
International Journal of Information Technology, Vol. 12 No. 8, 2006

 41

An Algorithm to Extract Rules from Artificial Neural
Networks for Medical Diagnosis Problems

S. M. Kamruzzaman1 and Md. Monirul Islam2
1Department of Information and Communication Engineering, University of Rajshshi,

Rajshahi-6205, Bangladesh
smzaman@gmail.com

2Department of Computer Science and Engineering, Bangladesh University of Engineering
and Technology, Dhaka-1000, Bangladesh

mdmonirulislam@cse.buet.ac.bd

Abstract

Artificial neural networks (ANNs) have been successfully applied to solve a variety of
classification and function approximation problems. Although ANNs can generally predict
better than decision trees for pattern classification problems, ANNs are often regarded as
black boxes since their predictions cannot be explained clearly like those of decision trees.
This paper presents a new algorithm, called rule extraction from ANNs (REANN), to extract
rules from trained ANNs for medical diagnosis problems. A standard three-layer feedforward
ANN with four-phase training is the basis of the proposed algorithm. In the first phase, the
number of hidden nodes in ANNs is determined automatically by a constructive algorithm. In
the second phase, irrelevant connections and input nodes are removed from trained ANNs
without sacrificing the predictive accuracy of ANNs. The continuous activation values of the
hidden nodes are discretized by using an efficient heuristic clustering algorithm in the third
phase. Finally, rules are extracted from compact ANNs by examining the discretized
activation values of the hidden nodes. Extensive experimental studies on three benchmark
classification problems, i.e. breast cancer, diabetes and lenses, demonstrate that REANN can
generate high quality rules from ANNs, which are comparable with other methods in terms of
number of rules, average number of conditions for a rule, and predictive accuracy.
Keywords: Constructive algorithm, pruning algorithm, continuous activation function,
clustering algorithm, symbolic rules.

I. Introduction
The last two decades have seen a growing number of researchers and practitioners applying
artificial neural networks (ANNs) for pattern classifications and function approximations [3],
[13], [20]. While the predictive accuracy of ANNs is often higher than that of other methods
or human experts, it is generally difficult to understand how ANNs arrive at a particular
conclusion due to the complexity of ANN architectures. Even an ANN with single hidden
layer, it is generally impossible to explain why a certain pattern is classified as a member of
one class and another pattern as a member of another class [10]. It is therefore desirable to
have a set of rules to explain how ANNs solve a given problem. This is because the
functionality of ANNs represented by a set of rules will be more comprehensible to human
users than a set of connection weights of ANNs [8].

There are a number of works in the literature to explain the functionality of ANNs by
extracting rules from trained ANNs [1], [2]. The main problem of existing work is that they
determine the number of hidden neurons in ANNs manually. Thus the prediction accuracy
and rules extracted from trained ANNs may not be optimal since the performance of ANNs is

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 42

greatly dependent on their architectures. Furthermore, rules extracted by existing algorithms
are not simple as a result it is difficult to understand for users.

This paper proposes a new algorithm, called rule extraction from ANNs (REANN), to
extract rules from trained ANNs for medical diagnosis problems. A standard three-layer
feedforward ANN with four-phase training is the basis of REANN. The salient feature of
REANN is that it does not require many user specified parameters for extracting rules. In
addition, an efficient clustering algorithm is used in REANN to discretize the continuous
values of hidden nodes so that rules can be extracted easily by using discretized values.

The rest of this paper is organized as follows. Section II discusses some related works for
extracting rules from trained ANNs. Section III describes our REANN algorithm in details.
Section IV presents results of our experimental study. Finally, Section V concludes the paper
with a brief summary and a few remarks.

II. Related Work
A number of algorithms have been developed for extracting rules from trained ANNs in the
last two decades [7]-[13]. In this section, we describe some algorithms that are related to the
present work. The problems of existing algorithms are also described in this section.

Two methods for extracting rules from ANN are described by Towell and Shavlik [4].
The first method is the subset algorithm, which searches for subsets of connections to a unit
whose summed weight exceeds the bias of that node [5]. The major problem with the subset
algorithm is that the cost of finding all subsets increases as the size of ANNs increases. The
second method i.e. MofN is an improvement of the subset method that is designed to
explicitly search for M-of-N rules from knowledge based ANNs [6]. It checks a group of
connections instead of a single connection in ANNs to find their contribution in node’s
activation. This is done by clustering the connections of ANNs. The problems of MofN are it
uses threshold activation function, which is not continuous and uses fixed number of hidden
nodes that require prior knowledge of the problem to be solved.

In 1995, H. Liu and S. T. Tan [7] propose, a simple and fast algorithm X2R that can be
applied to both numeric and discrete data for generating rules. X2R can generate concise
rules from raw data sets by using first order information. It can generate perfect rules in the
sense that the error rate of the rules is not worse than the inconsistency rate found in the
original data. The problem of X2R is that rules generated by it are order sensitive i.e.
generated rules should be fired in sequence.

R. Setiono and H. Liu [8] present a novel way to understand ANNs by extracting rules
with a three phase algorithm. A weight decay backpropagation network is built in the first
phase so that important connections are reflected by their bigger weights. In the second
phase, the network is pruned in such a way so that insignificant connections are deleted while
its predictive accuracy is still maintained. In the third phase, rules are extracted by recursively
discretizing the hidden unit activation values. The problem of three phase algorithm is that
the discretizing algorithm used to discretize the output values of hidden nodes is not efficient.

In 2002, R. Setiono et al. [13] proposed a new method REFANN (rule extraction from
function approximating neural networks) for extracting rules from trained ANNs for
nonlinear regression. It is shown REFANN can produce rules that are almost as accurate as
the original ANNs from whom rules are extracted. For some problems, REFANN extracts
few rules that represent useful knowledge for explaining problems easily. REFANN
approximates the nonlinear hyperbolic tangent activation function of the hidden nodes by
using a simple three-piece or five-piece linear function. It then generates rules in the form of
linear equations from trained ANNs. The problem of REFANN is that it needs to divide the
continuous hidden node activation into three-piece or five-piece linear function, which may
not be possible for complex problems.

International Journal of Information Technology, Vol. 12 No. 8, 2006

 43

The problems of existing algorithms are summarized as follows:
(i) Use predefined and fixed number of hidden nodes that require human experience

and prior knowledge of the problem to be solved,
(ii) Clustering algorithms used to discretize the output values of hidden nodes are not

efficient,
(iii) Computationally expensive, and
(iv) Could not produce concise rules.

III. The REANN Algorithm
The aim of this section is to introduce rule extraction algorithm REANN for understanding
how an ANN solves a given problem. Although REANN is applied in medical domain in this
work, it can be applied to other domain also. The aim of REANN is to search for simple rules
with high predictive accuracy.

In comparison with other existing algorithms in the literature, the major advantages of
REANN include: (i) it can determine near optimal ANN architectures automatically by using
a constructive-pruning strategy; (ii) it uses an efficient method to discretize the output values
of hidden nodes; (iii) it is computationally inexpensive; and (iv) it can extract rules that are
concise, comprehensible, order insensitive and highly accurate.

The major steps of REANN are summarized in Fig. 1 and explained further as follows:
Step 1 Create an initial ANN architecture. The initial architecture has three layers i.e. an

input, an output and a hidden layer. The number of nodes in the input and output
layers is the same the number of inputs and outputs of the problem, respectively.
Randomly initialize all connection weights of the ANN within a small range.

Step 2 Determine the number of hidden nodes in the ANN by using a basic constructive
algorithm.

Step 3 Remove the redundant input nodes and connections by using a basic pruning
algorithm. When pruning is completed, the ANN architecture contains only important
nodes and connections.

Step 4 Discretize the outputs of hidden nodes by using an efficient heuristic clustering
algorithm. The reason for discretization is that the outputs of hidden nodes are
continuous therefore rules cannot be easily extracted from the ANN.

Fig. 1 Flow chart of the REANN algorithm.

Determine the number of hidden nodes

 Remove redundant nodes and connections

Discretize the output values of hidden nodes

Generate rules

Start

Stop

Crete an initial ANN architecture

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 44

Step 5 Generate rules that map the inputs and outputs relationships. The task of rules
generation is accomplished in three steps. In the first step, rules are generated by
using rule extraction algorithm REx to describe the outputs of the ANN in terms of
the discretized output values of its hidden nodes. In the second phase, rules are
generated by REx to describe the discretized output values of hidden nodes in terms
of their inputs. Finally, rules are generated by combining the rules generated in the
first and second steps.

It is seen that REANN is very straightforward. However, REANN is consisted of four
phases, which are implemented sequentially one by one. In the following subsections, each
phase is described elaborately and the reasons for utilizing different techniques in each phase
are also explained.

A. Constructive Algorithm
One drawback of the traditional backpropagation algorithm is the need to determine the
number of nodes in the hidden layer prior to training [14]-[17]. REANN uses a basic
constructive algorithm based on dynamic node creation algorithm proposed by T. Ash [18].

The major steps of the constructive algorithm used in REANN are summarized in Fig. 2
and explained further as follows:
Step 1 Create an initial ANN consisting of three layers, i.e., an input, an output, and a hidden

layer. The number of nodes in the input and output layers is the same as the number
of inputs and outputs of the problem. Initially the hidden layer contains only one
node. Randomly initialize all connection weights within a certain range.

Step 2 Train the network on the training set by using BP algorithm until the error is almost
constant for a certain number of training epochs τ that is specified by the user.

Step 3 Compute the error of the ANN based on the validation set. If the error is found
unacceptable (i.e., too large), then assume that the ANN has inappropriate
architecture, and go to the next step. Otherwise, stop the training process. The error E
is calculated according to the following equations.

2

1 1

1(,) ()
2

k C

pi pi
i p

E w v S t
= =

= −∑∑ (1)

where k is the number of patterns and C is the number of output nodes. tpi and Spi are
the target and actual outputs for the ith pattern of the pth output node. The actual
output Spi is calculated according to the following equation.

1

((()))
h

T
pi i m pm

m
S x w vσ δ

=

= ∑ (2)

Here h is the number of hidden nodes in the network, xi is an n-dimensional input
pattern, i=1, 2,…, k, wm is an p-dimensional vector weights for the arcs connecting
the input layer and the m-th hidden node, m=1, 2, …, h, vm is a c-dimensional vector
of weights for the arcs connecting the m-th hidden node and the output layer. The
activation function for the output layer is sigmoid function σ(y) = 1/(1+e-y) and for
the hidden layer hyperbolic tangent function δ(y) = (ey - e-y)/ (ey + e-y).

Step 4 Add one hidden node to the hidden layer. Randomly initialize the weights of the
newly added node and go to step 2.

International Journal of Information Technology, Vol. 12 No. 8, 2006

 45

Fig. 2 Flow chart of the constructive algorithm used in REANN.

Although other architecture determination algorithms, such as pruning [24] and
evolutionary algorithms [23], could be used in REANN, the reasons for using constructive
algorithm are four folds. Firstly, it is straightforward in constructive algorithms to specify an
initial network, while it is problematic in pruning algorithms, one does not know in practice
how big the initial network should be. Secondly, constructive algorithms always search for
small network solutions first. They are thus computationally more efficient than pruning
algorithms, in which the majority of the training time is spent on networks larger than
necessary. Because of smaller solutions, the ANN is less likely to overfit the training data
and, thus, more likely to generalize better. Thirdly, the strong convergence of a constructive
algorithms follows directly from its universal approximation ability. Finally, a constructive
approach usually requires a relatively small number of user specified parameters. The use of
many user specified parameters requires a user to know rich prior knowledge, which often
does not exist for complex real world problems.

B. Pruning Algorithm
Pruning techniques begin by training a larger than necessary network and then eliminate the
weights and nodes that are deemed redundant [21], [22]. Since the nodes in the hidden layer
are determined automatically in constructive fashion in REANN, the aim of pruning
algorithm is to remove unnecessary connections and input nodes from the ANN obtained by
the constructive algorithm. Typically, methods for removing connections from ANNs involve
adding a penalty term to the error function. It is hoped that by adding a penalty term to the
error function, unnecessary connections will have small weights, and therefore pruning can
reduce the complexity of the ANN significantly. The simplest and most commonly used
penalty term is the sum of the squared weights [19].

The pruning algorithm used in REANN is briefly described below. This pruning
algorithm removes the connections of the ANN according to the magnitudes of their weights.
Since the eventual goal of REANN is to get a set of simple rules that describe the
classification process, it is important that all unnecessary connections and nodes must be
removed. In order to remove as many connections as possible, the weights of the network
must be prevented from taking values that are too large. At the same time, weights of
irrelevant connections should be encouraged to converge to zero. The penalty function is
found to be particularly suitable for these purposes [19].

Yes

Create an initial ANN architecture

Train the network

Add one hidden node

E
acceptable?

No
Stop

Start

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 46

Start

Train the network

max pm mlp
v w ≤ 4 η2

pmv ≤ 4 η2

maxml pm mlp
w v w= Smallest?

No

Remove m lw Remove p mv

Remove m lw

Yes

No

Yes Yes

Stop

No

Yes

Accuracy falls?

Retrain the network

Stop

The steps of the weight-pruning algorithm are summarized in Fig. 3 and explained further
as follows:
Step 1 Train the network to meet a prespecified accuracy level with the following condition

satisfied by all correctly classified input patterns:
 (3)

Let η1 and η2 be positive scalars such that η1 + η2 < 0.5 (η1 is the error tolerance, η2
is a threshold that determines if a weight can be removed), where 1η ∈ [0, 0.5). Let
(w, v) be the weights of this network.

Step 2 Remove the connections between the input nodes and the hidden nodes and between
the hidden nodes and the output nodes. This task is accomplished in two phases. In
the first phase, connections between the input nodes and hidden nodes are removed.
For each mlw in the network, if max pm mlp

v w ≤ 4 η2, (4)

then remove mlw from the network.
In the second phase, connections between the hidden nodes and output nodes are
removed.

For each pmv in the network, if pmv ≤ 4 η2, (5)

then remove pmv from the network.

__

Fig. 3 Flowchart of the pruning algorithm.

1max max , 1, 2,..., .pi pi pip p
e S t p Cη= − ≤ =

International Journal of Information Technology, Vol. 12 No. 8, 2006

 47

Step 3 Remove the connections between the input nodes and the hidden nodes further. If no
weight satisfies condition (4) or (5), then for each wml in the network,
compute maxml pm mlp

w v w= and remove the smallest wml.

Step 4 Retrain the network and calculate the classification accuracy of the network.
Step 5 If the classification rate of the network falls below an acceptable level, then stop and

use the previous setting of network weights. Otherwise, go to Step 2.

The pruning algorithm is used in REANN also to reduce the amount of training time.

Although it can no longer be guaranteed that the resultant pruned ANN will give the same
accuracy rate as the original ANN, the experiments show that many weights can be
eliminated simultaneously without deteriorating the performance of the ANN. The two
conditions (4) and (5) for pruning depends on the weights for connections between the input
and hidden nodes and between the hidden and output nodes. It is imperative that during the
training, these weights be prevented from getting too large. At the same time, small weights
should be encouraged to decay rapidly to zero.

C. Heuristic Clustering Algorithm
The process of grouping a set of physical or abstract objects into classes of similar objects is
called clustering. A cluster is a collection of data or objects that are similar within the same
cluster and dissimilar to data or objects in other clusters [25]. A large number of clustering
algorithms exist in the literature including k-means and k-medoids [26], [27]. The choice of
clustering algorithm depends both on the type of data available and on the particular purpose
and application.

After applying pruning algorithm in REANN, the ANN architecture produced by
constructive algorithm contains only important connections and nodes. Nevertheless, rules
are not readily extractable because the hidden node activation values are continuous. The
discretization of these values paves the way for rule extraction.

__

Fig. 4 Output of hidden nodes.

It is found that some hidden nodes of an ANN maintain almost constant output while
other nodes change continuously during the whole training process [28]. Fig. 4 shows typical
example where one hidden node maintains almost constant output after some training epochs
and the outputs of two hidden nodes are continuously changing.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0 .5

0

 A
ve

ra
ge

 h
id

de
n

no
de

 o
ut

pu
t

C o n v e r g e n c e in e p o c h s

Constant output

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 48

In REANN, no clustering algorithm is used when hidden nodes maintain almost constant
output. If the outputs of hidden nodes do not maintain constant value, a heuristic clustering
algorithm is used to discretize the output values of hidden nodes.

The steps of the heuristic clustering algorithm are summarized in Fig. 5 and are explained
further as follows:
Step 1 Let ε ∈ (0, 1). D is the activation values in the hidden node. δ1 is the activation value

for the first pattern.
The first cluster, H (1) = δ1, count = 1, and sum (1) = δ1, set D = 1.

Step 2 For each pattern pi, checks whether subsequent activation values can be clustered into
one of the existing clusters. The distance between an activation value under
consideration and its nearest cluster, ()H jδ − , is computed. If this distance is less

than ε, then the activation value is clustered in cluster j . Otherwise, this activation
value forms a new cluster. Let δ be its activation value. If there exists an index j
such that

 and

then set count(j): = count(j)+1, sum(j): = sum(j)+ δ, else D = D+1
H (D) = δ, count (D) = 1, sum (D) = δ.

Step 3 Replace H by the average of all activation values that have been clustered into this
cluster: H (j): = sum (j)/count (j), j=1, 2, 3, …, D.

Step 4 Once the activation values of all hidden nodes have been obtained, the accuracy of
the network is checked with the activation values at the hidden nodes replaced by
their discretized values. An activation value δ is replaced by ()H j , where index j is
chosen such that arg min | () |jj H jδ= − . If the accuracy of the network falls below
the permitted limit then ε must be decreased and the clustering algorithm is run again,
otherwise stop.

Fig. 5 Flow chart of the heuristic clustering algorithm.

ε≤

Start with first activation value

Replace the cluster value by averaging

Accuracy falls?

Clustered into existing
clusters?

New Cluster

No

Start

Stop

Yes

No

Yes

{1,2,...... }
() min ()

j D
H j H j

ε
δ δ− = −)(jH−δ

International Journal of Information Technology, Vol. 12 No. 8, 2006

 49

For a sufficiently small ε, it is always possible to maintain the accuracy of the network
with continuous activation values, although the resulting number of different discrete
activations can be impractically large. The best ε value is one that gives a high accuracy rate
after the clustering and at the same time generates as few clusters as possible. A simple way
of obtaining an optimal value for ε is by searching in the interval (0, 1). The number of
clusters and the accuracy of the network can be checked for all values of ε = iζ, i= 1, 2…
where ζ is a small positive scalar, e.g. 0.10. Note also that it is not necessary to fix the value
of ε equal for all hidden nodes.

D. Rule Extraction Algorithm (REx)
Classification rules are sought in many areas from automatic knowledge acquisition [28],
[30] to data mining [31], [32]. They should be explicit, understandable and verifiable by
domain experts, and could be modified, extended and passed on as modular knowledge. The
REx algorithm described in this section possesses the above mentioned quality and is
composed of three major functions:

(i) Rule Extraction- This function iteratively generates shortest rules and
remove/marks the patterns covered by each rule until all patterns are covered by
the rules;

(ii) Rule Clustering- Rules are clustered in terms of their class levels; and
(iii) Rule Pruning- Redundant or more specific rules in each cluster are removed.
A default rule should be chosen to accommodate possible unclassifiable patterns. If rules

are clustered, the choice of the default rule is based on clusters of rules.
The steps of the Rule Extraction (REx) algorithm are summarized in Fig. 6 and explained

further as follows:
Step 1 Extract Rule:

i=0; while (data is NOT empty/marked){
generate Ri to cover the current pattern and differentiate it from patterns in other
categories;
remove/mark all patterns covered by Ri ; i++}
The core of this step is a greedy algorithm that finds the shortest rule based on the
first order information that can differentiate the pattern under consideration from the
patterns of other classes. It then iteratively generates rules and removes the patterns
covered by the rules.

Step 2 Cluster Rule:
Cluster rules according to their class levels. Rules generated in Step 1 are grouped in
terms of their class levels. In each rule cluster, redundant rules are eliminated;
specific rules are replaced by more general rules.

Step 3 Prune Rule:
 replace specific rules with more general ones;
 remove noisy rules;
 eliminate redundant rules.
Step 4 Check whether all patterns are covered by any rules. If yes then stop, otherwise

continue.
Step 5 Determine a default rule:

A default rule is chosen when no rule can be applied to a pattern.

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 50

Fig. 6 Flow chart of the rule extraction (REx) algorithm.

REx exploits the first order information in the data and finds shortest sufficient conditions
for a rule of a class that can differentiate it from patterns of other classes. It can generate
concise and perfect rules in the sense that the error rate of the rules is not worse than the
inconsistency rate found in the original data. The novelty of REx is that the rule generated by
it is order insensitive, i.e. rules need not be required to fire sequentially.

IV. Experimental Studies
This section evaluates the performance of REANN on three well-known benchmark
classification problems. These are breast cancer, diabetes and lenses, which are widely used
in machine learning and ANN research. The data sets representing all the problems were real
world data and obtained from the UCI machine learning benchmark repository
(http://www.ics.uci.edu/~mlearn/MLRepository.htm). The characteristics of data sets are
given in Table I.

A. Data Set Description
The following subsections briefly describe the data set used in this study. The characteristics
of the data sets are summarized in Table I. The detailed descriptions of the data sets are
available at ics.uci.edu in directory /pub/machine-learning-databases [31], [32].

A1. The breast cancer problem

The purpose of this problem is to diagnose a breast tumor as either benign or malignant based
on cell descriptions gathered by microscopic examination. Input attributes are for instance the
clump thickness, the uniformity of cell size and cell shape, the amount of marginal adhesion,
and the frequency of bare nuclei. The data set representing this problem contained 699
examples. Each example consisted of nine-element real valued vectors. This is a two-class
problem. All inputs are continuous; 65.5% of the examples are benign. This makes for
entropy of 0.93 bits per example. This data set was created based on the “breast cancer
Wisconsin" problem data set from the UCI repository of machine learning databases.

Extract Rule

Cluster Rule

Prune Rule

Covered all
patterns?

Stop
Default Rule

Yes

No

Start

International Journal of Information Technology, Vol. 12 No. 8, 2006

 51

A2. The diabetes problem

The objective of this problem is to diagnose whether a Pima Indian individual is diabetes
positive or not based on his/her personal data, including age, number of times pregnant, and
the results of medical examinations (e.g. blood pressure, body mass index, result of glucose
tolerance test, etc.). There are 768 examples in the data set, each of which consisted of eight-
element real valued vectors. This is a two-class problem. All inputs are continuous and 65.1%
of the examples are diabetes negative; entropy 0.93 bits per example. This data set was
created based on the “Pima Indians diabetes" problem data set from the UCI repository of
machine learning databases.

A3. The lenses problem

This problem uses a database for fitting contact lenses. The database is complete and noise
free and contains 24 examples. These examples highly simplified the problem. The attributes
do not fully describe all the factors affecting the decision as to which type, if any, to fit. All
attributes are nominal. This is three-class problem: the patient should be fitted with hard
contact lenses, soft contact lenses and no contact lenses.

Table I Characteristics of data sets.
Data Sets No. of Examples Input Attributes Output Classes

Breast Cancer 699 9 2
Diabetes 768 8 2
Lenses 24 4 3

B. Experimental Setup
In all experiments, one bias node with a fixed input 1 was used for the hidden and output
layers. The learning rate was set between [0.1, 1.0] and the weights were initialized to
random values between [-1.0, 1.0]. The number of training epochs τ was chosen between 5
and 20. Value of ε for clustering was set between [0.1, 1.0]. Values of weight decay
parameters ε1, ε2, were set between [0.05, .5] and [10-4, 10-8] and β was 10 for penalty

function. A hyperbolic tangent function
yy

yy

ee
eey −

−

+
−

=)(δ was used as the hidden node

activation function and a logistic sigmoid function ye
y −+
=

1
1)(σ as the output node

activation function.
 In this study, all data sets representing the problems were divided into two sets: the
training set and the testing set. The numbers of examples in the training set and testing set
were chosen to be the same as those in other works, in order to make the comparison with
those works possible. The sizes of the training and testing sets used in this study are given as
follows:

• Breast cancer problem: The first 350 examples are used for the training set and the
rest 349 for the testing set.

• Diabetes problem: The first 384 examples are used for the training set and the rest 384
for the testing set.

• Lenses problem: The first 12 examples are used for the training set and the rest 12 for
the testing set.

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 52

C. Experimental Results
Tables II-IV show the ANN architectures produced by REANN and training epochs over 10
independent runs on three different classification problems. The initial architecture was
selected before applying the constructive algorithm, which was used to determine the number
of nodes in the hidden layer. The intermediate architecture was the outcome of the
constructive algorithm, and the final architecture was the outcome of pruning algorithm used
in REANN.
 It is seen that REANN can automatically determine compact ANN architectures for all
problems we consider in this work. For example, for the breast cancer data, the average
number of nodes and connections were 6.8 and 5.8, respectively. For the diabetes data, the
average number of nodes and connections were 12.5 and 19.4 respectively. It is seen that
REANN produced compact and large architectures for cancer and diabetes problem. This is
reasonable because cancer is the one of the easiest problem while diabetes is one of hardest
problem in ANNs. It is natural to require compact architecture for solving easy problems and
large architectures for hard problems.

 Table II ANN architectures and training epochs for the breast cancer problem. The
results were averaged over 10 independent runs.

 Initial Architecture Intermediate Architecture Final Architecture

 No. of Node No. of
Connection

No. of
Node

No. of
Connection

No. of
Node

No. of
Connection

No. of
Epoch

Mean 12 (9-1-2) 11 12.7 18.1 6.8 5.8 233.2
Min 12 (9-1-2) 11 12 11 5 5 222
Max 12 (9-1-2) 11 14 33 10 9 245

Table III ANN architectures and training epochs for the diabetes problem. The results were

averaged over 10 independent runs.
 Initial Architecture Intermediate Architecture Final Architecture

 No. of Node No. of
Connection

No. of
Node

No. of
Connection

No. of
Node

No. of
Connection

No. of
Epoch

Mean 11 (8-1-2) 10 13.2 30 12.5 19.4 302.6
Min 11 (8-1-2) 10 12 20 12 14 279
Max 11 (8-1-2) 10 14 40 13 24 326

Table IV ANN architectures and training epochs for the lenses problem. The results were
averaged over 10 independent runs.

 Initial Architecture Intermediate Architecture Final Architecture

 No. of Node No. of
Connection

No. of
Node

No. of
Connection

No. of
Node

No. of
Connection

No. of
Epoch

Mean 8 (4-1-3) 7 9.1 14.7 8.9 12.1 109.2
Min 8 (4-1-3) 7 8 7 8 7 97
Max 8 (4-1-3) 7 10 21 10 17 128

 Figs. 7-8 show the smallest of the pruned networks over 10 runs for breast cancer and
diabetes problems. The pruned network for breast cancer problem has only 1 hidden node and
5 connections. The accuracy of this network was 96.275%. In this example, only three input
attributes A1, A6 and A9 were important and only three discrete values of hidden node
activations were needed to maintain the accuracy of the network. The discrete values found
by the heuristic clustering algorithm were 0.987, -0.986 and 0.004. The weight of the
connection from the hidden node to the first output node was 3.0354 and to the second output
node was –3.0354.

International Journal of Information Technology, Vol. 12 No. 8, 2006

 53

Fig. 7 A pruned network for breast cancer problem.

__

Fig. 8 A pruned network for diabetes problem.

 The pruned network for diabetes problem has only 2 hidden nodes. No input nodes were
pruned by pruning algorithm. One hidden node was pruned since all the connections to and
from the node were pruned. The accuracy was 76.56 %. The weight of the connection from
the first hidden node to the first output node was -1.153 and to the second output node was
1.153 and the weight of the connection from the second hidden node to the first output node
was -32.078 and to the second output node was 32.084.

Bias node

Active Weight

Pruned Weight
Active Node

Pruned Node

 O1 O2 W1 = -21.992
W6 = -13.802
W9 = -13.802
V1 = 3.0353
V2 = -3.0353

 A1 A2 A3 A4 A5 A6 A7 A8 A9

Input Layer

Hidden Layer

Output Layer

Wi = Input to Hidden Weight
Vi = Hidden to Output Weight
Ai = Attribute of Input Signal
Oi = Output Signal

1

Active Weight

Pruned Weight

Active Node

Pruned Node

Input Layer

Hidden Layer

Output Layer

 A1 A2 A3 A4 A5 A6 A7 A8

 Wi = Input to Hidden Weight
Vi = Hidden to Output Weight
Ai = Attribute of Input Signal
Oi = Output Signal

Bias node

 O1 O2

1

W12 = -204.159
W13 = 74.0908
W14 = -52.965
W18 = 52.965
W21 = 47.0386
W23 = 52.4690
W24 = 46.9671
W25 = 46.9671
W26 = 46.9671
W27 = -46.967
W28= -46.9676
V11 = -1.1526
V12 = 1.1526
V21 = -32.078
V22 = 32.0847

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 54

Fig. 9 Training time error for breast cancer problem.

Fig. 10 Training time error for diabetes data.

 Figs. 9-10 show the training processes of REANN for breast cancer and diabetes
problems. For breast cancer problem, it is observed that the training error decreases as
training process progresses. After some training epochs, the training error is almost constant
and then it is fluctuated for some epochs. The fluctuation is due to the pruning process of
REANN. As the network was retrained after the pruning process, the network achieves the
previous training error. The similar phenomena are also observed for the diabetes problem.

Table V Number of extracted rules and their classification accuracy for three different

problems.
Data Sets No. of Extracted Rules Rules Accuracy

Breast Cancer 2 96.28 %
Diabetes 2 76.56 %
Lenses 8 100 %

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

Epochs

M
ea

n
Sq

ua
re

 E
rr

or

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300

Epochs

M
ea

n
Sq

ua
re

 E
rr

or

International Journal of Information Technology, Vol. 12 No. 8, 2006

 55

 Table V shows the number of the extracted rules and their accuracy for three different
problems. It is observed that two rules are sufficient to solve the breast cancer and diabetes
problems. The accuracy was 100% for lenses classification, because the lower number of
examples and the number of rules generated by REANN is 8.

C1. Extracted rules
The number of rules extracted by REANN and the accuracy of the rules were described in
Table V, but the visualization of the rules in terms of the original attributes ware not
discussed. The aim of this subsection is to show what kinds of rules are generated by
REANN for different problems. The number of conditions per rule and the number of rules
extracted were also visualized here.

The breast cancer problem

 Rule 1: If Clump thickness (A1) <= 0.6 and Bare nuclei (A6) <= 0.5
 and Mitosis(A9) <= 0.3, then benign
 Default Rule: malignant.

The diabetes problem

 Rule 1: If Plasma glucose concentration (A2) <= 0.64
 and Age (A8) <= 0.69
 then tested negative
 Default Rule: tested positive.

The lenses problem

 Rule 1: If Tear Production Rate (A4) = reduce then no contact lenses
 Rule 2: If Age (A1) = presbyopic and Spectacle Prescription (A2) =
 hypermetrope and Astigmatic (A3) = yes then no contact lenses

 Rule 3: If Age (A1) = presbyopic and Spectacle Prescription (A2)
 = myope and Astigmatic (A3) = no then no contact lenses

 Rule 4: If Age (A1) = pre-presbyopic and Spectacle Prescription (A2) =
 hypermetrope and Astigmatic (A3) = yes and Tear Production Rate (A4) =

normal then no contact lenses
 Rule 5: If Spectacle Prescription (A2) = myope and Astigmatic (A3) = yes
 and Tear Production Rate (A4) = normal then hard contact lenses
 Rule 6: If Age (A1) = pre-presbyopic and Spectacle Prescription (A2) =
 myope and Astigmatic (A3) = yes and Tear Production Rate (A4)
 = normal then hard contact lenses
 Rule 7: If Age (A1) = young and Spectacle Prescription (A2) = myope
 and Astigmatic (A3) = yes and Tear Production Rate (A4)
 = normal then hard contact lenses
 Default Rule: soft contact lenses.

D. Comparisons
This section compares experimental results of REANN with the results of other works. A rule
with many conditions is harder to understand than a rule with fewer conditions. Too many
rules also hinder humans understanding of the data under examination. In addition to
understandability, rules without generalization are not much of use. Hence, the comparison is
performed along three dimensions: predictive accuracy, average number of conditions for a
rule, and number of rules.

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 56

 The primary aim of this work is not to evaluate REANN in order to gain a deeper
understanding of rule extraction without an exhaustive comparison between REANN and all
other works.
 Table VI compares the REANN results of the breast cancer problem with those produced
by NN RULES [10], DT RULES [10], C4.5 [29], NN-C4.5 [33], OC1 [33], and CART [34]
algorithms. All algorithms achieve high predictive accuracy rates. However, REANN
achieved the best performance and NN RULES was the closest second. It also outperformed
other algorithms in terms of the number of rules. The number of rules extracted by REANN
is 2 while it was 4 for NN RULES and 7 for DT RULES.
 Table VII compares the REANN results of the diabetes problem with those produced by
NN RULES, C4.5, NN-C4.5, OC1, and CART algorithms. REANN achieved 76.56%
accuracy although NN-C4.5 was closest second with 76.4% accuracy. REANN is also
outperformed all other algorithms in terms of average number of conditions in a rule and
number of rules.
 Table VIII compares the REANN results of the lenses data with those produced by
PRISM [35]. Both algorithms achieved 100% accuracy because the lower number of
examples. REANN extracted 8 rules, while PRISM extracted 9 rules.

Table VI Performance comparison of REANN with other algorithms for

the breast cancer problem. ‘-’ means not available.

Table VII Performance comparison of REANN with other algorithms for

the diabetes problem. ‘-’ means not available.

Table VIII Performance comparison of REANN with other algorithm for

the lenses problem. ‘-’ means not available.

V. Conclusions
Although ANNs have been widely used to solve many problems, they are often viewed as
black boxes. This work is an attempted to open up these black boxes by extracting rules from
trained ANNs by the proposed rule extraction algorithm REANN. The experimental results
on three different problems show that REANN can able to explain the functionality of ANN
by extracting simple and concise rules. The predication accuracy of rules generated by
REANN for different problems is also encouraging in comparison with exiting works.

Data Set Feature REANN NN
RULES

DT
RULES

C4.5 NN-
C4.5

OC1 CART

No. of Rules 2 4 7 - - - -
Avg. No. of
Conditions 3 3 1.75 - - - -

Breast
Cancer

Accuracy % 96.28 96 95.5 95.3 96.1 94.99 94.71

Data Set Feature REANN NN RULES C4.5 NN-C4.5 OC1 CART
No. of Rules 2 4 - - - -
Avg. No. of
Conditions 2 3 - - - -

Diabetes
Accuracy % 76.56 76.32 70.9 76.4 72.4 72.4

Data set Feature REANN PRISM
No. of Rules 8 9

Avg. No. of Conditions 3 -

Lenses
Accuracy % 100.0 100.0

International Journal of Information Technology, Vol. 12 No. 8, 2006

 57

REANN algorithm has some limitations that could be addressed in future work. REANN
is not tested on classification problems having large number of output classes and regression
problems. It would be interesting in the future to analyze REANN further on large
classification and regression problems. The analysis would help to find the strength and
weakness of REANN for such problems. In addition REANN is not considered the rule
extraction technique for neuro-fuzzy network. A neuro-fuzzy network can be defined as a
fuzzy system trained with some algorithm derived from ANNs. The integration of ANNs and
fuzzy systems aims at the generation of a more robust, efficient and easily interpretable
system where the advantages of each system are kept and their possible disadvantages are
removed. Some ANN models such as the multilayer preceptron have been successfully
applied to the training of neuro-fuzzy networks with back propagation algorithm to adjust the
membership functions and connection weights of the processing nodes. In future, REANN
could be applied for extracting rules for neuro-fuzzy network.

References

[1] R. Andrews, J. Diederich and A. B., Tickle, “Survey and critique of techniques for

extracting rules from trained artificial neural networks,” Knowledge Based System, vol.
8, 1995, pp. 373-389.

[2] Ashish Darbari, “Rule Extraction from Trained ANN: A Survey,” Technical Report
WV-2000-03, Knowledge Representation and Reasoning Group, Department of
Computer Science, Dresden University of Technology, Dresden, Germany, 2000.

[3] K. Saito and R. Nakano, “Medical diagnosis expert system based on PDP model,”
Proceedings of IEEE International Conference on Neutal Networks, IEEE Press, New
York, 1988, pp. 1255-1262.

[4] G. G., Towell and J. W., Shavlik, “Extracting refined rules from knowledge-based
system neural networks,” Machine Learning, vol. 13, 1993, pp. 71-101.

[5] L. Fu, “Rule learning by searching on adapted nets, ” Proceedings of the Ninth National
Conference on Artificial Intelligence, AAAI Press/ The MIT Press, Menlo Park, CA,
1991, pp. 590-595.

[6] G. G., Towell and J. W., Shavlik, “Knowledge-based artificial neural networks,”
Artificial Intelligence, vol. 70, 1994, pp. 119-165.

[7] H. Liu and S. T. Tan, “X2R: A fast rule generator,” Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, Vancouver, CA, 1995.

[8] Rudy Setiono and Huan Liu, “Understanding neural networks via rule extraction,”
Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1995,
pp. 480-485.

[9] R. Setiono, “Extracting rules from pruned neural networks for breast cancer diagnosis,”
Artificial Intelligence in Medicine, vol. 8, February 1996, pp. 37-51.

[10] R. Setiono and H. Liu, “Symbolic presentation of neural networks,” IEEE Computer,
March 1996, pp. 71-77.

[11] R. Setiono, “Extracting rules from neural networks by pruning and hidden-unit node
splitting,” Neural Computation, vol. 9, 1997, pp. 205-225.

[12] R. Setiono and W. K. Leow, “ FERNN: An algorithm for fast extraction of rules from
neural networks,” Applied Intelligence, vol. 12, 2000, pp. 15-25.

[13] R. Setiono, W. K. Leow and Jack M. Zurada, “Extraction of Rules from Artificial
Neural Networks for Nonlinear regression,” IEEE Transactions of Neural Networks,
vol. 13, May 2002, pp. 564-577.

S. M. Kamruzzaman and Md. Monirul Islam
An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

 58

[14] T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structured learning in
feedforward neural networks for regression problems,” IEEE Transactions on Neural
Networks, vol. 8, 1997, pp. 630-645.

[15] M. Monirul Islam, Xin Yao, and K. Murase, “A constructive algorithm for training
cooperative neural network ensembles,” IEEE Transactions on Neural Networks, vol.
14, 2003, pp. 820-834.

[16] R. Parekh, J.Yang, and V. Honavar, “Constructive neural network learning algorithms
for pattern classification,” IEEE Transactions on Neural Networks, vol. 11, 2000.

[17] R. Setiono and L.C.K. Hui, “Use of quasi-Newton method in a feedforward neural
network construction algorithm”, IEEE Transactions on Neural Networks, vol. 6, 1995,
pp. 273-277.

[18] T. Ash, “Dynamic node creation in backpropagation networks,” Connection Science,
vol. 1, 1989, pp. 365–375.

[19] R. Setiono, “A penalty function approach for pruning feedforward neural networks,”
Neural Computation, vol. 9, 1997, pp. 185-204.

[20] S. M. Kamruzzaman, Ahmed Ryadh Hasan, Abu Bakar Siddiquee, and Md. Ehsanul
Hoque Mazumder, “Medical diagnosis using neural network,” Proceedings of the
International Conference on Electrical and Computer Engineering (ICECE-2004),
BUET, Dhaka, 2004, pp. 537-540.

[21] M. Monirul Islam, M. A. H. Akhand, M. Abdur Rahman and K. Murase, “Weight
freezing to reduce training time in designing artificial neural networks”, Proceedings of
5th International Conference on Computer and Information Technology, EWU, Dhaka,
2002, pp. 132-136.

[22] J. Sietsma and R. J. F. Dow, “Neural net pruning-why and how?,” Proceedings of IEEE
International Conference on Neural Networks, vol. 1 (San Diego), 1988, pp. 325-333.

[23] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural
networks,” IEEE Transactions on Neural Networks, vol. 8, May 1997, pp. 694–713.

[24] R. Reed, “Pruning algorithms-A survey,” IEEE Transactions on Neural Networks, vol.
4, 1993, pp. 740-747.

[25] Han Jiawei, Micheline Kamber, “Data Mining: Concepts and Techniques,” Morgan
Kaufmann Publisher: CA, 2001.

[26] L. Kaufman, P. J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster
Analysis,” John Wiley & Sons, 1990.

[27] T. Ng. Raymond, Jiawei Han, “Efficient and effective clustering methods for spatial
data mining,” VLDB Conference, Santiago, Chile, 1994.

[28] M. Monirul Islam and K. Murase, “A new algorithm to design compact two hidden-
layer artificial neural networks”, Neural Networks, vol. 4, 2001, pp. 1265–1278.

[29] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann, San Mateo,
CA, 1993.

[30] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A performance
perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 5, 1993, pp.
914-925.

[31] L. Prechelt, “Proben1-A Set of Neural Network Benchmark Problems and
Benchmarking Rules”, University of Karlsruhe, Germany, 1994.

[32] C. Blake, E. Keogh, and C. J. Merz, “UCI repository of of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.htm],” Department of Information and
Computer Science, University of California, Irvine, CA, 1998.

[33] R. Setiono, “Techniques for extracting rules from artificial neural networks,” Plenary
lecture presented at the 5th International Conference on Soft Computing and
Information Systems, Iizuka, Japan, October 1998.

International Journal of Information Technology, Vol. 12 No. 8, 2006

 59

[34] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression
Trees,” Wadsworth and Brooks, Monterey, CA, 1984.

[35] J. Cendrowska, “PRISM: An algorithm for inducting modular rules,” International
Journal of Man-Machine Studies, vol. 27, 1987, pp. 349-370.

S. M. Kamruzzaman received the B. Sc. Engineering degree in
Electrical and Electronic Engineering from the Bangladesh Institute of
Technology (BIT), Dhaka, Bangladesh, in 1997, the M. Sc.
Engineering degree in Computer Science and Engineering from
Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh, in 2005. From 1998 to 2004, he was a Lecturer
and Assistant Professor with the Department of Computer Science and
Engineering, International Islamic University Chittagong (IIUC),
Chittagong, Bangladesh.

In 2005, he moved to Manarat International University, Dhaka, Bangladesh as an Assistant
Professor in the Department of Computer Science and Engineering. Currently he is working
as an Assistant Professor in the Department of Information and Communication Engineering,
University of Rajshahi, Bangladesh. His research interests include neural networks,
communication engineering, data mining, Bangla language processing and pattern
recognition.

Md. Monirul Islam received the B. Sc. Engineering degree in
Electrical and Electronic Engineering from the Bangladesh Institute of
Technology (BIT), Khulna, Bangladesh, in 1989, the M. Sc.
Engineering degree in Computer Science and Engineering from
Bangladesh University of Engineering and Technology (BUET),
Dhaka, Bangladesh, in 1996, and the Ph.D. degree in Evolutionary
Robotics from Fukui University, Fukui, Japan, in 2002. From 1989 to
2002, he was a Lecturer and Assistant Professor with the Department
of Electrical and Electronic Engineering, BIT, Khulna.

In 2003, he moved to BUET as an Assistant Professor in the Department of Computer
Science and Engineering. Currently he is working as an Associate professor with the same
department. His research interests include evolutionary robotics, evolutionary computation,
neural networks, and pattern recognition.

