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Abstract 
 
Gaussian mixture model (GMM) is generally used to estimate the speaker model from speech for 
speaker identification. In this paper, we propose the method that estimates the optimal number of 
Gaussian mixtures based on incremental k-means for speaker identification. In the proposed method, 
the initialization with the optimal number of mixtures is done by adding dynamically the number of 
mixtures one by one until the mutual relationship between any two mixtures becomes dependent. 
The effectiveness of the proposed method is proven by two experiments.  
Keyword: Gaussian mixture model, Incremental k-means algorithm, Mutual relationship, Speaker 
identification. 
 

I. Introduction 
 
The mixture models involve the estimation of unknown parameters from a given set of observations 
in a variety of fields such as pattern recognition, speech and image signal analysis and static 
analysis[1,2] including speaker identification, the process of automatically recognizing a speaker 
using one’s intrinsic information in his speech waves. In speaker identification, GMM has been 
widely used for modeling speaker’s identity[3]. The parameters of the GMM for speaker models, in 
general, are estimated iteratively using the EM (Expectation-Maximization) algorithm, which 
converges to the ML estimate of the mixture parameters. 
However, the EM algorithm has been known to suffer from several problems. One of the problems is 
that, as a local method, it is too sensitive to the selected initial parameter estimates, and it may 
converge to the boundary of parameter leading to inaccurate estimation[2,4]. Therefore, to solve 
these problems of initialization, several methods has been studied using one or a combination of 
those strategies such as multiple random starts and choosing the final estimation with the highest 
likelihood[5], and initialization by clustering algorithm[6]. Another problem is that the number of 
mixture which affects the overall performance of EM is not known exactly beforehand. Therefore, 
how to get the optimal number of mixtures for the mixture models is important to ensure an efficient 
and accurate estimation. To estimate the optimal number of mixtures, there have been several 
studies, for example, Akaike’s information criterion(AIC)[7], Schwarz’s Bayesian inference 
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criterion(BIC)[8], the integrated classification likelihood (ICL) criterion[9], the mutual 
information(MI) with removing mixture on this subject[10] and Greedy mixture learning(GML) 
[11,12].  
However, in those methods, to find the optimum number of mixtures, testing whether each candidate 
for the optimal number fits some criterion is performed for all M possible candidates ranging 
appropriately from Mmin to Mmax. This means that the final decision isn’t made before every log-
likelihood is calculated for all M one by one. Therefore, it brings much computational load 
inevitably. Also, in the conventional methods, log-likelihood is sensitive to the number of 
parameters to get the exact estimation of the number of mixture. 
To solve these problems, we propose an efficient method that applies the mutual relationship to the 
initialization of EM algorithm based on incremental k-means so to estimate the optimal number of 
mixtures for GMM. First, we initialize the EM algorithm by estimating the center of mixture by 
using global search procedure[11]. Second, we repeat EM algorithm until likelihood converges to 
some appropriate value. Finally, we decide whether newly added mixture is statistically independent 
with other previous mixtures by measuring the mutual relationship between them. This procedure is 
repeated while increasing the number of mixtures one by one until at least one of their mutual 
relationship turns out positive. In our method, since the repeating procedure stops right after the 
above criterion is satisfied even though the test gets to the last candidate Mmax yet, it saves much 
computational load compared to the conventional methods. Also, with the accurate initialization, 
high performance of parameter estimation can be achieved. 
The remaining part of this paper is organized as follows. In section 2, we describe the mixture model 
with the initialization of the EM algorithm for the maximum likelihood training and explain a 
method to investigate the mutual relationship of components to estimate the optimal number of 
mixtures. In section 3, we describe the algorithm of the proposed method. The section 4 gives the 
method of speaker identification. The experimental results are also summarized in the section 5. In 
section 6, we draw conclusions. 
 

II. The Estimating Optimal Number of Gaussian Mixtures Based on Incremental 
k-means 
 

A. The initialization of EM based on Incremental k-means algorithm for GMM  
Suppose we have T observations . A Gaussian mixture density is defined 
by a weighted linear combination of 

d
tT RxxxX ∈= },,,{ 1 L

M component densities as  

∑
=

=
M

i
tiit xbwxp

1
)()|( θ  (1)

where the component densities, ( )ti xb , are defined by d-multivariate Gaussian function of the 
form 

( )
( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−

Σ

= −
iti

T
it

i

ti xxxb d µµ
π

1

2
1 2

1exp
2

1)(
2

 (2)

 14



International Journal of Information Technology     Vol.12   No.7  2006  

with mean vector iµ  and covariance matrix iΣ  for i-th mixture. The mixture weights 

furthermore satisfy the constraint ,iw ∑ =
M

iw
1

1 . Collectively, the parameters of speaker’s 

density model are denoted as  [3].  M
iiiiw 1},,{ =Σ= µθ

To estimate parameters from all sequences of T vectors X , the GMM likelihood can be written 
as  
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In general, the ML estimation is used to estimate the parameters θ  which maximize the 
likelihood of the GMM.  Since the GMM likelihood of the nonlinear function is impossible 
that maximizes directly, the ML estimations can be possible by using the EM algorithm 
iteratively.  
Since the EM algorithm depends on initialization, we use the method that is modified using the 
initialization based on incremental k-means algorithm. The EM algorithm with the 
initialization estimates a new model by alternating two steps until likelihood is converged[3, 
4]. Assume auxiliary Q-function is followed by 
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Initialization of mixtures: The EM algorithm can be initialized by the obtained 
Mkk ,,1, L=µ of M mixtures from given data, and converge rapidly and well for ML estimate 

of models. Each observed data  is used for a candidate center of mixtures of the GMM. And 
then, a center of mixture, , is selected from a criterion which is defined by the exponential 
function of Euclidean norm to all of the other data. 
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Obviously, the first center of the mixture has the highest density among all of data when it is 
surrounded by many neighboring data and can be selected as 
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Given the (k-1)-th mixture, for k-th the criterion, we can modify the criterion of each data by 
the following equation: 
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where ,  is k-th component of  M mixtures and Tn ≤≤1 kC 1)( =XI  if X  is true and 0 otherwise 
[11]. Using distance criterion, we can find the mean of the k-th mixture with the minimum 
criterion.  
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E-Step: In the E-step, we consider the conditional expectation of the log-likelihood, given X 
and the current estimate . The E-step of the EM algorithm involves the use of the current 
parameter estimates to assess the proportions of the mixture components that is called a 
posteriori probability . Applying Bayes’ theorem, the posteriori probability of 

 for i-th mixture is defined by  
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Given the mean kµ of mixture, which is decided by the data point , the parameters is 
reestimated by the EM algorithm. 

*n
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M-Step: The M-step is a computation for the global maximization of . Hence, reestimate 
the parameters {mixture weight, covariance matrix} with a monotone increasing likelihood 
according to 
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From EM algorithm with the initialization based on incremental k-means for the GMM, we can 
compute iteratively the parameters of mixture models from the observed data. 
 

B. Estimation of the optimal Mixtures number 
The parameters, with too many or few components, may inappropriately estimate the mixture 
model. Therefore, the number of mixtures is important for the EM algorithm to the well fitted 
mixture model. Unlike the previous method using model selection criterion, in this section, we 
determine the optimal number of components as measuring mutual information between two 
components when the mixture based on incremental k-means is added. The mutual relationship 
is employed to investigate whether components are statistically dependent. That is, the mutual 
relationship measures the information shared between two components [10].  
When one component is added at a time, if the relationship between the new k-th component 
and the previous components is still independent, the parameters obtaining from the k 
components regard as reestimated parameters. On the contrary, if at least one component is 
dependent, we should consider the parameters in the previous ( )1−k  mixture models and 
determine the optimal number of mixture is ( )1−k at last.  
The mutual relationship of components between i and k is defined as 
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where  is the probability of the mixture i and ( )ip ( )kip ,  is the joint probability of i and k as 
following; 
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The mutual relationship is three possible values: negative, zero, and positive. If  ( ki, )ϕ  is a zero 
value, it means that mixture i and k are statistically independent: ( ) ( ) (kpipkip =, ) . If ( )ki,ϕ  has a 
positive value, it means i and k are statistically dependent. A negative value of mutual 
relationship means that i and k can be regarded as much less dependent. When ( )ki,ϕ  is 
positive, the k-th component can be removed without damage to the estimated distributions. In 
order to obtain the optimal number of mixture, we maintain the iterative procedures until the 
mutual relationship between components is firstly dependent.  
 

III. The Algorithm of Estimating the Optimal Mixtures 
 
From a given set of observations, we need to determine the EM with initialization based on 
incremental k-means for GMM and the optimal number of mixtures. Whenever the mixture by the 
incremental k-means algorithm is newly added, we consider the mutual relationship to know whether 
components are statistically dependent or not. If at least two components are statistically dependent, 
we should stop performing the incremental number of mixtures. After then, we can conclude the 
previous number of mixtures ( ). The proposed method is followed by: 1−=kM

 
Step1: For , let k=1 and calculate the distance error  and determine the center Tn ,,1L= 1

nE 1µ  of 
mixture.  
Step 2: To add a component, search for center of another mixture with minimum  based on the 
incremental k-means algorithm (k=k+1). 

k
nE

Step 3: Given the initial models of k, for the reestimation of parameters, perform alternatively the 
EM algorithm using eq.(9), eq.(10) and eq.(11) of mixture model until likelihood is converging. 
Then, the quantities, , , and  are available to calculate the mutual relationship.  )(ip )(kp ),( kip
Step 4: For , calculate the mutual relationship between components by (12). If ki ,,1L= 0),( >kiϕ , 
then stop and set the optimal number of mixture as 1−= kM  else return to Step 2. 

 
If the mutual relationship of components is positive at each stage, we are able to know the optimal 
number of components by (M=k-1) returning to the previous stage.  
 

IV. Speaker Identification 
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For speaker identification, each of S speakers is represented by GMMs, Sθθ ,,1 L , respectively[3]. The 
object of speaker identification is to find the speaker model which has the maximum a posteriori 
probability for a given feature sequence as 
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V. Experimental Results 
 
To show effectiveness of the proposed method, we performed two experiments in which artificial 
data set and real speech data are used.  
Firstly, we performed the experiments with artificial data generated as dataset of 2000 points with 
two-dimensional three mixtures of Gaussian normal distribution. The correlated Gaussian normal 
distribution is given as  
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which is used by Cheung in[13]. With these artificial data, one component (i.e, mixture) is firstly 
obtained by the global searching and a new mixture is added to it one by one until the final number 
of mixtures (in this case, ) are found, i.e., at least two mixtures of them start to have the positive 
mutual relationship. 

4=k

In table 1, the mixtures become statistically dependent at fourth step ( ) since the 1st and 4th 
mixtures of them have positive mutual relationship (0.0266). Hence, the 4th component is removed 
and the previous number of mixtures (M=3) is determined as the optimal number of mixtures.  

4=k

 

Table 1.  The mutual relationship between mixtures 

# of 
mixture(k) 

Mean of 
the i-th Mixture i ),( kiϕ  

1 (1.0788,2.4606) 1 ~ 

2 (2.5416,2.4477) 1 -0.0611 

1 -0.0603 
3 (0.9467,0.9378) 

2 -0.0017 

1 0.0266 

2 -0.0170 4 (0.9013,2.8942) 

3 -0.0060 
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  Fig. 1.  The construction of a three-component mixture distribution 
 
An example is given in figure 1, which depicts the evolution of a solution for above artificially 
generated data. The mixtures k1,…k4 are depicted; each component is shown as an ellipse that has the 
covariance matrix as axes and radii of twice the square root of the corresponding eigenvalue. In fig 
1-(a), the mixture starts with the number of mixture being set to one. According to the increased 
number of mixture, the mixture changes as shown in the following fig 1-(b), (c) and (d). 
Accordingly, in figure 1-(d), since the relationship between the first mixture and the fourth one has a 
positive value which means that they are statistically dependent; the optimal number of mixture is 
set to three, which is the previous step before the final one. This means that three is the optimum 
number guaranteeing all mixtures are statistically independent respectively. 
 
Secondly, we performed the speaker identification using real speech data. The speech data consists 
of a Korean sentence uttered 15 times each by 100 females and 100 males. Speaker models were 
trained using 10 utterances of each speaker. The remaining 5 utterances were used for test of speaker 
identification. The speech data was sampled at 16 kHz and was parameterized using 12 MFCC and 
13 delta cepstrum. The analysis window size was 20ms with 10ms overlap. For speaker 
identification, at first we used the original GMM with fixed number of mixtures (5~30) and the 
conventional methods including AIC, BIC, ICL, MI and GML. In the methods of estimating the 
optimal mixtures, the number of mixtures is obtained from the average of the estimated numbers of 
all speakers. And then, to compare those to our method, we performed the same speaker 
identification with the optimal number of mixtures, which is found by the proposed method for each 
speaker model.  
 
Table 2 show performances of the speaker identification in those conventional methods and our 
method. The previous methods show the following results: AIC method with 28 mixtures has 95.5%, 
BIC method with 21 mixtures has 96.9%, ICL method with 20 mixtures has 98.1%, and the 
decremental method by MI with 20 mixtures has 97.7%. Finally, the GML method with 19 mixtures 
has 98.6% and the proposed method shows higher performance as 98.8% with 18 mixtures. 
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Table 2. The performance of speaker identification 

Algorithm Avg. Num.  
of mixtures 

Avg. Processing 
Time(Sec) 

Identification  
Rates (%) 

AIC 28 21.02 95.5 
BIC 21 15.25 96.9 
ICL 20 15.33 98.1 
MI 20 2.05 98.7 
GML 19 6.32 98.6 
The proposed method 18 1.99 98.8 

 
In addition to having the highest performance, from the viewpoint of complexity, our method is 
superior to others since our method avoids examining further the rest number of mixtures once it 
gets the optimal number of mixtures while others have to inevitably examine all candidate number of 
mixtures. Also, the proposed method shows the highest performance as 98.8% with 18 mixtures. 
Moreover, the average processing time during a speaker training of the proposed one is the fastest. 
The number of mixtures is the value obtained from averaged one of the estimated numbers of all 
speakers. 
 

VI. Conclusion 
 
In this paper, we proposed the method of the estimating number of Gaussian mixtures based on 
incremental k-means algorithm for speaker identification. The proposed method is initialized by 
using incremental k-means to guarantee the global convergence of EM algorithm. By using 
incremental k-means, the optimal number of mixture is searched for candidate numbers by 
increasing the number one by one until appropriate criterion is satisfied. By applying the optimum 
number of mixture and the initial values to EM, we can get more accurate parameter estimation. 
When applying our method to speaker identification, we can obtain higher performance than the 
typical methods. Additionally, since our method does not examine all candidates while others do, it 
saves much computational load. The experimental results show that the proposed method is an 
effective and fast algorithm to find accurate parameters with obtaining the optimal number of 
mixtures for GMM. 
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