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Abstract 
 
This paper mainly discusses a control algorithm based on the principles of the sliding mode variable 
structure control and fuzzy control for the position tracking servo system. The equivalent control is 
first determined using pole placement. Then, the reaching condition is guaranteed by the use of the 
robust feedback control with switching gains. Finally, fuzzy tuning schemes are then employed to 
accelerate the reaching phase and reduce chattering. The simulation results show that the high 
performance and attenuated chatter are achieved. The rapidness and robustness of the system are 
improved. Moreover, this control system realization is simple and convenient.  
Keyword: Sliding mode, Variable structure control, Pole placement, Fuzzy control.  

I. Introduction 
 
In recent years, Variable structure control with sliding mode attracts control domain’s attentions, and 
has been widely developed. The main drawback of sliding mode control (SMC) is “chattering ” 
which can excite undesirable high-frequency dynamics. Several methods of chattering reduction 
have been reported. But many approaches provide no guarantee of convergence to the sliding mode 
and involve a tradeoff between chattering and robustness. Continuous SMC, as proposed in [1], can 
exponentially drive the system state to a chattering-free sliding mode but tends to produce 
conservative designs. Reduced chattering may be achieved without sacrificing robust performance 
by combining the attractive features of fuzzy control with SMC. Fuzzy logic is a potent tool for 
controlling ill-defined or parameter-variant plants. By generalizing fuzzy rules, a fuzzy logic 
controller can cope well with severe uncertainties. Fuzzy schemes with explicit expressions for 
tuning can avoid the heavy computational burden. 

II. Control Design  
 
Let a linear system be defined as 

),()()()()()( txftuBBtxAAtx +∆++∆+=&                                               (1) 
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where is the output, is the control input, and is the disturbances and 
unmodeled dynamics; 

nRtx ∈)( mRtu ∈)( nRtxf ∈),(
nnRA ×∈ and mnRB ×∈ are the nominal system constant matrices with 

; nmBrank <=)( A∆ and B∆ are uncertainties. The following assumptions are made 

a) The uncertainties are continuous matrix functions of the uncertain parameters  pRPp ⊂∈

   )( pAA ∆=∆        )( pBB ∆=∆                                                  (2) 

b) There exist matrices , , and such that the following matching 
conditions are satisfied 

pmRpD ×∈)( mmRpE ×∈)( mRtxv ∈),(

)( pADA =∆  and ijimj
pD δ≤

≤≤
)(max

1
, ni ,,2,1 L= , Pp∈∀                              (3) 

  )( pBEB =∆ and )()( jjEdiagpE = , 1)(max
1

<≤
≤≤

εpE jjmj
,                          (4) Pp∈∀

),(),( txBvtxf =  and jj vtxv ≤),( ,   tx ∀∀ ,     mj ,,2,1 L=                         (5) 

In order to design the sliding mode variable structure controller, a switching function of dimension 
 is to be chosen , where m Cxxs =)( [ ]mCCCC L21= is an nm× constant matrix. The sliding 

mode is the constrained motion of the states along the trajectories on the sliding surface . )(xs
 

A. Equivalent control  
For the system,  is a necessary condition for the state trajectory to remain on the sliding 
surface . When

0)( =xs&
)(xs 0=∆A ,  and 0=∆B 0),( =txf , if 0)( =+ EBuAxC , the state trajectory remains 

on the switching surface, where  is the equivalent control input. Linear feedback is proposed for 
 to assign the desired dynamics to the closed-loop system 

Eu

Eu

    xKu EE −=                                                                   (6) 

where the equivalent control gain  can be obtained from a pole-placement technique, and  can 
be expressed as    , where CB  is invertible. We can obtain the switching coefficient 
matrix C  from the equation . 

EK EK
CACBK E

1)( −=
0)( =− TT

E CBKA

 
B. Switching control 

The system trajectory under the condition that the state will move toward and reach the sliding 
surface is called the reaching mode or reaching phase. 
Choosing Lyapunov function 2

2
1)( sxV = , then, the following equation can guarantee the reaching 

condition be satisfied 
                                                             (7) 0)( <== xsCssxV &&&

Considering the uncertainties in the system, the sliding mode controller can be designed as follows 
      SESE uxKuuu +−=+=                                                     (8) 

and the switching control vector  is Su
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where  is the element of the jth row and ith column of . jiEK , EK
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j
T

j Cbsx =)(ϕ                                                                (10) 

and  is the jth column of jb B .  

 

C. Fuzzy control 
An additional control signal  is introduced to accelerate the reaching phase and to reduce 
chattering while maintaining sliding behavior. The fuzzy control term  can be defined as 

Fu

jFu ,

     mjxu jjjF ,,2,1)(, L=−= ϕγ                                                (11) 

where jγ  is a weighting factor. The component  will continuously be adjusted by the use of 
fuzzy logic, depending on both  and  or the change of  and 

jFu ,

js js& js js∆ [2]. We neglect the change of 

. Using fuzzy labels large and small for js∆ js , the membership functions can be defined as 
following 
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wher, 
jsσ  is the positive constant. 

Note that the fuzzy control  may be more efficient if it is tuned according to  as 
defined in (10). The following rules are proposed 

jFu , j
T

j Cbsx =)(ϕ

1) if jϕ is positive large, then is negative large; jFu ,

2) if jϕ is positive small, then is negative small; jFu ,

3) if jϕ is negative large, then is positive large; jFu ,

4) if jϕ is negative small, then is positive small; jFu ,

We use the max-min defuzzification method for the fuzzy schemes above. Considering the case 
0>jϕ and choosing sigmoidal membership functions for jϕ , singletons for , the following 

results can be obtained [3] 
jFu ,
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where jm,γ and 
jsσ  are tuning parameters.  

In summary, the fuzzy control  can be written as follows jFu ,
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So the robust sliding mode controller is designed such that 
  FSE uuuu ++=                                                            (15) 

and from above, we can obtain , , , Eu Su Fu jγ , jϕ ; then the state vector  asymptotically 
converges to zero. 

)(tx
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III. Application 
 

A. Model of the system 
Considering a position tracking servo system, in this case, the system includes a casement, a reducer 
and an electromotor. The moment of inertia that is converted into the motor’s axis 
is =0.00657 . The torque coefficient of the electromotor is , and its counter electromotive 
force voltage coefficient is . The resistance of the armature loop is

J 2Kgm MC
eC R =3Ω . The decelerating ratio 

is =1670. The maximum of the Coulomb friction torque has been given. The maximum value of the 
load disturbance  is 9.8 . The gain is 

i
df Nm K = 304.  is the backlash characteristic, and the 

transmission clearance is 2.5 . In addition, the fluctuation of the system’s parameters is 10 
percent. Fig. 1 shows the structure of the system. 

)(AN
mil

 
Fig. 1.  Structure of the tracking servo system 

The system’s performances have been given. The transition time of the step response is =1.6s. The 
overshoot is less than 17 percent. The steady-state error of unit step input is zero.  

st

According to the system’s requirement, we can neglect the backlash characteristic here. As shown in 
Fig. 1, suppose that the casement rotational angle is , the angular velocity is , , then the state 
equation of the control system is 

1x 2x 1xy =
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whereu is the control input, and is the total disturbance. d
 

B. Design of the controller 
For the system above, in order to obtain zero steady state error of unit step response, the sliding 
mode should include the integral of the difference of the desired signal  and the casemate 
rotational angle . Then assuming 

dx

1x

10 xxx d −=&                                                           (17) 

The state equation of the system is constructed by Equations (16) and (17)  
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In the system, Equation (18) is controllable. In order to design the control law, we do the nonsingular 
linear transformation Mzx = , and obtain the following standard form 
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So in the new coordinate system, the sliding mode equation is 
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Considering the system’s required properties, we determine the feedback coefficient matrix F = 
[0.00254 0.0062]. Consequently, in the new coordinate, we determine the switching function 
according to ),(~

mIFC = = [-0.00254 10.354 1]. The equivalent control gain can be obtained  
 xMKxKu EEE

1~ −−=−=                                               (21) 
with j =1, the switching control computed from (9) is 
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The fuzzy control chosen according to (14) is Fu
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where and Fmu tσ are some positive coefficients. 
 

C. Simulation 
Considering the position tracking servo system, with the desired eigenvalues chosen at {-4.8-0.64 j, -
4.8+0.64 j}, the constants =-0.00254 and =10.354 are obtained. Assuming that the elements of 
the state equation (18) may fluctuate by 10% around their nominal values (

1c 2c
ε =0.1), the bounds of 

uncertainties in the matching conditions can be determined as  =1,2,3. The bound v  
is determined by the maximal disturbance, v =0.0013. After some trials, the fuzzy tuning parameters 
are selected as =0.1and 

,ˆ/ˆ1.0 baii =δ i

Fmu tσ =0.025. 
According to the real time control requirement, under Matlab 6.0 environment, we adopt the fixed 
step-size arithmetic and simulate on the computer.Fig. 2 shows the tracking of a step input with 
fuzzy SMC (FSMC). Its transition time is 0.8s, and the overshoot is zero. Fig. 3 shows the response 
under the same condition using SMC. It is obviously that fast tracking and a significant reduction of 
chattering are obtained by introducing the fuzzy control component. 

               
Fig. 2.   Step response of FSMC                            Fig. 3.   Step response of SMC 
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Fig. 4 shows the ramp input response of the FSMC system. It shows that output can follow the input 
smoothly when the slope is half of the requirement (0.04rad/s). Fig. 5 shows the SMC system cannot 
follow smoothly with the input signal. 

                
Fig. 4.   Ramp response of FSMC                          Fig. 5.   Ramp response of SMC 

IV. Conclusion 
 
In this paper, a new technique combining the features of SMC and fuzzy control has been discussed. 
First, the equivalent control is determined from the desired sliding eigenstructure. The reaching 
condition is guaranteed by the use of the robust feedback control with switching gains. Fuzzy tuning 
schemes are then employed to accelerate the reaching phase and reduce chattering. The practical 
application of fuzzy logic proposed here is a computational intelligence approach to the engineering 
problems associated with explicit expressions. The computer simulation results show that the Fuzzy 
sliding mode control strategy improved the control performances of the system. The rapidness and 
robustness of the system are improved. 
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