

game. CE Q-learning generalizes Nash Q-learning, since a Nash equilibrium is a correlated
equilibrium that can be factored into independent distributions over each individual agent’s
action space.
3. WoLF policy hill-climbing algorithm

The win-or-learn-fast (WoLF) policy hill-climbing algorithm (PHC), also called the variable
learning rate algorithm, was proposed by Bowling and Veloso [Bowling and Veloso, 2001;
Bowling and Veloso, 2003]. The basic idea is to vary the learning rate used by the algorithm in
such a way as to guarantee convergence, without sacrificing rationality. The principle has a
simple intuition, i.e., learn quickly while losing and slowly while winning. The method of
determining when the agent is winning is to compare the current policy’s expected payoff with
that of the average policy over time. This principle aids in convergence by giving more time for
the other players to adapt to changes in the player’s strategy that at first appear beneficial, while
allowing the player to adapt more quickly to other players’ strategy changes when they are
harmful.This algorithm is the same as the simple extending from single-agent to multiagent Q-
learning algorithm in update Q-values – formulations (6) and (7). But the update of the π -
values is as follows:

 i f a r g m a x (,)
(,) (,) o th e r w is e

1

δ
δπ π

′ ′⎧ =
⎪

−← + ⎨
⎪ −⎩

i
a t

i i

i

a Q
s a s a

A

s a

(13)

 i f (,) (,) (,) (,)

 o t h e r w i s e

δ π π
δ

δ

⎧ >⎪= ⎨
⎪⎩

∑ ∑i i i i
w a a

l

s a Q s a s a Q s a

(14)

Where (,)i s aπ is estimate of average policy.
This algorithm requires two learning rate parameters, lδ and wδ , with l wδ δ> . This can be
determined by comparing the expected Q-value estimates of following the current policy π in
the current state with that of following the average policy π . If the expectation of the current
policy is smaller (i.e. the agent is “losing”) then the larger learning rate, lδ is used
This algorithm’s convergence properties are good, but the definition of Q-values is not based on
the joint action, so it is suitable for self-interested multiagent situations.

III. An improved multiagent reinforcement learning algorithm

To overcome the disadvantage of the above algorithms, we combine the thoughts of WoLF, Nash Q-
learning and CE Q-learning algorithms, and propose an improved multiagent reinforcement learning
algorithm.

 63

Xiangping Meng, Robert Babuška, Yu Chen, and Lucian Busoniu
Multiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment

The algorithm makes use of the linear programming ideas of CE-Q learning and the expression types
of NE-Q learning in updating Q-values; and makes use of the policy hill-climbing technique of
WoLF in updating π – values.The definition of Q values use the type of joint actions, and the
updating of Q values is following

1
1 1(, , ,) (1) (,) [(,) ()]i n i i i

t t t t t t t t tQ s a a Q s a r s a V sα α β+ += − + +
r r

L (15)

Where is the state value function, and is determined by the following: 1(i
tV s +)

1)t +

)

1 * 1
1

() (,) (,
n

i j j i
t t t

ja

V s s a Q s aπ+ +
=

= ⋅∑ ∏r

r

(16)

* 1(,)(1, 2,i i
ts a i nπ + = L are obtained by maximizing the following:

* 1 1 1 1
1,

(,) arg m ax (,) (,) (,
i

n
i i i i j j i

t t t t
j j ia

s a s a s a Q s a
π

π π π+ + +
= ≠

= ⋅ ⋅∑ ∏r

r)t t +

(17)

π values update as follows:

1 (,) (,)i i
t ts a s a saπ π δ+ = + ∆ (18)

()()
()()

1min (,), / 1 if arg max (, , , , ,)

min (,), / 1 otherwise

i
i i i i
t ta

sa
i i
t

s a A a Q s a a a

s a A

π δ
δ

π δ

′
⎧ ′− =⎪∆ = ⎨
− −⎪
⎩

L L n
t

(19)

1 1 if (,) (, , , , ,) (,) (, , , , ,)

 otherwise
i i

i i i i n i i i i n
w a a

l

s a Q s a a a s a Q s a a aδ π π
δ

δ

⎧ >⎪=⎨
⎪⎩

∑ ∑L L L L

(20)

This improved algorithm is following as Table 1. It extends the WoLF-PHC algorithm to multiagent
joint action Q- values. In the updating of Q-values it only uses linear programming to calculate *π ,
so the computation is simple. The convergence properties of this method are almost the same as that
of the Nash Q-learning and WoLF-PHC algorithms, furthermore, this algorithm avoids resolving
complex multiple Nash equilibria problem.

 64

International Journal of Information Technology Vol.12 No.6 2006

Table 1. Improved multiagent reinforcement learning algorithm
1. Initialize:

(a) Select initial learning rate α , wδ ,δ l and discount factor β and ε
(b) Let 0t =
(c) For all 1 1 2 2, , , , n ns S a A a A a A∈ ∈ ∈ ∈L ,

 Let 1 2
0 (, , , ,) 0i nQ s a a a =L

 0
1(,)i i

i
s a

A
π = ,

0
1(,)i i

i
s a

A
π = , () 0iC s =

(d) Initialize 0s
(e) Choose action based on probability 1 2, , , na a aL (,)s aπ with some

exploration in state 0s
2. Loop

(a) Execute action in state 1 2, , , na a aL ts
(b) Observe reward () and new state 1, , n

tr rL t 1ts +
(c) Update Q values using the following rule for 1, 2 , ,i n= L

1
1 * 1 11
(, , ,) (1) (,) [(,) (,)]ni n i i i i i

t t t ti
Q s a a Q s a r s a Q s aα α β π+ + +=

= − + + ⋅ ⋅ t t∏r r
L

Where * 1(,i
t)is aπ + is calculated by (17)

(d) Update estimate of average policy iπ for 1, 2 , ,i n= L
() () 1i iC s C s= +

ia A′∀ ∈ , (,) (,)(,) (,)
()

i i
i i

i

s a ss a s a
C s

π ππ π a′ ′−′ ′= +

(e) Update by (18) and (,)i s aπ δ selected by (20)
(f) Choose the next action for new states 1ts + according to (,)i s aπ

3. Loop end

IV. Experiments and Results

A. Grid world examples
We examined our improved multiagent reinforcement learning algorithm on a 6×6 gridworld
without obstacles and with 4 obstacles as shown in Figure 1 and Figure 2, respectively. Two
agents play these games – denoted as agent 1 and agent 2. Each agent has 6×6 = 36 states in
Figure 1, but in Figure 2, two agents can not enter the cells occupied by obstacles, so each
agent only has 32 states. Two agents start from the two lower corners, trying to reach their goal
cells G1 and G2 opposite to them in the top row. An agent can move only one cell a time, and in
four possible compass directions: Left, Right, Down, Up. Actions are executed simultaneously.
If the agents stay in the previous cell (excluding a goal cell), they receive a negative -1 payoff.
The game ends when any one agent reaches its goal. Reaching the goal earns a positive 10
points reward.

 65

Xiangping Meng, Robert Babuška, Yu Chen, and Lucian Busoniu
Multiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment

Fig. 1. Grid World 6×6 without obstacles Fig. 2. Grid World 6×6 with 4 obstacles
In case both agents reach their goal cells at the same time, they both obtain a reward of 10
points. In other cases agents do not earn any payoff. The objective of each agent in this game is
to reach its goal with a minimum number of learning steps. We Assum that the agents do not
know the locations of their goals at the beginning of the learning period, and that they do not
know their own and the other agent’s payoff functions. Agents choose their actions
simultaneously, and can observe the previous actions of both agents and the current state. They
also observe the immediate rewards after both agents choose their actions.

B. Experiment results
In this example problem experiment, we use the following initial parameters:

 0.3α = ; 0.95β = ; 0.004lδ = ; 0.001wδ = ; 0.3ε = ;
Whereα , lδ , wδ and ε are all decaying gradually in iterations. The decaying formula of lδ
and wδ is the same as PHC algorithm.

 1
1 / 500k k

α =
+

; / episodesε ε= ; 1
1000 /10w k

δ =
+

; 4l wδ δ=

We measure learning time in episodes (trials). We train the agents over 50 and 100 episodes on
the gridworlds in figures 1 and 2, respectively.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Nash Q-learning Improved algorithm

 st
ep

s p
er

 e
pi

so
de

WoLF algorithm

Fig. 3. The number of learning steps vs the number of learning iterations (without obstacles)
episodes

Both agents choose their actions by using ε -greedy action selection with random exploration.
In the experiment we compared our improved multiagent learning algorithm with the WoLF-
PHC and the Nash Q-learning algorithms. The comparison is in terms of the number of steps
taken to reach the goal as a function of the count of learning episodes. In each game both agents
start up from their initial positions and the game runs until the both agents all reach their goal
positions. Every such game constitutes one learning trial, also called as an episode, and the

 66

International Journal of Information Technology Vol.12 No.6 2006

learned Q-values are passed from iteration to iteration. The experiment results are shown as
Figure 3 and Figure 4, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Nash Q-learning
Improved algorithm
WoLF algorithm

st

ep
s p

er
 e

pi
so

de

episodes
Fig. 4. The number of learning steps vs the number of learning iterations (with 4 obstacles)

V. Conclusion

In this paper we overview several multiagent reinforcement learning algorithms, compare the
WoLF-PHC algorithm with Nash Q-learning and proposed an improved multiagent reinforcement
learning algorithm. This improved algorithm only uses linear programming to calculate the optimal
policies *π in each state, so the computation is simple. The convergence properties of this method
are almost the same as those of Nash Q-learning and WoLF-PHC , but this algorithm avoids
resolving complex multiple Nash equilibria problem. Two 6×6 grid games,one without obstacles and
one with 4 obstacles were used as example problems for validating the algorithm. The results show
the algorithm is effective and converges well.
We will continue researching the convergence condition in theory and real applications in future
work.

References

[1] Bowling, M., and Veloso, M., Rational and convergent learning in stochastic games. In

Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,
Seattle,Washington. 2001, pp. 1021–1026.

[2] Bowling, M., and Veloso, M., Multiagent learning using a variable learning rate. Artificial
Intelligence, 2002, 136, pp. 215-250.

[3] Greenwald, A., and Hall, K., Correlated Q-learning. In Proceedings of the Twentieth
International Conference on Machine Learning, 2003, pp. 242–249 K.

[4] Hu, J., and Wellman, M. P., Nash Q-learning for general-sum stochastic games. Journal of
Machine Learning Research, 2003, 4, pp. 1039–1069.

[5] Hu, J., and Wellman, M. P., Multi-agent reinforcement learning: Theoretical framework and
an algorithm. In Proceedings of the Fifteenth International Conference on Machine
Learning, 1998, pp. 242–250.

[6] Kaya, M., and Alhajj, R., Modular Fuzzy Reinforcement Learning Approach With Internal
Model Capabilities for Multi agent Systems, IEEE Transactions on systems, man, and
cybernetics-Part B: Cybernetics, 2004, 34(2), pp. 1210-1223

[7] Littman, M. L., Markov games as a framework for multiagent reinforcement learning. In
Proceedings of the 11th International Conference on Machine Learning, New Brunswick,
NJ, 1994, pp. 157–163,.

 67

Xiangping Meng, Robert Babuška, Yu Chen, and Lucian Busoniu
Multiagent Reinforcement Learning Algorithm Research Based on Non Markov Environment

[8] Littman, M. L., Friend-or-foe: Q-learning in general-sum games. In Proceedings of the
Eighteenth International Conference on Machine Learning, 2001, pp. 322–328.

[9] Murakoshi, K., and Mizuno, J., A parameter control method in reinforcement learning to
rapidly follow unexpected environmental changes, BioSystems, 2004.

[10] Shoham, Y., Powers, R., and Grenager, T., Multi-agent reinforcement learning: a critical
survey. Technical report, Computer Science Department, Stanford University, Stanford,
2003.

[11] Singh, S., Jaakkola, T., Littman, M. L., and Szepesvari, C., Convergence results for single-
step on-policy reinforcement-learning algorithms, Machine Learning, 2000, 39, pp. 287–
308.

[12] Sutton, R.S., Sutton, R.S., Reinforcement Learning: An Introduction. The MIT Press /
Bradford Books, 1998.

[13] Sakaguchi, Y., and Takano, M., Reliability of internal prediction/estimation and its
application. I. Adaptive action selection reflecting reliability of value function, Neural
Networks, 2004, 17, pp. 935–952.

[14] Vlassis, N., A Concise Introduction to Multiagent Systems and Distributed AI, Technical
report, University of Amsterdam, 2003.

[15] Watkins, C. J. C. H., Dayan, P., Q-learning. Machine Learning, 1992, 8(3/4), pp. 279-292.

Robert babushka. received a M.Sc. degree in control

Xiangping Meng. received her B.S. and Ph.D. from
Northeastern University, China, in 1983 and 2000 respectively,
and a M.S. from Northeastern Institute of Electric Power
Engineering, China, in 1986. She has been working at a
Postdoctor at Jilin University from 2000 to 2002. She is
working at Changchun Institute of Technology since 1986. Her
research interests include intelligent control, data mining,
intelligent computing and reinforcement learning and so on.

Yu Chen. master student at Northeastern Institute of Electric

engineering from the Czech Technical University in Prague, in
1990, and a Ph.D. degree from the Delft University of
Technology, the Netherlands, in 1997. Currently, he is a
Professor at the Delft Center for Systems and Control, Faculty
of Mechanical Engineering, Delft University of Technology.
His research interests include the use of fuzzy set techniques
and neural networks in nonlinear system identification and
control, with applications in process industry, biotechnology
and biomedical systems.
Power Engineering, China. Her research interests include
intelligent control, intelligent computing, reinforcement
learning and data mining.

68

