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Abstract 
 

Artificial neural networks (ANNs) have been successfully applied to solve a variety of 
classification and function approximation problems. Although ANNs can generally predict 
better than decision trees for pattern classification problems, ANNs are often regarded as 
black boxes since their predictions cannot be explained clearly like those of decision trees. 
This paper presents a new algorithm, called rule extraction from ANNs (REANN), to extract 
rules from trained ANNs for medical diagnosis problems. A standard three-layer feedforward 
ANN with four-phase training is the basis of the proposed algorithm. In the first phase, the 
number of hidden nodes in ANNs is determined automatically by a constructive algorithm. In 
the second phase, irrelevant connections and input nodes are removed from trained ANNs 
without sacrificing the predictive accuracy of ANNs. The continuous activation values of the 
hidden nodes are discretized by using an efficient heuristic clustering algorithm in the third 
phase. Finally, rules are extracted from compact ANNs by examining the discretized 
activation values of the hidden nodes. Extensive experimental studies on three benchmark 
classification problems, i.e. breast cancer, diabetes and lenses, demonstrate that REANN can 
generate high quality rules from ANNs, which are comparable with other methods in terms of 
number of rules, average number of conditions for a rule, and predictive accuracy.  
Keywords: Constructive algorithm, pruning algorithm, continuous activation function, 
clustering algorithm, symbolic rules.  

I. Introduction 
The last two decades have seen a growing number of researchers and practitioners applying 
artificial neural networks (ANNs) for pattern classifications and function approximations [3], 
[13], [20]. While the predictive accuracy of ANNs is often higher than that of other methods 
or human experts, it is generally difficult to understand how ANNs arrive at a particular 
conclusion due to the complexity of ANN architectures. Even an ANN with single hidden 
layer, it is generally impossible to explain why a certain pattern is classified as a member of 
one class and another pattern as a member of another class [10]. It is therefore desirable to 
have a set of rules to explain how ANNs solve a given problem. This is because the 
functionality of ANNs represented by a set of rules will be more comprehensible to human 
users than a set of connection weights of ANNs [8].  

There are a number of works in the literature to explain the functionality of ANNs by 
extracting rules from trained ANNs [1], [2]. The main problem of existing work is that they 
determine the number of hidden neurons in ANNs manually. Thus the prediction accuracy 
and rules extracted from trained ANNs may not be optimal since the performance of ANNs is 
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greatly dependent on their architectures. Furthermore, rules extracted by existing algorithms 
are not simple as a result it is difficult to understand for users. 

This paper proposes a new algorithm, called rule extraction from ANNs (REANN), to 
extract rules from trained ANNs for medical diagnosis problems. A standard three-layer 
feedforward ANN with four-phase training is the basis of REANN. The salient feature of 
REANN is that it does not require many user specified parameters for extracting rules. In 
addition, an efficient clustering algorithm is used in REANN to discretize the continuous 
values of hidden nodes so that rules can be extracted easily by using discretized values.  

The rest of this paper is organized as follows. Section II discusses some related works for 
extracting rules from trained ANNs. Section III describes our REANN algorithm in details. 
Section IV presents results of our experimental study. Finally, Section V concludes the paper 
with a brief summary and a few remarks.  

II. Related Work 
A number of algorithms have been developed for extracting rules from trained ANNs in the 
last two decades [7]-[13]. In this section, we describe some algorithms that are related to the 
present work. The problems of existing algorithms are also described in this section. 

Two methods for extracting rules from ANN are described by Towell and Shavlik [4]. 
The first method is the subset algorithm, which searches for subsets of connections to a unit 
whose summed weight exceeds the bias of that node [5]. The major problem with the subset 
algorithm is that the cost of finding all subsets increases as the size of ANNs increases. The 
second method i.e. MofN is an improvement of the subset method that is designed to 
explicitly search for M-of-N rules from knowledge based ANNs [6]. It checks a group of 
connections instead of a single connection in ANNs to find their contribution in node’s 
activation. This is done by clustering the connections of ANNs. The problems of MofN are it 
uses threshold activation function, which is not continuous and uses fixed number of hidden 
nodes that require prior knowledge of the problem to be solved.  

In 1995, H. Liu and S. T. Tan [7] propose, a simple and fast algorithm X2R that can be 
applied to both numeric and discrete data for generating rules. X2R can generate concise 
rules from raw data sets by using first order information. It can generate perfect rules in the 
sense that the error rate of the rules is not worse than the inconsistency rate found in the 
original data. The problem of X2R is that rules generated by it are order sensitive i.e. 
generated rules should be fired in sequence.  

R. Setiono and H. Liu [8] present a novel way to understand ANNs by extracting rules 
with a three phase algorithm. A weight decay backpropagation network is built in the first 
phase so that important connections are reflected by their bigger weights. In the second 
phase, the network is pruned in such a way so that insignificant connections are deleted while 
its predictive accuracy is still maintained. In the third phase, rules are extracted by recursively 
discretizing the hidden unit activation values. The problem of three phase algorithm is that 
the discretizing algorithm used to discretize the output values of hidden nodes is not efficient. 

In 2002, R. Setiono et al. [13] proposed a new method REFANN (rule extraction from 
function approximating neural networks) for extracting rules from trained ANNs for 
nonlinear regression. It is shown REFANN can produce rules that are almost as accurate as 
the original ANNs from whom rules are extracted. For some problems, REFANN extracts 
few rules that represent useful knowledge for explaining problems easily. REFANN 
approximates the nonlinear hyperbolic tangent activation function of the hidden nodes by 
using a simple three-piece or five-piece linear function. It then generates rules in the form of 
linear equations from trained ANNs. The problem of REFANN is that it needs to divide the 
continuous hidden node activation into three-piece or five-piece linear function, which may 
not be possible for complex problems. 



International Journal of Information Technology, Vol. 12 No. 8, 2006 

 43 
 
 

The problems of existing algorithms are summarized as follows: 
(i) Use predefined and fixed number of hidden nodes that require human experience 

and prior knowledge of the problem to be solved, 
(ii) Clustering algorithms used to discretize the output values of hidden nodes are not 

efficient, 
(iii) Computationally expensive, and 
(iv) Could not produce concise rules. 

III. The REANN Algorithm  
The aim of this section is to introduce rule extraction algorithm REANN for understanding 
how an ANN solves a given problem. Although REANN is applied in medical domain in this 
work, it can be applied to other domain also. The aim of REANN is to search for simple rules 
with high predictive accuracy.  

In comparison with other existing algorithms in the literature, the major advantages of 
REANN include: (i) it can determine near optimal ANN architectures automatically by using 
a constructive-pruning strategy; (ii) it uses an efficient method to discretize the output values 
of hidden nodes; (iii) it is computationally inexpensive; and (iv) it can extract rules that are 
concise, comprehensible, order insensitive and highly accurate.  

The major steps of REANN are summarized in Fig. 1 and explained further as follows:  
Step 1 Create an initial ANN architecture. The initial architecture has three layers i.e. an 

input, an output and a hidden layer. The number of nodes in the input and output 
layers is the same the number of inputs and outputs of the problem, respectively. 
Randomly initialize all connection weights of the ANN within a small range.  

Step 2 Determine the number of hidden nodes in the ANN by using a basic constructive 
algorithm.  

Step 3 Remove the redundant input nodes and connections by using a basic pruning 
algorithm. When pruning is completed, the ANN architecture contains only important 
nodes and connections. 

Step 4 Discretize the outputs of hidden nodes by using an efficient heuristic clustering 
algorithm. The reason for discretization is that the outputs of hidden nodes are 
continuous therefore rules cannot be easily extracted from the ANN.  

 
 
 
 
 
 
 
 

 

 

 

____________________________________ 

Fig. 1 Flow chart of the REANN algorithm. 
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Step 5 Generate rules that map the inputs and outputs relationships. The task of rules 
generation is accomplished in three steps. In the first step, rules are generated by 
using rule extraction algorithm REx to describe the outputs of the ANN in terms of 
the discretized output values of its hidden nodes. In the second phase, rules are 
generated by REx to describe the discretized output values of hidden nodes in terms 
of their inputs. Finally, rules are generated by combining the rules generated in the 
first and second steps. 

It is seen that REANN is very straightforward. However, REANN is consisted of four 
phases, which are implemented sequentially one by one. In the following subsections, each 
phase is described elaborately and the reasons for utilizing different techniques in each phase 
are also explained.  

A.  Constructive Algorithm  
One drawback of the traditional backpropagation algorithm is the need to determine the 
number of nodes in the hidden layer prior to training [14]-[17].  REANN uses a basic 
constructive algorithm based on dynamic node creation algorithm proposed by T. Ash [18].  

The major steps of the constructive algorithm used in REANN are summarized in Fig. 2 
and explained further as follows:  
Step 1 Create an initial ANN consisting of three layers, i.e., an input, an output, and a hidden 

layer. The number of nodes in the input and output layers is the same as the number 
of inputs and outputs of the problem. Initially the hidden layer contains only one 
node. Randomly initialize all connection weights within a certain range. 

Step 2 Train the network on the training set by using BP algorithm until the error is almost 
constant for a certain number of training epochs τ that is specified by the user. 

Step 3 Compute the error of the ANN based on the validation set. If the error is found 
unacceptable (i.e., too large), then assume that the ANN has inappropriate 
architecture, and go to the next step. Otherwise, stop the training process. The error E 
is calculated according to the following equations. 
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1 1
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where k is the number of patterns and C is the number of output nodes. tpi and Spi are 
the target and actual outputs for the ith pattern of the pth output node. The actual 
output Spi is calculated according to the following equation.  
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Here h is the number of hidden nodes in the network, xi is an n-dimensional input 
pattern, i=1, 2,…, k, wm is an p-dimensional vector weights for the arcs connecting 
the input layer and the m-th hidden node, m=1, 2, …, h, vm is a c-dimensional vector 
of weights for the arcs connecting the m-th hidden node and the output layer. The 
activation function for the output layer is sigmoid function σ(y) = 1/(1+e-y) and for 
the hidden layer hyperbolic tangent function δ(y) = (ey - e-y)/ (ey + e-y). 

Step 4 Add one hidden node to the hidden layer. Randomly initialize the weights of the 
newly added node and go to step 2.  
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Fig. 2 Flow chart of the constructive algorithm used in REANN. 
 

Although other architecture determination algorithms, such as pruning [24] and 
evolutionary algorithms [23], could be used in REANN, the reasons for using constructive 
algorithm are four folds. Firstly, it is straightforward in constructive algorithms to specify an 
initial network, while it is problematic in pruning algorithms, one does not know in practice 
how big the initial network should be. Secondly, constructive algorithms always search for 
small network solutions first. They are thus computationally more efficient than pruning 
algorithms, in which the majority of the training time is spent on networks larger than 
necessary. Because of smaller solutions, the ANN is less likely to overfit the training data 
and, thus, more likely to generalize better. Thirdly, the strong convergence of a constructive 
algorithms follows directly from its universal approximation ability. Finally, a constructive 
approach usually requires a relatively small number of user specified parameters. The use of 
many user specified parameters requires a user to know rich prior knowledge, which often 
does not exist for complex real world problems. 

B. Pruning Algorithm 
Pruning techniques begin by training a larger than necessary network and then eliminate the 
weights and nodes that are deemed redundant [21], [22]. Since the nodes in the hidden layer 
are determined automatically in constructive fashion in REANN, the aim of pruning 
algorithm is to remove unnecessary connections and input nodes from the ANN obtained by 
the constructive algorithm. Typically, methods for removing connections from ANNs involve 
adding a penalty term to the error function. It is hoped that by adding a penalty term to the 
error function, unnecessary connections will have small weights, and therefore pruning can 
reduce the complexity of the ANN significantly. The simplest and most commonly used 
penalty term is the sum of the squared weights [19].  

The pruning algorithm used in REANN is briefly described below. This pruning 
algorithm removes the connections of the ANN according to the magnitudes of their weights. 
Since the eventual goal of REANN is to get a set of simple rules that describe the 
classification process, it is important that all unnecessary connections and nodes must be 
removed. In order to remove as many connections as possible, the weights of the network 
must be prevented from taking values that are too large. At the same time, weights of 
irrelevant connections should be encouraged to converge to zero. The penalty function is 
found to be particularly suitable for these purposes [19].  
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The steps of the weight-pruning algorithm are summarized in Fig. 3 and explained further 
as follows:  
Step 1 Train the network to meet a prespecified accuracy level with the following condition 

satisfied by all correctly classified input patterns:  
                                       (3) 

Let η1 and η2 be positive scalars such that η1 + η2  < 0.5 (η1 is the error tolerance, η2 
is a threshold that determines if a weight can be removed), where 1η  ∈ [0, 0.5). Let 
(w, v) be the weights of this network. 

Step 2 Remove the connections between the input nodes and the hidden nodes and between 
the hidden nodes and the output nodes. This task is accomplished in two phases. In 
the first phase, connections between the input nodes and hidden nodes are removed.  
For each mlw  in the network, if max pm mlp

v w ≤ 4 η2,                    (4) 

then remove mlw  from the network.  
In the second phase, connections between the hidden nodes and output nodes are 
removed.  

For each pmv in the network, if pmv ≤ 4 η2,                                    (5) 

then remove pmv from the network.  
 
 
 
 
 
 
 
     
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

__________________________________________________________________ 

Fig. 3 Flowchart of the pruning algorithm. 
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Step 3 Remove the connections between the input nodes and the hidden nodes further. If no 
weight satisfies condition (4) or (5), then for each wml in the network, 
compute maxml pm mlp

w v w=  and remove the smallest wml.  

Step 4 Retrain the network and calculate the classification accuracy of the network.  
Step 5 If the classification rate of the network falls below an acceptable level, then stop and 

use the previous setting of network weights. Otherwise, go to Step 2. 
 
The pruning algorithm is used in REANN also to reduce the amount of training time. 

Although it can no longer be guaranteed that the resultant pruned ANN will give the same 
accuracy rate as the original ANN, the experiments show that many weights can be 
eliminated simultaneously without deteriorating the performance of the ANN. The two 
conditions (4) and (5) for pruning depends on the weights for connections between the input 
and hidden nodes and between the hidden and output nodes. It is imperative that during the 
training, these weights be prevented from getting too large. At the same time, small weights 
should be encouraged to decay rapidly to zero. 

C. Heuristic Clustering Algorithm  
The process of grouping a set of physical or abstract objects into classes of similar objects is 
called clustering. A cluster is a collection of data or objects that are similar within the same 
cluster and dissimilar to data or objects in other clusters [25]. A large number of clustering 
algorithms exist in the literature including k-means and k-medoids [26], [27]. The choice of 
clustering algorithm depends both on the type of data available and on the particular purpose 
and application. 

After applying pruning algorithm in REANN, the ANN architecture produced by 
constructive algorithm contains only important connections and nodes. Nevertheless, rules 
are not readily extractable because the hidden node activation values are continuous. The 
discretization of these values paves the way for rule extraction.  

 
 
 
 
 
 
 
 
 
 
 
 

 

____________________________________________________ 

Fig. 4 Output of hidden nodes. 
 

It is found that some hidden nodes of an ANN maintain almost constant output while 
other nodes change continuously during the whole training process [28]. Fig. 4 shows typical 
example where one hidden node maintains almost constant output after some training epochs 
and the outputs of two hidden nodes are continuously changing.  
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In REANN, no clustering algorithm is used when hidden nodes maintain almost constant 
output. If the outputs of hidden nodes do not maintain constant value, a heuristic clustering 
algorithm is used to discretize the output values of hidden nodes.  

The steps of the heuristic clustering algorithm are summarized in Fig. 5 and are explained 
further as follows:  
Step 1 Let ε ∈ (0, 1). D is the activation values in the hidden node. δ1 is the activation value 

for the first pattern.  
The first cluster, H (1) = δ1, count = 1, and sum (1) = δ1, set D = 1.  

Step 2 For each pattern pi, checks whether subsequent activation values can be clustered into 
one of the existing clusters. The distance between an activation value under 
consideration and its nearest cluster, ( )H jδ − , is computed. If this distance is less 

than ε, then the activation value is clustered in cluster j . Otherwise, this activation 
value forms a new cluster. Let δ be its activation value. If there exists an index j  
such that    

                                                                 and  
                   

then set count( j ): = count( j )+1, sum( j  ): = sum( j  )+ δ, else D = D+1 
H (D) = δ, count (D) = 1, sum (D) = δ.  

Step 3 Replace H by the average of all activation values that have been clustered into this 
cluster: H (j): = sum (j)/count (j), j=1, 2, 3, …, D.  

Step 4 Once the activation values of all hidden nodes have been obtained, the accuracy of 
the network is checked with the activation values at the hidden nodes replaced by 
their discretized values. An activation value δ is replaced by ( )H j , where index j  is 
chosen such that arg min | ( ) |jj H jδ= − .  If the accuracy of the network falls below 
the permitted limit then ε must be decreased and the clustering algorithm is run again, 
otherwise stop. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

_______________________________________________________ 

Fig. 5 Flow chart of the heuristic clustering algorithm. 

ε≤

Start with first activation value 

Replace the cluster value by averaging 

Accuracy falls? 

Clustered into existing 
clusters?

New Cluster 

No 

Start 

Stop 

Yes 

No 

Yes 

{1,2,...... }
( ) min ( )

j D
H j H j

ε
δ δ− = − )( jH−δ



International Journal of Information Technology, Vol. 12 No. 8, 2006 

 49 
 
 

For a sufficiently small ε, it is always possible to maintain the accuracy of the network 
with continuous activation values, although the resulting number of different discrete 
activations can be impractically large. The best ε value is one that gives a high accuracy rate 
after the clustering and at the same time generates as few clusters as possible. A simple way 
of obtaining an optimal value for ε is by searching in the interval (0, 1). The number of 
clusters and the accuracy of the network can be checked for all values of ε = iζ, i= 1, 2… 
where ζ is a small positive scalar, e.g. 0.10. Note also that it is not necessary to fix the value 
of ε equal for all hidden nodes.  

D. Rule Extraction Algorithm (REx) 
Classification rules are sought in many areas from automatic knowledge acquisition [28], 
[30] to data mining [31], [32]. They should be explicit, understandable and verifiable by 
domain experts, and could be modified, extended and passed on as modular knowledge.  The 
REx algorithm described in this section possesses the above mentioned quality and is 
composed of three major functions: 

(i) Rule Extraction- This function iteratively generates shortest rules and 
remove/marks the patterns covered by each rule until all patterns are covered by 
the rules; 

(ii) Rule Clustering- Rules are clustered in terms of their class levels; and 
(iii) Rule Pruning- Redundant or more specific rules in each cluster are removed. 
A default rule should be chosen to accommodate possible unclassifiable patterns. If rules 

are clustered, the choice of the default rule is based on clusters of rules.  
The steps of the Rule Extraction (REx) algorithm are summarized in Fig. 6 and explained 

further as follows:  
Step 1 Extract Rule: 

i=0; while (data is NOT empty/marked){ 
generate Ri to cover the current pattern and differentiate it from patterns in other 
categories; 
remove/mark all patterns covered by Ri ; i++} 
The core of this step is a greedy algorithm that finds the shortest rule based on the 
first order information that can differentiate the pattern under consideration from the 
patterns of other classes. It then iteratively generates rules and removes the patterns 
covered by the rules.   

Step 2 Cluster Rule: 
Cluster rules according to their class levels. Rules generated in Step 1 are grouped in 
terms of their class levels. In each rule cluster, redundant rules are eliminated; 
specific rules are replaced by more general rules. 

Step 3 Prune Rule: 
 replace specific rules with more general ones; 
 remove noisy rules; 
 eliminate redundant rules.  
Step 4 Check whether all patterns are covered by any rules. If yes then stop, otherwise 

continue. 
Step 5 Determine a default rule: 

A default rule is chosen when no rule can be applied to a pattern.  
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Fig. 6 Flow chart of the rule extraction (REx) algorithm. 
 

REx exploits the first order information in the data and finds shortest sufficient conditions 
for a rule of a class that can differentiate it from patterns of other classes. It can generate 
concise and perfect rules in the sense that the error rate of the rules is not worse than the 
inconsistency rate found in the original data. The novelty of REx is that the rule generated by 
it is order insensitive, i.e. rules need not be required to fire sequentially. 

IV. Experimental Studies 
This section evaluates the performance of REANN on three well-known benchmark 
classification problems. These are breast cancer, diabetes and lenses, which are widely used 
in machine learning and ANN research. The data sets representing all the problems were real 
world data and obtained from the UCI machine learning benchmark repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.htm). The characteristics of data sets are 
given in Table I. 

A.  Data Set Description  
The following subsections briefly describe the data set used in this study. The characteristics 
of the data sets are summarized in Table I. The detailed descriptions of the data sets are 
available at ics.uci.edu in directory /pub/machine-learning-databases [31], [32].  

A1. The breast cancer problem 

The purpose of this problem is to diagnose a breast tumor as either benign or malignant based 
on cell descriptions gathered by microscopic examination. Input attributes are for instance the 
clump thickness, the uniformity of cell size and cell shape, the amount of marginal adhesion, 
and the frequency of bare nuclei. The data set representing this problem contained 699 
examples. Each example consisted of nine-element real valued vectors. This is a two-class 
problem. All inputs are continuous; 65.5% of the examples are benign. This makes for 
entropy of 0.93 bits per example. This data set was created based on the “breast cancer 
Wisconsin" problem data set from the UCI repository of machine learning databases. 
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A2.  The diabetes problem 

The objective of this problem is to diagnose whether a Pima Indian individual is diabetes 
positive or not based on his/her personal data, including age, number of times pregnant, and 
the results of medical examinations (e.g. blood pressure, body mass index, result of glucose 
tolerance test, etc.). There are 768 examples in the data set, each of which consisted of eight-
element real valued vectors. This is a two-class problem. All inputs are continuous and 65.1% 
of the examples are diabetes negative; entropy 0.93 bits per example. This data set was 
created based on the “Pima Indians diabetes" problem data set from the UCI repository of 
machine learning databases. 

A3.  The lenses problem 

This problem uses a database for fitting contact lenses. The database is complete and noise 
free and contains 24 examples. These examples highly simplified the problem. The attributes 
do not fully describe all the factors affecting the decision as to which type, if any, to fit. All 
attributes are nominal. This is three-class problem: the patient should be fitted with hard 
contact lenses, soft contact lenses and no contact lenses. 

Table I Characteristics of data sets. 
Data Sets No. of Examples Input Attributes Output Classes 

Breast Cancer 699 9 2 
Diabetes 768 8 2 
Lenses 24 4 3 

B.  Experimental Setup   
In all experiments, one bias node with a fixed input 1 was used for the hidden and output 
layers. The learning rate was set between [0.1, 1.0] and the weights were initialized to 
random values between [-1.0, 1.0]. The number of training epochs τ was chosen between 5 
and 20. Value of ε for clustering was set between [0.1, 1.0]. Values of weight decay 
parameters ε1, ε2, were set between [0.05, .5] and [10-4, 10-8] and β was 10 for penalty 

function. A hyperbolic tangent function 
yy

yy

ee
eey −

−

+
−

=)(δ  was used as the hidden node 

activation function and a logistic sigmoid function ye
y −+
=

1
1)(σ as the output node 

activation function.  
 In this study, all data sets representing the problems were divided into two sets: the 
training set and the testing set. The numbers of examples in the training set and testing set 
were chosen to be the same as those in other works, in order to make the comparison with 
those works possible. The sizes of the training and testing sets used in this study are given as 
follows: 

• Breast cancer problem: The first 350 examples are used for the training set and the 
rest 349 for the testing set. 

• Diabetes problem: The first 384 examples are used for the training set and the rest 384 
for the testing set. 

• Lenses problem: The first 12 examples are used for the training set and the rest 12 for 
the testing set. 
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C.  Experimental Results 
Tables II-IV show the ANN architectures produced by REANN and training epochs over 10 
independent runs on three different classification problems. The initial architecture was 
selected before applying the constructive algorithm, which was used to determine the number 
of nodes in the hidden layer. The intermediate architecture was the outcome of the 
constructive algorithm, and the final architecture was the outcome of pruning algorithm used 
in REANN.  
 It is seen that REANN can automatically determine compact ANN architectures for all 
problems we consider in this work. For example, for the breast cancer data, the average 
number of nodes and connections were 6.8 and 5.8, respectively. For the diabetes data, the 
average number of nodes and connections were 12.5 and 19.4 respectively. It is seen that 
REANN produced compact and large architectures for cancer and diabetes problem. This is 
reasonable because cancer is the one of the easiest problem while diabetes is one of hardest 
problem in ANNs. It is natural to require compact architecture for solving easy problems and 
large architectures for hard problems. 
 

 Table II ANN architectures and training epochs for the breast cancer problem. The 
results were averaged over 10 independent runs. 

 Initial Architecture Intermediate Architecture Final Architecture 

 No. of Node No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Epoch 

Mean 12 (9-1-2) 11 12.7 18.1 6.8 5.8 233.2 
Min 12 (9-1-2) 11 12 11 5 5 222 
Max 12 (9-1-2) 11 14 33 10 9 245 

  
Table III ANN architectures and training epochs for the diabetes problem. The results were 

averaged over 10 independent runs. 
 Initial Architecture Intermediate Architecture Final Architecture 

 No. of Node No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Epoch 

Mean 11 (8-1-2) 10 13.2 30 12.5 19.4 302.6 
Min 11 (8-1-2) 10 12 20 12 14 279 
Max 11 (8-1-2) 10 14 40 13 24 326 

 

Table IV ANN architectures and training epochs for the lenses problem. The results were 
averaged over 10 independent runs. 

 Initial Architecture Intermediate Architecture Final Architecture 

 No. of Node No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Node 

No. of 
Connection 

No. of 
Epoch 

Mean 8 (4-1-3) 7 9.1 14.7 8.9 12.1 109.2 
Min 8 (4-1-3) 7 8 7 8 7 97 
Max 8 (4-1-3) 7 10 21 10 17 128 

 

 
 Figs. 7-8 show the smallest of the pruned networks over 10 runs for breast cancer and 
diabetes problems. The pruned network for breast cancer problem has only 1 hidden node and 
5 connections. The accuracy of this network was 96.275%. In this example, only three input 
attributes A1, A6 and A9 were important and only three discrete values of hidden node 
activations were needed to maintain the accuracy of the network. The discrete values found 
by the heuristic clustering algorithm were 0.987, -0.986 and 0.004. The weight of the 
connection from the hidden node to the first output node was 3.0354 and to the second output 
node was –3.0354. 
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_______________________________________________________ 

Fig. 7 A pruned network for breast cancer problem. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

______________________________________________________________________ 

Fig. 8 A pruned network for diabetes problem. 
 

 The pruned network for diabetes problem has only 2 hidden nodes. No input nodes were 
pruned by pruning algorithm. One hidden node was pruned since all the connections to and 
from the node were pruned. The accuracy was 76.56 %. The weight of the connection from 
the first hidden node to the first output node was -1.153 and to the second output node was 
1.153 and the weight of the connection from the second hidden node to the first output node 
was -32.078 and to the second output node was 32.084.  
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_________________________________________________________ 

Fig. 9 Training time error for breast cancer problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
_________________________________________________________ 

Fig. 10 Training time error for diabetes data. 
 
 Figs. 9-10 show the training processes of REANN for breast cancer and diabetes 
problems. For breast cancer problem, it is observed that the training error decreases as 
training process progresses. After some training epochs, the training error is almost constant 
and then it is fluctuated for some epochs. The fluctuation is due to the pruning process of 
REANN. As the network was retrained after the pruning process, the network achieves the 
previous training error.  The similar phenomena are also observed for the diabetes problem. 

 
Table V Number of extracted rules and their classification accuracy for three different 

problems. 
Data Sets No. of Extracted Rules Rules Accuracy  

Breast Cancer 2 96.28 % 
Diabetes 2 76.56 % 
Lenses 8 100 % 
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 Table V shows the number of the extracted rules and their accuracy for three different 
problems. It is observed that two rules are sufficient to solve the breast cancer and diabetes 
problems.  The accuracy was 100% for lenses classification, because the lower number of 
examples and the number of rules generated by REANN is 8.  

C1. Extracted rules 
The number of rules extracted by REANN and the accuracy of the rules were described in 
Table V, but the visualization of the rules in terms of the original attributes ware not 
discussed. The aim of this subsection is to show what kinds of rules are generated by 
REANN for different problems. The number of conditions per rule and the number of rules 
extracted were also visualized here.  

The breast cancer problem 

   Rule 1: If Clump thickness (A1) <= 0.6 and Bare nuclei (A6) <= 0.5  
         and Mitosis(A9) <= 0.3, then benign 
   Default Rule: malignant. 

The diabetes problem 

   Rule 1: If Plasma glucose concentration (A2) <= 0.64  
      and Age (A8) <= 0.69  
        then tested negative  
    Default Rule: tested positive. 

The lenses problem 

   Rule 1: If Tear Production Rate (A4) = reduce then no contact lenses 
 Rule 2: If Age (A1) = presbyopic and Spectacle Prescription (A2) = 
     hypermetrope and Astigmatic (A3) = yes then no contact lenses 

  Rule 3: If Age (A1) = presbyopic and Spectacle Prescription (A2)  
     = myope and Astigmatic (A3) = no then no contact lenses 

   Rule 4: If Age (A1) = pre-presbyopic and Spectacle Prescription (A2) = 
  hypermetrope and Astigmatic (A3) = yes and Tear Production  Rate (A4) = 

normal then no contact lenses 
   Rule 5: If Spectacle Prescription (A2) = myope and Astigmatic (A3) = yes  
       and Tear Production Rate (A4) = normal  then hard contact lenses 
   Rule 6: If Age (A1) = pre-presbyopic and Spectacle Prescription (A2) = 
       myope and Astigmatic (A3) = yes and Tear Production Rate (A4) 
       = normal then hard contact lenses 
   Rule 7: If Age (A1) = young and Spectacle Prescription (A2) = myope  
      and Astigmatic (A3) = yes and Tear Production Rate (A4)  
      = normal  then hard contact lenses  
   Default Rule: soft contact lenses. 

D. Comparisons 
This section compares experimental results of REANN with the results of other works. A rule 
with many conditions is harder to understand than a rule with fewer conditions. Too many 
rules also hinder humans understanding of the data under examination. In addition to 
understandability, rules without generalization are not much of use. Hence, the comparison is 
performed along three dimensions: predictive accuracy, average number of conditions for a 
rule, and number of rules.  
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 The primary aim of this work is not to evaluate REANN in order to gain a deeper 
understanding of rule extraction without an exhaustive comparison between REANN and all 
other works.   
 Table VI compares the REANN results of the breast cancer problem with those produced 
by NN RULES [10], DT RULES [10], C4.5 [29], NN-C4.5 [33], OC1 [33], and CART [34] 
algorithms. All algorithms achieve high predictive accuracy rates. However, REANN 
achieved the best performance and NN RULES was the closest second. It also outperformed 
other algorithms in terms of the number of rules. The number of rules extracted by REANN 
is 2 while it was 4 for NN RULES and 7 for DT RULES.  
 Table VII compares the REANN results of the diabetes problem with those produced by 
NN RULES, C4.5, NN-C4.5, OC1, and CART algorithms. REANN achieved 76.56% 
accuracy although NN-C4.5 was closest second with 76.4% accuracy. REANN is also 
outperformed all other algorithms in terms of average number of conditions in a rule and 
number of rules.  
 Table VIII compares the REANN results of the lenses data with those produced by 
PRISM [35]. Both algorithms achieved 100% accuracy because the lower number of 
examples. REANN extracted 8 rules, while PRISM extracted 9 rules. 

 
Table VI Performance comparison of REANN with other algorithms for 

the breast cancer problem. ‘-’ means not available. 

 
Table VII Performance comparison of REANN with other algorithms for  

the diabetes problem. ‘-’ means not available. 

 
Table VIII Performance comparison of REANN with other algorithm for  

the lenses problem. ‘-’ means not available. 

 

 

 

V. Conclusions 
Although ANNs have been widely used to solve many problems, they are often viewed as 
black boxes. This work is an attempted to open up these black boxes by extracting rules from 
trained ANNs by the proposed rule extraction algorithm REANN. The experimental results 
on three different problems show that REANN can able to explain the functionality of ANN 
by extracting simple and concise rules. The predication accuracy of rules generated by 
REANN for different problems is also encouraging in comparison with exiting works. 

Data Set Feature REANN NN 
RULES 

DT 
RULES 

C4.5 NN-
C4.5 

OC1 CART 

No. of Rules 2 4 7 - - - - 
Avg. No. of 
Conditions 3 3 1.75 - - - - 

 
Breast 
Cancer 

Accuracy % 96.28 96 95.5 95.3 96.1 94.99 94.71 

Data Set Feature REANN NN RULES C4.5 NN-C4.5 OC1 CART 
No. of Rules 2 4 - - - - 
Avg. No. of 
Conditions 2 3 - - - - 

 
 

Diabetes 
Accuracy % 76.56 76.32 70.9 76.4 72.4 72.4 

Data set Feature REANN PRISM 
No. of Rules 8 9 

Avg. No. of Conditions 3 - 

 
 

Lenses 
Accuracy % 100.0 100.0 
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REANN algorithm has some limitations that could be addressed in future work. REANN 
is not tested on classification problems having large number of output classes and regression 
problems. It would be interesting in the future to analyze REANN further on large 
classification and regression problems. The analysis would help to find the strength and 
weakness of REANN for such problems. In addition REANN is not considered the rule 
extraction technique for neuro-fuzzy network. A neuro-fuzzy network can be defined as a 
fuzzy system trained with some algorithm derived from ANNs. The integration of ANNs and 
fuzzy systems aims at the generation of a more robust, efficient and easily interpretable 
system where the advantages of each system are kept and their possible disadvantages are 
removed. Some ANN models such as the multilayer preceptron have been successfully 
applied to the training of neuro-fuzzy networks with back propagation algorithm to adjust the 
membership functions and connection weights of the processing nodes. In future, REANN 
could be applied for extracting rules for neuro-fuzzy network. 
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