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Abstract 

 an improved method to detect the critical points and obtain a matching path in 1 
 on-line signature verification. More critical points will be detected and the 
will be improved by the proposed method. We first detect critical points by 

ature curves for extremum points. We then introduce an improved DTW 
nal backward-merging DTW (BBMDTW), for the flexible matching of two 1D 
inally, the critical points and their correspondences will be regressed to 2D 
cause the 2D signature curve has more physical appearances of a signer. 
oint correspondence, DTW, Backward-merging, 2D regression.  

n-line signature verification can be generally classified into two categories: 
parameter-based [1]. Critical point detection and correspondence are two stages 
d signature verification system. They are very important and difficult, because it 
hat we detect consistent critical points from each signature produced by a same 
t topics in the field of on-line signature verification that how to detect more 
ly and how to make correspondence of segments between two signatures more 
e is divided into segments in its 2D curve by detecting 2D critical points such as 
 points[2,3] or local maximum points of 2D local velocity and angular velocity 
TW algorithm is used for the flexible matching of two signatures[5,7,8, 9] Using 
ds, the number of critical points that are detected is not sufficient. That is to say, 

plex segments which should be divided further. Furthermore, using classical 
orrect segmentation cannot be overcome very well.  
vide a signature into more and simpler segments by 1D detection. Only 5 novel 
d for describing a 1D segment. An improved DTW algorithm, bidirectional 
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backward-merging DTW (BBMDTW for short), is introduced for 1D segments matching. This 
algorithm makes the flexible matching of two signatures more accurate. At last, two 1D matching 
paths which are produced by BBMDTW are regressed to 2D, because there are some redundant 
matching pairs that are produced in 1D segmenting and matching phases, and that the 2D signature 
curve has more physical appearances and can better represent the written action of a signer.  
This paper consists of 5 sections. The critical point detection and the feature definition are 
introduced in section 2. In section 3, we describe the bidirectional backward-merging DTW 
algorithm and 2D regression of 1D corresponding paths in detail. The experiment results and 
comparisons are discussed in section 4. Finally, conclusions are given in section 5.  
 

II. 1D Critical Point Detection and Feature Extraction 
 
2D critical points are usually detected by searching for local maximum curvature or local minimum 
velocity points in a 2D signature curve. If a local part of a signature is not stably written by a signer, 
2D critical points in this part can not be stably and accurately detected in each of his signatures. This 
will cause that some segments are divided incorrectly or some segments can not be divided at all. 
Furthermore, since critical points that are produced by 2D detection are not enough, fewer critical 
points will bring on that the shape of some 2D segments is complex and difficult to be described 
accurately. 
 

       
(a)                                                                (b) 

Fig. 1.  The Comparison between the 2D detection and the 1D detection in a same signature. (a) 
Critical points detected by the 2D method.  “*” denotes the 2D critical point. (b) Critical points 
detected by 1D method. “〇” denotes the critical point in x-curve and “*” denotes the critical point in 
y-curve. 
 
In order to detect more and reliable critical points and make the detection accurate, in the proposed 
method, we detect the critical point by searching for the local maximum and minimum point in the 
x-curve and the y-curve of a signature. A comparison of 2D detection and 1D detection in a same 
signature is shown in Fig. 2. We can see that the segments detected by 1D detection are so simple 
that the shape of segments is simpler, even some of these segments can be taken as linear segments. 
Whereas, there are also many redundant critical points to be detected, such as critical points which 
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are very close or even overlapping in 2D signature curve. These redundant points will be filtered by 
2D regression in section 3.2. 
After the detection of critical points, a 1D curve is divided into several 1D segments by these critical 
points. The information of a 1D segment can be classified into two parts: the information of its start 
and end critical points, and the information of the curve between this pair of neighboring critical 
points. Now, we give definitions of critical point features and curve features as following:  
Let the point (  denote the critical point . , )i ic t i

(1) Critical point features:  
 The position of the critical point :  i

i
i

tp
T

= ,                                                                                      (1) 

where T  is the length of the whole 1D curve.  
 The attribute of critical point :  i
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(2) Curve features: 
 The distance between two neighboring critical points i  and 1i + :  
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 The area enveloped by the straight line  and the curve  which connect critical points 
 and :  
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Fig. 2. Feature description of a 1D segment. “●” denotes the 1D critical point. 

 
Fig. 2 shows the feature description of a 1D segment. We define a quintuple ( , , , , )i i i i ih p l s aiθ=  of 
these 5 features to describe the segment i . 

 

III. Bidirectional Backward-Merging DTW and 2D Regression 
 

When we get two sequences of quintuples, x-sequence and y-sequence, to describe the x-curve and 
the y-curve of a signature, it is necessary to introduce an algorithm of flexible matching to find the 
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optimum matching path between two different length sequences. DTW is just an effective algorithm 
for the flexible matching between two different length sequences. 
Using the classical DTW algorithm, each segment is isolated during we calculate the distance 
between each pair of segments. If a segment is missed in the searching result, this segment will be 
regarded as a noise and thrown away. Actually, most of this kind of segment is not a noise but a part 
of an available segment. This segment is usually produced by incorrect segmentation. For example, 
in Fig. 3(a), segment 2 in curve B corresponds to segment 4 in curve A by the classical DTW, 
actually, segment 2 in curve B should correspond to both segments 2, 3 and 4 in curve A. 

 

  
(a) 

  
(b) 

Fig. 3. Comparison of the classical DTW and the backward-merging DTW.  (a). Correspondence of 
segments in two curves by the classical DTW, and the list of the matching path. (b) Correspondence 
of segments in two curves by the backward-merging DTW, and the list of the matching path. 
 

A. Bidirectional Backward-Merging DTW 
In order to overcome the shortage of incorrect segmentation, we design an improved DTW 
algorithm, bidirectional backward-merging DTW (BBMDTW) algorithm. By the definitions of 5 
features defined in section 2, it is very easy to merge two or more neighboring segments into one 
segment. If we want to merge two neighboring segments, A and B, into a new segment C, critical 
point features of the new segment C are directly replaced by those of the fore segment A, and 
curve features of the new segment C need to be re-calculated by Eq. (3-5). 
We define a matrix  to add up the distances between corresponding segments of two 
curves. The backward-merging DTW algorithm is given by: 

( , )D I J
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where  is the distance between element  and element which belong to two different 
sequences respectively, and  is the sum of the distances, and 

,i jd ir jt

,i jD 1p is the jump-punishment and 

2p , are the mergence-punishments. Tw  is the maximum width of searching window. 
 is a backward-merging function to merge the segment  and  which have same 

attribute (crest or trough). 

3p

( 2, )merge i i− 2ir− ir

Thinking about the instability of the mergence, we only introduce one step mergence of segments 
in Eq. (6). From the definition of BMDTW, we can see that both the noise segment and the 
incorrect segmentation are all taken into account. At the same time, a few instable parts also 
appear in the matching path. Namely, the matching paths that are produced by the forward 
BMDTW and the backward BMDTW are not identical entirely (different regions in Fig. 4 (a) and 
(b)). Therefore the Bidirectional BMDTW (BBMDTW) is introduced for eliminating the unstable 
parts of the matching path and adjusts the local matching paths to be more accurate. 
 

 
Fig.4.  Matching paths produced by forward BMDTW, backward BMDTW and BBMDTW. (a) 
Matching path produced by forward BMDTW, (b) Matching path produced by backward 
BMDTW, (c) Matching path produced by BBMDTW. 
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We search for the optimal matching path based on BMDTW in two directions, forward and 
backward.   For those local unstable parts, a quadratic searching is carried out. Fig. 4 shows the 
process that a matching path between two 1D signature curves is achieved by the BBMDTW. The 
BBMDTW algorithm is further described as following:  
We define a structure to record the matching path 

{ }ipath pair= , 0 1 0 1( , , , , )i i i i i ipair tt tt rt rt d= i P, 1 ,                                     (7) ≤ ≤

where  is the length of P path . ,  is the start and the end of the segment(or continuous 
segments) in one curve, and ,  is the start and the end of the segment(or continuous 
segments) in the other curve.  is the distance between these two corresponding segments.  

0
itt 1

itt
0
irt 1

irt
id

Two matching paths Fpath  and Bpath  are produced by the forward and backward BMDTW. 
In order to obtain a final optimal path, we search Fpath  and Bpath  as following steps: 

Let Fpath  and Bpath  be two matching paths produced by the forward and backward BMDTW 
respectively. 

{ }

{ }

F F
i

B B
j

path pair

path pair

⎧ =⎪
⎨

=⎪⎩
, 

0 1 0 1

0 1 0 1

( , , , , )

)

F

B( , , , ,

F F F F F
i i i i i i

B B B B B
j j j j j j

pair tt tt rt rt d

pair tt tt rt rt d

=

=

1
1

i P
, 

j Q
≤ ≤
≤ ≤

0

1

B
j

.                               (8) 

(1) Record the segment pair as a stable matching pair which is under the following conditions 
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and then take them out of Fpath  and Bpath .  
Do (1) until reach the end of Fpath or Bpath .  
(2) For the rest pairs in Fpath  and Bpath , search each group of pairs which is under the 
following conditions: 
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and decide which is the local-optimal path by  
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and record this local path. 
Do (2) until reach the end of Fpath or Bpath . 

So a new optimal matching path is obtained by combining the new local-optimal matching paths 
and the stable matching pairs. Fig. 4 (c) shows a final optimal path produced by BBMDTW. 
 
B. 2D Regression of 1D Critical Points and Their Correspondences 
The matching path of two 1D signature curves can be directly used for verification [10]. Since it is 
a 2D written process that a signer writes his signature on the paper or tablet, and a signature is 
generally identified by eyes in 2D, 2D features are very important for verifying an on-line 
signature. In order to provide for 2D feature extraction and verification, 1D critical points and their 
correspondence in the matching path should be regressed into 2D signature curves.  
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             (a)                                (b)                                       (c)                                  (d)  

Fig. 5.  Several instances of 2D regression of 1D corresponding pairs. 
 

We generalize all kinds of 2D regression of 1D corresponding critical points into the following 
three instances: 
(1) A critical point a  (Fig. 5 (a)) in the x-curve and its neighboring critical point b  in the y-curve 

are very close or even overlapping in the 2D signature curve A . They are usually close to a 
2D critical point c  in the 2D signature curve.  If their corresponding points a  and ′ b′  in the 
other signature curve B  are also very close to a 2D critical point c , these two pairs of 1D 
points can be replaced by their closest 2D critical points, and these two 2D points is recorded 
as a 2D matching pair. Otherwise, these 1D corresponding pairs will be thrown away (Fig. 5 
(b)).  

′

(2) A critical point a  (Fig. 5 (c)) in the x-curve or the y-curve is very close to a 2D critical point 
. The 1D critical point a  is replaced by the 2D critical point c . In the other signature curve c

B , if the corresponding critical point a′  is also very close to a 2D critical point c′ , it is 
replaced by this 2D point. Otherwise, it is replaced by a maximum curvature point in a 
predefining neighboring field.  

(3) If the distance between a 1D critical point a  (Fig. 5 (d))and its neighboring critical point b  is 
not close (out of a predefining field) in the 2D signature curve A , and the 1D critical point a  
is also not close to any 2D critical point, we call the point  as an isolated point. This type of 
point is replaced by a maximum curvature point in a predefining field of the curve . In the 
other signature curve 

a
A

B , the corresponding critical point a′  is also replaced by a maximum 
curvature point in a predefining field of the curve B .  

After two 1D matching paths of critical points are regressed to a new matching path of two 2D 
signature curves, not only some incorrect matching pairs are thrown away, but some redundant 
critical points which were mentioned in section 2 are filtered. In this matching path, more segment 
matching pairs are produced, and the critical points can be matched more accurately. 

 

IV. Experimental Results 
 
The proposed method has been evaluated with 800 genuine signatures from 200 Chinese writers. 400 
pairs of genuine signatures (two pairs of signatures for each writer) are used for evaluation. We 
compare the proposed method (1D-BBMDTW for short) with the method which based on 2D critical 
point detection and classical DTW matching (2D-DTW for short).  
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We respectively count the correct and total matching segment pairs in all 400 testing samples. The 
total rate of correct matching pairs is increased from 93.35% of 2D-DTW to 97.23% of 1D-
BBMDTW. In order to make a more detailed comparison, for each pair of testing signatures, a rate is 
defined to measure that the number of correct matching pairs based on 1D-BBMDTW method is 
more than, or equal to, or less than that based on 2D-DTW method. This rate can be calculated as 
following: 

1

2

i i
i

i

N NR
N
−

= 2                                                                     (12) 

where  is the number of correct matching segment pairs in the testing sample i  based on 1D-
BBMDTW method, and  is the number of correct matching segment pairs of the testing sample i  
based on 2D-DTW method.  

1
iN

2
iN

 
Table 1. Comparison of the number of testing samples which correct matching pairs based on 1D-
BBMDTW are more than, equal to or less than those based on 2D-DTW. 
 

Correct matching pairs of 
1D-BBMDTW are 

More than those 
of 2D-DTW 

Equal to those 
of 2D-DTW 

Less than those 
of 2D-DTW 

Number of testing samples 
(total number is 400) 364 17 19 

Rate (%) 91 4.25 4.75 
 
 

 
Fig. 6.  The histogram of the rate that the correct matching pairs based on the proposed method 
exceed to those based on 2D-DTW method. 
 
Table 1 shows the comparisons of the rate R . In total 400 testing samples, 91% (364 of 400) are that 
correct segment matching pairs based on 1D-BBMDTW method are more than those based on 2D-
DTW method, 4.25% (17 of 400) are that correct segment matching pairs based on 1D-BBMDTW 
method are equal to those based on 2D-DTW method, and only 4.75% (19 of 400) are that correct 
segment matching pairs based on 1D-BBMDTW method are less than those based on 2D-DTW 
method. Fig. 8 shows a histogram of this experiment. The blue area denotes that the results of 1D-
BBMDTW are better than those of 2D-DTW. The yellow area denotes that the results of 1D-
BBMDTW are worse than those of 2D-DTW. We can observe that 1D-BBMDTW method can 
obtain more correct matching pairs in most of the testing samples (91%), and the exceeding rate R  
is mainly concentrated in about 20%. 
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We also give the detailed comparison between these two methods according to the complexity of 
Chinese signatures. Chinese character is a structural character that is composed by some simple 
natural-strokes. The complexity of a Chinese signature can be ordinarily represented by the number 
of its natural-strokes which are written by KaiShu type. In the further experiment, the testing set is 
divided into 5 subsets according to the natural-stroke number of each signature, and we test these 
two methods in these 5 subsets. The results are shown in Table 2. This table includes two parts: the 
comparison of the correct matching numbers in each testing sample between the proposed method 
and 2D-DTW method (row 3~5); the comparison of the correct matching rates in each testing sample 
between our method and 2D-DTW method (row 6~7).  

 

Table.2. The comparison of matching results in the subsets of different complexity of signatures. 

Number of natural strokes 15<  
20
15

<
≥

 
25
20

<
≥

 
30
25

<
≥

 30≥  

Number of  testing samples 36 114 142 84 24 
Correct matching pairs of the 
proposed method are more than 
those of 2D method 

88.89% 89.47% 88.73% 96.43% 95.83% 

Correct matching pairs of the 
proposed method are equal to 
those of 2D method 

8.33% 4.39% 4.93% 2.38% 0% 

correct matching pairs of the 
proposed method are less than 
those of 2D method 

2.78% 6.14% 6.34% 1.19% 4.17% 

Average correct matching rate 
based on 2D-DTW method 92.66% 93.41% 93.63% 92.68% 94.75% 
Average correct matching rate 
based on the proposed method 95.85% 96.05% 96.90% 97.04% 98.03% 

 

The first part of Table 2 shows that they are 88.73~96.43% of tests in 5 subsets that correct matching 
pairs of the proposed method are more than those of 2D-DTW. Especially, in the subsets of 25~30 
and more than 30 natural strokes, they are 96.43% and 95.83% respectively that correct matching 
pairs of the proposed method are more than those of 2D-DTW. In the second part of Table 2, we can 
see that the average correct matching rates based on the proposed method are all higher than those 
based on 2D-DTW method in five subsets. A higher correct matching rate is very important, because 
incorrect segment matching pairs would decrease the performance of the whole system directly. 
With the number of a signature’s nature-stokes becoming larger, the average correct matching rate of 
the proposed method also increases, but that of 2D-DTW method has not a obvious change. This is 
because that the classical DTW algorithm does not take the incorrect segmentation into account. In 
the proposed method, we filter not only the incorrect segmentation but also some incorrect matching 
pairs by BBMDTW and 2D regression. Therefore, the correct matching rate of the proposed method 
is higher than that of 2D-DTW method for most of the testing samples, especially, for those complex 
signatures. 
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V. Conclusion 
 
An improved method of critical point correspondence is introduced in this paper. The aims of the 
proposed method are that improve the precision of the flexible matching and increase the number of 
correct matching pairs. The critical point is detected in 1D instead of 2D, and then 5 simple and 
novel features are defined to describe each 1D segment. An improved DTW algorithm, bidirectional 
backward-merging DTW(BBMDTW), is introduced for the flexible matching of two 1D curves. 
Since the backward-mergence and bidirectional searching are introduced into the classical DTW 
algorithm, the incorrect segmentation and the local incorrect matching can be filtered, and the 
precision of the flexible matching is increased. At last, two 1D matching paths are regressed to a 2D 
matching, because the 2D signature curve has more physical appearances and can better represent 
the written action of a writer. The experiments show that the proposed method obtains better results 
in the matching precision and the number of correct matching pairs.  
The proposed method is a part of on-line signature verification system. Many verification methods 
can be used in next stages of a system, after the segment matching path are produced by the 
proposed method. 
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