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Abstract 
 
Component-related techniques have been considered as the mainstream of software reuse. In this 
paper, our main concern is to develop a component retrieval method to obtain a set of fine-grained 
components aiming at a coarse-grained requirement. Feature space is adopted to uniformly describe 
semantics of components and business requirements, therefore the problem of component retrieval is 
transformed to the problem of feature tree matching. There are seven steps in our method, in which a 
greedy-based approximation algorithm is used to realize performance optimization, i.e., minimizing 
matching cost for the final selected components, under the guarantee of maximizing function 
satisfaction. This method eliminates some deficiencies in traditional component retrieval methods, 
e.g., aiming at atomic function matching only, and ignorance on performance considerations. 
 
Keywords: Component retrieval, Feature tree matching, Matching cost, Reuse 

I. Introduction 
 

As the component repositories scaling up and the reuse practice deepening, querying and 
retrieving components with high efficiency and accuracy to satisfy specific business requirement for 
short software delivery time and high software quality gains more attentions from software 
engineering researchers, and there have been a large quantity of component retrieval algorithms in 
literatures, such as behavior sampling based retrieval [1], signature and specification matching based 
retrieval [2], etc. Many related techniques, e.g., neutral network [3], fuzzy mathematics [4], 
reformulation and spreading activation [5], etc., have been adopted in component retrieval, too. 
Currently the most widely used method is faceted classification scheme based algorithms, with two 
typical strategies, i.e., (1) realizing relaxed matching based on traditional database query techniques 
combining synonyms dictionary and hierarchy structure of term space [6][7]; (2) transforming the 
matching between component specification and requirements into matching problem between 
faceted tree and using tree matching  techniques [8][9] to realize component retrieval [10].  

By practical application and analysis, we consider that there are the following two deficiencies in 
most of these component retrieval algorithms:  

(1) There is an underlying hypothesis in all these methods that, the granularity of requirement 
models are in the same level as the granularity of components in libraries, and cannot be 
decomposed further, i.e., an atomic function. During algorithm execution, the faceted information of 
this atomic function is matched with each component in repository, and a single component (or, a set 
of candidate components with similar functions but different implementations) for the atomic 
requirement is retrieved. 
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However, this hypothesis is not true, i.e., in practice the granularity of a requirement model is 
usually far higher than components, and it cannot be realized by a single component but actually the 
composition of several components. When this situation appears, the requirement model has to be 
decomposed manually, and then a retrieval algorithm is adopted to query a proper component for 
each sub-model one by one. This leads to poor query efficiency. 

(2) These methods primarily pay most of their attentions to function satisfaction with the metrics 
Precision and Recall, while ignore the performance optimization, i.e., in the situation that several 
components could satisfy functional requirements with the same satisfaction, these methods seldom 
consider the problem of how to specify which of them is finally chosen with the optimal 
performance during its reuse. Additionally, because each time only one part of requirement model is 
dealt with isolatedly and relationships between different parts are ignored, each the final selected 
component is only the local but not global optimization. 

To solve these deficiencies, we present a feature tree matching based component retrieval 
algorithm (FTM), in which we emphatically consider the situation that the granularity of requirement 
model is much coarser than components, and transform component retrieval into the matching 
between features of requirement model and components. Function matching is first taken into 
account by obtaining a set of candidate components using tree matching; later, in order to evaluate 
the matching cost to realize performance optimization, some metrics for matching cost are adopted, 
according to which, the optimal components with low matching cost are finally picked out from 
candidate ones. In addition, we address the method of how to generate modification operation lists 
for the final selected components automatically and completely when these components cannot fully 
support the requirement model. 

Rest of this paper is organized as follows. In section II a unified feature-oriented component 
model with its reuse mechanism and reuse styles are put forward as the foundation of our discussion. 
In section III, the 7-phase feature tree matching based component retrieval method with its key 
techniques are fully addressed. Section IV addresses a practical case for performance comparisons 
between our methods and traditional ones. Finally is the conclusion. 

II. Feature-Oriented Business Component Model and its reuse styles 
 

A. A unified feature-oriented business component model 
Currently there exist various component semantics models, e.g., 3C [11], Wright [12], JBCOM 

[13], etc, each of which has their emphasis on describing business semantics contained in 
components. In order for succinct and clear explanations, we simplify and unify these models to get 
a unified feature-oriented component model, i.e., no matter what kind of heterogeneous component 
models, they can be uniformly expressed as the form of feature space, and most of characteristics of 
component models can be realized by utilizing advantages of feature modelling [14], such as: 

(1) Functions implemented by components can be uniformly expressed as features f, and all 
features contained in a component C form the feather space Ω(C) of C. 

(2) Composition relationships between functions. Ω(C) could be represented as a feature tree, in 
which “a function uses another function” can be expressed as “Parent-Child” features, i.e., if f uses g, 
then g∈child(f), f∈parent(g). Similarly there are “Ancestor-Descendant” and “Sibling” relationships 
between features, i.e.,  

( ) ( )
( ) ( )
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(3) Reuse mechanism. A feature f may contain multiple feature items, denoted as dom(f)={τ1, 
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τ2,…, τn}, each of which is a variable implementation of f. If f has only one feature item, i.e., 
|dom(f)|=1, f is called a fixed feature, or the commonality of the component; if f has multiple feature 
items, i.e., |dom(f)|>1, f is called a variable features, or the variability of the component. We have 
VARIATION_PART(C)={f | |dom(f)|>1} and FIXED_PART(C)= {f | |dom(f)|=1}. 

(4) Dependencies between component functions could be expressed as the forms of feature 
dependency (FD), i.e., X→Y means that all features in Y are dependent on features in X. 

(5) Component interfaces. A component may have two types of interfaces: PROVIDING and 
REQUIRED interfaces. A component provides its features to other components or environment via 
its PROVIDING interfaces and accesses features of other components via REQUIRED interfaces. 

Therefore, a component can be denoted as the form of C=<froot, F, FD, PS, RS>, just as illustrated 
in Figure I, where froot, F, FD, PS, RS are the foot feature of C, feature set, feature dependency set, 
PROVIDING interfaces and REQUIRED interfaces, respectively. Figure I shows a simple example. 

C

RS={f31, f32, f34, f4}
REQUIRED interfaces

froot

PROVIDING interfaces
PS={froot, f1, f3}

VARIATION_PART(C)

FIXED_PART(C)

f4 f5f1 f2

f12f11

f3

{f31}→{f33}

{f3}→{f4, f5}

f32f31 f33 f34

 
Figure I. An example of feature-oriented component 

A reusable component is actually an abstract software artifact, which cannot be reused directly, 
and only after each variable features in C has been instantiated as a specific feature item, can C be 
reused. Therefore, the final reused component is in fact an instance of this component. Denote all the 
instances of C as instance(C)={t1, t2,…, tp}. A component instance could be considered as a set 
consisted of one feature item of each feature in C. 

 
B. Classification of component reuse styles 
Component reuse styles can be classified into the following four types, also called four 

modification levels of component reuse, according to the consistency degree between functions that a 
component could provide and the practical requirements: 

(1) Directly Reuse: directly reuse components to construct new requirements without any 
instantiation or modification on these components. 

(2) Reuse after instantiation: reuse an instance of an abstract component after instantiating it, i.e., 
choosing one specific feature item for each variable feature. 

(3) Reuse after modification: an existing component cannot fully satisfy the requirements, so some 
modifications must be done before the component is really reused. The concrete modification means 
include:  

 Add new child features; 
 Modify child features; 
 Add new feature items; 
 Modify feature items; 
 Add new FDs; 
 Delete FDs; 
 Modify FDs. 

(4) No reuse: all existing components cannot completely satisfy requirements, therefore there are 
no reuses and new components must be designed for the requirement. 
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Figure II. Primary process and styles for component reuse 

In conclusion, the process of component reuse can be divided into four phases: component 
selection, modification, instantiation, and reuse, just as shown in Figure II. 

III. Feature Tree Matching based Component Retrieval Method 
 

Problem Description: Specify the feature space Ω(bm) of a requirement business model bm, then 
pick a set of components {Cp1, Cp2, …, Cpm} from repository to ensure that {Cp1, Cp2, …, Cpm} could 
realize bm by modification and composition, i.e., ( ) ( )pi

m
i Cbm Ω⊆Ω =1U , with the optimal performance. 

Easily to know, the final retrieved components may satisfy one of the following cases: 
Case 1: ( ) ( ) 1,1 >Ω=Ω = mCbm pi

m
iU , denoting that bm should be implemented by composition of 

multiple components; 
Case 2: ( ) ( ) 1,1 =Ω=Ω = mCbm pi

m
iU , denoting that bm may be exactly implemented by a single 

component; 
Case 3: ( ) ( ) 1,1 =Ω⊂Ω = mCbm pi

m
iU , denoting that bm can be implemented by part of a component. 

In most situations, because the average granularity of business models is far coarser than that of 
components, therefore the first case appears with the largest probability, and the last case seldom 
appears. In the following, we emphatically consider Case 1 and 2, and ignore Case 3. 

The performance of component selection is reflected by the following principles: 
 Maximize function satisfaction degree: the basic goal; 
 Minimize modifications of components: to decrease modification level/cost; 
 Minimize number of final picked components, i.e., components with coarse granularity first: 

to improve composition efficiency; 
 Minimize number of interactions between picked components: to decrease composition cost; 
 Minimize redundancy: to decrease the scale of the final system. 

By comparisons between these metrics, optimal component can be picked from multiple similar 
candidate ones. 

The basic idea of component retrieval method in this paper is presented as follows. Firstly, 
according to the requirement, construct feature space of requirement model referring to the glossary 
of domain features; then pick each component from repository one by one and use the matching 
algorithm to specify whether this component can be used for the requirement model; if yes, then add 
it into candidate component set and calculate its matching cost, by which all candidate components 
are reordered form low to high. Repeatedly choose the first one in the ordered candidate component 
sequence to fill in the requirement feature space and again calculate the matching cost for the 
remainder candidate components relative to the remainder requirement feature space, until no 
candidate components are left or the requirement feature space has been fulfilled completely, and 
those components used in each filling phase are the final components. For each of picked 
components, produce its modification operation list by comparing with the requirement model. If the 
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requirement feature space has not yet been filled, new components should be designed. All the final 
components (selected from repository plus new designed) are composed together to implement the 
final system. 

The process is shown in Figure III, and in next several sessions we will introduce key concepts 
and algorithms in each phase. 

 
Figure III. Process of component retrieval for a coarse-grained requirement 

 
A. Matching between components and requirement model 
As mentioned above, a business component is represented as the form of feature space. Actually, a 

business model can also be represented as the same form [15], and a component may be considered 
as a sub-space of a business model. Therefore, the problem of choosing components from repository 
to construct requirement model, can be transformed into the problem of matching between feature 
space of components and requirement model, i.e., judging whether a specific component can be used 
as a part of the requirement model. Because feature space may be denoted as the form of feature tree, 
therefore the matching process is considered as the matching between two trees [16]. Here we 
introduce some basic concepts. 

Definition 1 (Common Ancestor Features). If there does not exist ancestor-descendant 
relationship between f1 and f2, then use A(f1, f2) as their common ancestor features, and 
( ) ( ) ( )2121, fancestorfancestorffA ∩= . 
Definition 2 (Relative Closeness). If there does not exist ancestor-descendant relationship 

between f1 and f2, then use R(f1, f2) as the relative closeness between them, and ( ) ( )2121 ,, ffAffR = . 
The more common ancestor features they have, the closer the relationship between them is. 

In the following discussions, suppose T is the feature tree of requirement model bm, Tsub is a 
sub-tree of T, and FC is the feature set of component C. There are five types of tree matching 
between T and FC [10], and we extend and present them below: 

Definition 3 (Embedded Matching, EM). If there is a mapping p from FC to Tsub satisfying 
the following constraints, then p is called an embedded matching from FC to T: 

(1) ( ) ( )212121 ,, fpfpffFff C =⇔=∈∀  
(2) ( )fpf =  
(3) ( ) ( ) ( )( )2121 fpparentfpfparentf =⇔=  
(4) ( ) ( )( )fpchildfchild =  
(5) ( ) ( )( )fpdomfdom ⊇  
(6) CT FDFD ⊆  
Embedded matching is an isomorphism from the feature space of a component to a subspace of 

the requirement model, i.e., this component may fully realize part functions of the requirement 
model. 

Definition 4 (Area Matching, AM). If there is a mapping p from FC to Tsub satisfying the 
following constraints, then p is called an area matching from FC to T: 

(1) ( ) ( )212121 ,, fpfpffFff C =⇔=∈∀  
(2) ( )fpf =  
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(3) ( ) ( ) ( )( )2121 fpparentfpfparentf =⇔=  
(4) ( ) ( )( )fpdomfdom ⊇  
(5) CT FDFD ⊆  
Based on embedded matching, area matching relaxes constrains on mapping, i.e., the component 

may realize part functions of a sub-tree in the requirement model. 
Definition 5 (Containment Matching, CM) If there is a mapping p from FC to Tsub satisfying 

the following constraints, then p is called a containment matching from FC to T: 
(1) ( ) ( )212121 ,, fpfpffFff C =⇔=∈∀  
(2) ( )fpf =  
(3) ( ) ( ) ( )( )2121 fpancestorfpfancestorf =⇔=  
(4) ( ) ( )( )fpdomfdom ⊇  
(5) CT FDFD ⊆  
Definition 6 (Strong Constrained Containment Matching, SCCM) If p is a containment matching 

from FC to T, and satisfies that if there are no ancestor-descendant relationships between f1, f2 and f3, 
and ( ) ( ) ( ) ( )( ) ( ) ( )( )31213121 ,,,, fpfpRfpfpRffRffR =⇔= , then p is called a strong constrained containment 
matching from FC to T. 

Definition 7 (Weak Constrained Containment Matching, WCCM) If p is a containment matching 
from FC to T, and satisfies that if there are no ancestor-descendant relationships between f1, f2 and f3, 
and ( ) ( ) ( ) ( )( ) ( ) ( )( )31213121 ,,,, fpfpRfpfpRffRffR ≤⇔< , then p is called a weak constrained containment 
matching from FC to T. 

f1

f2 f3

f4 f5

f1

f2 f3

f4 f5

f1

f2 f3

f4 f5

f1

f2 f3

f4 f5

f1

f3f4 f5

f1

f5

f4 f3

FC T1 T2

T3 T4 T5

Embedded Matching Area Matching

Strong Constrained
Containment Matching

Weak Constrained
Containment Matching Containment Matching

 
Figure IV. Examples of five types of tree matching [10] 

Relationships between above five types of matching are EM→AM→SCCM→WCCM→CM, 
where the arrow points from closer to more relaxed matching. Constraints on these mapping are 
gradually relaxed from strict parent-child relationship (e.g., EM and AM) to ancestor-descendant 
(e.g., SCCM, WCCM and CM) in vertical, and from the constraints on strict child node number 
equality (e.g., EM and AM) relaxed to constraints on relative closeness equality (e.g., SCCM) until 
relaxed to none (e.g., CM) in horizon. Comparisons between these five types of matching are: the 
final chosen components’ modification degree is more and more great, but the number of new 
designed components are gradually decreased. In practice, we may adopt different mapping 
strategies according to different emphasis.  

Some examples of these mappings are shown in Figure IV. 
Algorithm 1: Candidate components generation, CCG(T, {C1,C2,…,Cn}, { }

nCCC FFF ,...,,
21

). 
Input: Feature tree T of requirement model, a set of components {C1,C2,…,Cn} contained in 

repository and the corresponding feature tree { }
nCCC FFF ,...,,

21
 of each component. 
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Output: a set of candidate components CCT and the matching cost γ(Ci,T) for each candidate 
component. 

do 
{ 

Choose one component Ci from {C1,C2,…,Cn}; 
Search the root feature f of Ci in T; 
if(no found) 

break; 
else { 

Suppose the found feature is p(f), then construct a sub tree Tsub of T containing p(f) and its all 
descendant features descendant(p(f)). 
Judge whether there exists a mapping from 

iCF  to Tsub according to Definition 3~7; 
if(no) 

continue; 
else { 

Calculate the matching cost γ(Ci,T) using Algorithm 2 and 3; 
Add Ci into CCT; 

} 
}  

}while(all the components in {C1,C2,…,Cn} has been dealt with) 
In this algorithm, aiming at each component, we firstly look for its root feature f in the 

requirement model, and if there does not exist, it shows that this component cannot be used to 
construct the model at all. If it does, then try to construct mapping between the component and the 
sub-tree with the root node f. If there exists a mapping (one of the five types), then calculate the 
matching cost using Algorithm 2 and 3 (presented in next two sections) and add it into candidate 
component set. 

 
B. Matching cost for candidate components 
All candidate components obtained by Algorithm 1 have function satisfactions with requirement 

models. However, component selection requires not only function matching, but also the optimal 
performance. Therefore, it is necessary to calculate the cost of each candidate component for 
constructing requirement model. The matching cost γ(C,T) is not a single value, but composed of a 
set of metrics, i.e., 

 Matching ratio mr(C,T), the ratio that the number of features useful to T and contained in C 

relative to the number of features contained in the whole T, denoted as ( ) ( ) ( )
( )bm

bmCTCmr
Ω

Ω∩Ω=, , 

mr(C,T)∈(0,1]. A larger mr(C,T) means that C has greater contributions to the construction of T, and 
when multiple components all could fulfill one part of requirement model, those components with 
coarser granularity is sure to have higher matching ratio than finer ones; 

 Feature redundancy rud(C,T), the ratio that the number of features contained in C but useless 
to T relative to the number of useful features in C, denoted as ( ) ( ) ( )

( ) ( )bmC
bmCTCrud

Ω∩Ω
Ω−Ω

=, , 

rud(C,T)∈[0,+∞). A larger rud(C,T) means that C contains much more redundant and useless 
features to T; 

 Interface dependency itd(C,T), the number of features C requires from other components via 
its REQUIRED interfaces but useless to T, denoted as ( ) ( ) ( )bmCRSTCitd Ω−=, . A larger itd(C,T) 
means that when C is used to construct T, some other components containing features that C requires 
but are useless to T have to be selected along with C. This forces us to query these components again 
from repository or implement them manually, leading to extra works. 

 Coupling cou(C,T), the number of required or providing features contained in C and useful to 
T, denoted as ( ) ( ) ( ) ( ) ( )bmCPSbmCRSTCcou Ω∩+Ω∩=, . A larger cou(C,T) means that when C is used 
to construct T, some coupling connections must be created between C and other selected components 
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via their PROVIDING or REQUIRED interfaces, therefore leads to higher composition cost. 
 Modification cost moc(C,T). Generally speaking, the possibility of obtaining components that 

are fully consistency with requirements is comparatively small. moc(C,T) refers to the cost to modify 
or adjust C to precisely satisfy requirements in T. moc(C,T) can be divided into six parts: 

(1) fdc(C,T): cost for deleting those redundant features in C; 
(2) aic(C,T): cost for adding new feature items which is required in T but not yet contained in C; 
(3) mic(C,T): cost for modifying those feature items contained in C but not fully support the 

required feature items in T; 
(4) adc(C,T): cost for adding new feature dependencies; 
(5) mdc(C,T): cost for modifying feature dependencies; 
(6) ddc(C,T): cost for deleting feature dependencies. 
Therefore, moc(C,T)= fdc(C,T)+aic(C,T)+mic(C,T)+adc(C,T)+mdc(C,T)+ddc(C,T) 
Algorithm 2: Matching cost calculation, MCC(T, C) 
Input: the requirement model T and a candidate component C 
Output: the value of each metrics for matching cost, i.e., mr(C,T), rud(C,T), itd(C,T), cou(C,T) 

and moc(C,T). 
Use those formulas in above definitions to get the results. 

 
C. Priority setting for candidate components 
A component is considered as candidate component only indicates that this component may be 

used in T’s construction, and in reality there usually exists such a situation that, several similar 
components all could realize a specific function, then which one of them is the best? In this section 
we synthesize all the metrics presented in last section, according to which to order candidate 
components, and a candidate component near to the beginning of the sequence is considered to have 
higher priority than those ones near to the tail. 

We consider that the five metrics of matching cost satisfies the following relationships: 

mr(C,T)>> ( ) ( )
( ) ( )TCcou

TCitd
TCrud

TCmoc ,
,
,

, >> , i.e., when we select components, we should first consider 

the degree that a component contributes to the requirement model, i.e., matching ratio; then 
modification cost, i.e., those selected components may participate in the construction process 
without large scale modifications; then consider feature redundancy and interface dependency to 
give up those candidate components with high redundancy and high dependencies on unrelated 
components; finally is the coupling. 

Under the guidance of this principle, we set the corresponding weight for each metrics, i.e., 
βmr=10, βmoc=4, βrud=βitd=2, βcou=1, therefore, the integrated matching cost may be calculated by the 
following equation: 

( ) ( ) ( )( )( )( )

∑

∑

=

=

−−×+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×

= 5

1

5

21
1 ,exp1

,
1exp1

,

i
i

i
ii TCM

TCM
TC

β

ββ
γ  

where Mi(C,T) represents each of the five metrics, with the corresponding weight βi respectively. 1-
exp(-x) is used to normalize the value x into the domain [0,1]. 

Algorithm 3: Calculating priority of each candidate component, CPCC(CCT) 
Input: a set of candidate components CCT and each one’s metrics for matching cost mr(C,T), 

rud(C,T), itd(C,T), cou(C,T) and moc(C,T) 
Output: candidate component sequence OrderedCCT  ordered by matching cost from low to high 
Step 1: Using above formula to calculate the integrated matching cost γ(C,T) for each component C in CCT; 
Step 2: Order CCT according to γ(C,T) and output to OrderedCCT from low to high order. 
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D. Final component selection from candidate component set 
After obtaining the ordered candidate components, the next task is to determine which 

components are finally chosen for the construction of requirement model. Because the problem of 
tree matching has been proved as an NP-complete problem [8], we adopt an approximation 
algorithm based on greedy principle, i.e., in each iteration we pick the component with lowest 
matching cost out and re-calculate the matching cost for the left candidate components, until all the 
candidate components have been dealt with (chosen or discarded) or the requirement model has been 
completely fulfilled. 

Algorithm 4: Final component selection, FCS(T, OrderedCCT) 
Input: the requirement model T, the ordered candidate component sequence OrderedCCT. 
Output: the final chosen components FCT and those unsupported features T′ in T by FCT. 
Let FCT=∅, T′=∅; 
while(1) { 

if(OrderedCCT =∅ or T=∅){ 
T′=T; 
exit; 

} 
if(OrderedCCT ≠∅ and T≠∅){ 

Choose the first component C in OrderedCCT; 
Remove those intersected features (between T and C) from T, i.e., let T=T−T∩Ω(C); 
∀f∈T∩Ω(C), let flag(f)='U' which indicates that f is a useful feature for T; 
Delete C from OrderedCCT and add it to FCT, i.e., OrderedCCT =OrderedCCT −{C}, FCT =FCT ∪{C}; 

} 
Call Algorithm 2 and Algorithm 3 to re-calculate and re-order the matching cost of the remainder candidate 
components in OrderedCCT; 

} 
 

E. Modification operation list generation 
In Algorithm 4 we have specified FCT, i.e., the final selected candidate components, but these 

components cannot be reused directly, and the difference between these components and 
requirement model demands us to modify these components by a series of operations. In addition, 
from Step 2 in Algorithm 4 we can know that if the algorithm exists when OrderedCCT=∅, it shows 
that there are still some features (i.e., features contained in T′ when the algorithm exits) in T that are 
not yet realized by components in FCT, therefore we have to design and implement new components 
for these features. In this section we present the algorithm for obtaining the modification operation 
list of FCT. 

Algorithm 5: Modification operation list generation, MOLG(T, FCT, T′) 
Input: the requirement model T, the final component set FCT and unrealized feature set T′ 
Output: modification operation list ModOPT 
Step 1. Order features in T′ according to levels from high to low in T’s feature space. 
Step 2. Select the first unmatched feature f from T′ and create modification operations according to the following rules: 
 

Rule 1. If child(f)=∅ and parent(f)∉T′, there must ∃C∈FCT which makes parent(f)∈Ω(C), then let Ω(C)=Ω(C)∪{f} 
and create MOP modOP(AS,{f},C); 

Rule 2. If child(f)≠∅, then create a new component C and let Ω(C)=UnD(f), UnD(f)={f}∪{g|g∈descendant(f) 
∩T′∧parent(g)∈UnD(f)}, with an MOP modOP(AC,UnD(f),C); 

Rule 3. If child(f)≠∅ and child(f)∩T′=∅, parent(f)∩T′=∅, then f is discarded. 
 
In Rule 1~3 above, f’s domain (i.e., its feature items) is set to contain the corresponding feature item in requirement 

model T. 
 
Step 3. Delete f from T′, add all the new designed components into FCT, and add all the operations into ModOPT; 
Step 4. Execute Step 2 and 3 recursively until T′=∅. Now all the features in T have been matched; 
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Step 5. Take one feature f from T (suppose that f has the required feature item τ and f is supported by component C in 
FCT), and check whether τ∈dom(f) is true in C. If τ∉dom(f) but there exist τ′∈dom(f) and τ may be obtained by 
modifying τ′, then add MOP modOP(MI, τ,τ′, f, C) in ModOPT, denoting to modify f’s feature item τ′ to τ. If there does 
not exist such a τ′, then add MOP modOP(AI, τ, f, C) to ModOPT, denoting to add a new feature item τ for f in C. Repeat 
this step until all the features in T have been checked. 

 
Step 6. Take one feature dependency fd from T (suppose fd has the form X→Y) and check whether there exists the 

corresponding feature dependency in feature spaces of components in FCT. Similar with the strategies in Step 5, if there 
does not exist, then add modOP(AD, fd, X, Y) to ModOPT, denoting to add a new feature dependency fd between feature 
sets X and Y in components FCT; if there is a similar feature dependency fd′, then add modOP(AD, fd, fd′, X, Y) to 
ModOPT, denoting to modify fd′ to fd. Repeat this step until all the feature dependencies in T have been checked. 

 
Step 7. Check each feature dependency fd contained in components in FCT to see whether fd appears in T. If no, then 

add the MOP modOP(DD, fd, X, Y) in ModOPT, denoting to delete this useless feature dependency. 
 
Step 8. The algorithm ends, and now ModOPT contains all the MOPs, i.e., constructing what new components and 

how to modify those selected components. Do the modifications on components in FCT according to ModOPT. 
 

F. Component composition 
The last step is component composition, i.e., composing all the components in FCT via interface 

connection to form the requirement model T. 
Algorithm 6: Component Composition, CC(T, FCT) 
Input: requirement model T and the final chosen components FCT 
Output: the composition of these components 
Step 1. For each component C in FCT, check C’s each REQUIRED interface, if there is a feature f that are still not yet 

satisfied from other components’ PROVIDING interfaces, then use Algorithm 1~4 to choose a corresponding component 
C′ which may provide f to C. Repeat executing this step until there are no such features and FCT does not change any 
longer. 

Step 2. Create interface connections between PROVIDING and REQUIRED interfaces of different components in 
FCT. 

 

IV. Comparisons with other methods 
 

In this section we present a practical case. We adopted some segments of Production Planning 
System (PPS) in a component-based Enterprise Resource Planning (ERP) as requirement models, 
and use our feature tree matching based method (FTM) and GenetricMatching algorithm (GM, 
which is a faceted scheme based retrieval algorithm, we use it here as a representative of traditional 
retrieval methods in literatures) in [10] to retrieve components from our ERP component repository 
(containing 176 components in PPS domain). 

In five test cases, the granularity of the requirement model, i.e., number of leaf features (denoted 
as nf), grows gradually from 1, 2, 6, 11 to 19. We adopted Strong Constraint Containment Matching 
(SCCM) strategy in these tests. Figure V~VIII shows comparisons between GM and FTM on query 
times from component repository, total execution time, number of final selected components, and 
total matching cost of the final selected components, respectively. 

From these figures we can draw the following conclusions: 
(1) When the scale requirement model is growing coarser, GM has to be repeatedly executed once 

for each feature to be matched, therefore the query times equals to nf and the execution time has 
linear relationship with nf. For FTM, we only need to execute once to query a set of candidate 
components from repository no matter how larger nf is, and most execution time is consumed by 
matching cost evaluation and final component selection from candidate set. 
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(2) When nf  is small (i.e., only 1 feature), the execution time of FTM is worse than GM. This is 
because in this situation, some factors, e.g., interface redundancy, feature redundancy, coupling, etc, 
are actually not required to be considered. 

(3) GM did not consider the relationships between components when multiple components instead 
of one required to be retrieved from repository, therefore it cannot avoid high redundancy and 
coupling, which then lead to steeply increasing total matching cost with nf. Contrarily, the matching 
cost is regarded as an important goal in our FTM method and is globally optimized. 

(4) GM only retrieves components with the same granularity as atomic features, therefore, the 
number of final retrieved components is also linearly increasing with nf; however in FTM, because it 
follows the principle of “components with coarser granularity have higher priorities”, the number of 
selected components is quite smaller, which will lead to better composition efficiency. 

V. Conclusions 
 

Traditional component retrieval algorithms, e.g., faceted based methods, usually restrict the scale 
of requirement models into the level of reusable component, which cannot deal with coarser-grained 
requirements; in addition, these methods focus mainly on function satisfaction, but ignore 
optimization on some performance metrics, e.g., final components’ modification degree, redundancy, 
composition cost, etc. 

The feature tree based component retrieval methods presented in this paper eliminates these 
deficiencies. The whole process is divided into seven phase, in which by five types of matching 
between feature trees of requirement model and components, we firstly get a set of candidate 
components for the function satisfaction; then according to a set of performance metrics, matching 
cost for each candidate components is evaluated; later, a greedy-based approximation algorithm is 
adopted to pick out those candidate components with minimum matching cost iteratively. 

Practical test cases show that, with the scale of the requirement model growing, our method has 
better performance than traditional methods in literatures. 
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