
International Journal of Information Technology Vol. 12 No. 8 2006

73

An Effective Approach for Distributed Meeting Scheduler

M. Sugumaran1, P. Narayanasamy2, and K. S. Easwarakumar2

1Department of Computer Science and Engineering,
Pondicherry Engineering College

Pondicherry -605 014, INDIA.
forsugu@yahoo.com

2Department of Computer Science and Engineering,
Anna University

Chennai - 600 025, INDIA.
sam@annauniv.edu, easwara@cs.annauniv.edu

Abstract

Meeting scheduling is generally considered as one of the most common activities that takes place in
organizations. It is a distributed, time-consuming, iterative, and also a tedious task. Meeting
scheduling is an example of a resource allocation problem. The principal resource considered for
meeting scheduling is the persons’ time. The resource requirement in a distributed environment is
dynamic in nature and so the allocation of resources is difficult due to the lack of knowledge of the
whole system. In this paper, three concepts such as equivalence classes of persons for delegation
instead of a single person, A*-Algorithm as local search for finding common free slots for people,
and multi-stage negotiation protocol for agent coordination are combined into a single approach and
implemented to schedule both local and global meetings. This new approach aims a practical
scheduler to schedule both local and global meetings, to have efficient schedule and flexibility to
meet more meeting requests.

Keyword: Multi-Agent, Meeting Scheduling, A*-Algorithm, Artificial Intelligence, Negotiation
Protocol.

I. Introduction

The basic problem in meeting scheduling is to find a common free time for all participants of a
particular meeting. This problem becomes more complicated when there are various meetings to be
scheduled concurrently with several constraints. Meeting scheduling is a distributed task, which is
time-consuming, iterative, and also tedious. It can take place between two persons, or among
several persons of the same organization or different organizations. Within organizations, substitute
of persons for delegates become common as and when changes of assignments take place or due to
some important assignments to be carried out. Meeting scheduling is the problem where agents can
be used intelligently on behalf of users. A meeting scheduler is a system, which determines the date,
time and location of a meeting for the associated participants with their constraints, and also
manages various updates. Because of the inherent tedious, iterative and time-consuming features,
meeting scheduling is considered for automation. The benefits of automated meeting schedulers are
not only save time, effort on the part of human, but also gives more efficient schedules.

mailto:forsugu@yahoo.com
mailto:sam@annauniv.edu
mailto:easwara@cs.annauniv.edu

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

74

 A number of scheduling problems such as multiprocessor scheduling, job-shop scheduling
and timetable allocation have been investigated extensively in [1]. These problems are to construct a
schedule for the given requirements. For the meeting scheduling problems, it is much more required
to update the schedule whenever there is a change in the schedule or when a new meeting is to be
scheduled. There are several commercial products available, but they are of limited functionalities.
That is, they are just computational calendars with some special features like availability checkers,
meeting reminders, etc. A review of several products can be found in [2]. None of these products is
a truly autonomous agent capable of communicating and negotiating with other agents in order to
schedule meetings in a distributed way taking into account of user’s preferences and their calendar
availability. A good work in distributed meeting scheduling [3-7] has been focused on solving
meeting scheduling using a central host agent capable of communicating with all other agents using
a negotiation based contracts [8]. The main purpose of the agent who hosts the meeting is to
coordinate the search for a feasible schedule taking into consideration of attendees’ calendars, but
the user preferences are not taken into account. The work presented in [9] is an economic approach
for distributed meeting scheduling. They used three centralized monetary based meeting scheduling
systems and analyzed the tradeoffs between the mechanism complexity and information preferences
and introduced the Clarke Tax Mechanism as a method for removing manipulability from them.
Another work in [10] is based on modeling, communication constraints and preferences among
agents. The agents exhibit intelligence that they are capable of negotiating and relaxing their
constraints so as to reach an agreement on schedules with joint utility. Further agents also can react
and revise the schedule due to dynamic changes. The scheduler presented in [11] considered
equivalence classes of persons and used heuristics with common pruning technique to find the
optimum schedule, is a centralized approach.

Crawford and Veloso [20] stated that there are a number of problems in the Microsoft
Outlook approach. Microsoft Outlook largely ignores the negotiation step and issues of uncertainty
about other users’ calendars. The scheduling features in Microsoft Outlook rely largely on an open
calendar systems (where users are required to make their calendars publicly viewable within the
organization). A major limitation of Microsoft Outlook is that it will not consider moving existing
meetings on behalf of the user. In many cases, it may only be possible to schedule very large
meetings when many users move smaller meetings.

Most of the processing of Distributed Meeting Scheduler (DMS) takes place in the local
schedulers. Sugihara et al (1989) presented a heuristic algorithm for Timetable Rearrangement (TR)
in which an exhaustive search algorithm is used with common pruning techniques. The time
complexity of their heuristic algorithm is exponential in the worst case. Since TR is NP-hard and
Sugihara’s approach time complexity is exponential, we use A*-Algorithm with heuristic functions
to reduce the processing time. Further, the processing which takes place in the local schedulers may
affect globally. Since we are using equivalence classes of persons for delegation to provide
flexibility in the local schedulers, this will certainly reduce the number of messages sent and number
of iterations executed.

In this paper, a combined approach comprises of equivalence classes of persons, A*-
Algorithm, and multi-stage negotiation protocol is proposed. A group of persons of any category is
considered equivalent. That is, the persons in a group are treated equivalent for any meeting or task.
This makes the organizations to have flexibility in scheduling meetings and service more requests.
We combined the A*-Algorithm approach [15] and multi-stage negotiation protocol for agent
coordination to schedule meetings in a distributed paradigm. A* facilitates the search process of the
local scheduler to provide efficient schedules.

International Journal of Information Technology Vol. 12 No. 8 2006

75

II. The Multi-Agent Meeting Scheduler
The basic model of the distributed meeting scheduler consists of different organizations connected
by a communication network. Each organization (node) is assigned a set of agents, one agent per
person. In an organization, there is one agent called scheduling agent (SA), and the other agents are
called user agents (UAs), shown in Figure 1. These agents act and negotiate with others on behalf
of their associated users and their organizations autonomously. The SA acts on behalf the hosts of
the meetings to schedule local meetings and also on behalf of its organization for global meetings.
Local meetings are conducted within an organization, whereas global meetings are conducted
between two or more organizations.

 The user who proposes a meeting is called initiator and the corresponding agent is called
host. The users who are invited to attend for that meeting are called participants and their
corresponding agents are called invitees. The invitees have been divided into two groups as
executives and regular invitees. This division depends on the problem domain. That is, for some
problems, the invitees are divided into executives and invitees; and for some other problems there is
only invitees. The executives are not generally considered for change of persons because of their
unique features, whereas the regular invitees are considered for change of persons for most of the
applications. In case, for a particular invitee no substitute is required that also could be represented
in the proposals to invitees. At any point of time an agent may act as a host in a meeting, an invitee
in some other meeting or an executive yet some other meeting.

 A meeting schedule consists of a set of n meetings scheduled among a set of m persons. A
schedule of n meetings is represented as an 11-tuple:

S(n) = (P, Mn, <, h, t, p, w, a, d, τ, ρ),
where P = {p1, p2, , pm} is a set of m persons spread across the network; Mn = {m1, m2,…, mn} is a
set of n meetings to be scheduled among these m persons of P; < is a partial order on Mn; h(mi) is
the host of the meeting mi; t(mi) is the time duration of meeting mi; p(mi) is a set of groups of
persons taken from P such that exactly one person in each group is required to attend the meeting mi;
w(mi) is a set of time instances at which meeting mi can start for local meeting, whereas it represents
the weight (or priority) of the meeting mi for global meeting; a(mi) is the arrival time of meeting
request mi or the time at which h(mi) becomes aware of the need to schedule mi; d(mi) is the deadline
by which the h(mi) needs to schedule the meeting mi; τ(mi) is the start time of meeting mi, i.e., at
which the meeting mi is finally scheduled; and ρ(mi) is the set of attendants of meeting mi.

The parameters P, Mn, <, h, t, p, w, τ, and ρ are used in both local and global meetings,
whereas a and d used for only global meetings. The local and global meeting requests are
identified by referring the content of w. If the content of w is a single item it is a global meeting,
or if it is a set of items the request is a local meeting.

Figure 9. Global meetings
Figure 1. The Meeting scheduler model

(b) SAs are connected by a network

UA

UA

SA

(a) Agents at a single node

SA

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

76

 Further the schedule satisfies the following five conditions for both local and global
meetings. Let mi and mj be any two meetings.

 C1: No person attends more than one meeting simultaneously.
 C2: If mi < mj, then mj starts after mi ends.
 C3: For each group g ∈ p(mi), exactly one person can attend the meeting mi.

 C4: mi can start at one of the time instances in w(mi) for local, or in (a(mi), d(mi)) for global
meeting.

 C5: mi should be scheduled within the deadline d(mi).
 C6: The time interval of a meeting is contiguous and cannot be split across days.

In a schedule S(n), the parameters <, t, p h, a, d and w represent the input requirements of
meetings, whereas τ and ρ represent a schedule of meetings that satisfies all the requirements. The
assignment of rooms to meetings can easily be incorporated into the schedule by considering rooms
as pseudo-persons. For example, selection of a room or venue for mi from rooms R1, R2,…, Rk is
represented by considering a group of corresponding pseudo-persons in p(mi) [11].

 The architecture of our agent is very similar to the systems used in [12, 13, 18]. Each agent
has six main components: user interface, user preference, negotiation, location manger, and message
constructor/decoder and calendar manager. Each component does some specific tasks, whereas the
negotiation module plays the important role. It gathers information from all other five modules and
computes the possible meeting schedule using negotiation protocol.

 All participants of a particular meeting may not have a common free time. So, whenever
scheduling a meeting among a group of persons, some kind of coordination is required. Negotiation
is a key coordination technique used to address several DAI (Distributed Artificial Intelligence)
issues [14]. A significant part of the coordination work is under negotiation. Negotiation is the
communication process of a group of agents in order to reach a mutually accepted agreement on
some matter. We use a multi-stage negotiation protocol, based on the contract net protocol [8], for
agents’ negotiation.

III. A*-Algorithm for the Local Meeting Scheduler
A*-Algorithm, is a very useful algorithm, provides a best-first search through a graph or tree
representing a problem space. We use a tree for representing the problem space, called search tree.
Each node in the search tree represents the description of a state of the problem. The set of operators
used in the A* describes a way of changing state description. Each node contains, in addition to a
description of the problem state it represents, an indication of how promising it is, a parent link that
points back to the node from which it came, a list of nodes that were generated from it. The parent
link is used to find the path to the goal node once the goal is found. We use two data structures in
the A*-Algorithm, called open-heap and node-set. Open heap having nodes that have been
generated but not yet been expanded. A node of the open-heap is mainly used to keep the node’s
heuristic value and its node-id. The open-heap is a min/max heap in which min/max heuristic value
node is at the root, so that it always gets expanded before all other nodes. Node-set having nodes
that have already been generated. It is mainly used to check whether a node is already in the search
tree or not. The main purpose of using this set is to reduce the complexity of the algorithm in search
of nodes. Whenever a new node is generated in the search tree, it is verified with the node-set. If it
is not available in the node-set, heuristic function is applied to it. Then its heuristic value with node-
id is inserted into the heap and the set.

International Journal of Information Technology Vol. 12 No. 8 2006

77

 In this model, six operations are used such as SL (Shift Left), SR (Shift Right), CP (Change
of Person), XP (eXchange of Person) [15], CSL (Continuous SL) and CSR (Continuous SR) to
rearrange the scheduled meetings such that a new meeting request could be fixed in a particular
duration. Based on these operations, heuristic value is determined and with this value the node is
inserted into the open heap. This heuristic value will be the deciding factor for selecting the next
node in the search tree expansion. We define a heuristic function that counts the number of persons
available (or not available) of those slots to be considered for the new meeting in a particular
duration [15]. The heuristic function enables the algorithm to search the more promising path first
by choosing the node or branch using the open-heap. We call this heuristic function f ', is an
approximation to a function f that gives the true evaluation of the node. For many applications, the
function f ' is defined as

f '(n) = g(n) + h'(n)
where the function g(n) is a measure of the actual cost of getting from the initial state to the current
node n and h'(n) is an estimate of the additional cost of getting the goal node from the current node n
[16, 17, 19]. h'(n) is the place where knowledge about the problem domain is to be exploited. The
combined function f '(n) represents an estimate of the cost of getting from the initial node to a goal
node along the path that generated the current node n.

The actual operation of the algorithm is very simple. It proceeds in steps, expanding one
node at each step, until it generates a node that corresponds to a goal state. At each step, it selects
the most promising node that has been generated but not expanded, called current-node. It
generates the successors of the current-node and checks if any of them have been generated before.
For the new nodes, it applies the heuristic functions then adds them to the open-heap and the node-
set. By doing this check, it is guaranteed that each node appears only once in the tree. Then the next
step begins. This process continues till it gets the goal node, or the open-heap is empty. The six
operations used in the A*-Algorithm, shown in Figure 2, is briefly given below.

Let mn+1 be the current meeting to be scheduled and p(mn+1) = {g1, g2, …, gr} be the set of
groups of persons to be considered for scheduling mn+1. Let ρ(mn+1) be the set of attendees for mn+1,
chosen from p(mn+1) one person per group. Further, let (x, x + t(mn+1)) be the time interval to be
considered for scheduling the meeting mn+1. These assumptions are used in the following six
operations.

SL: Shifts meetings horizontally to the left. For each person j ∈ ρ(mn+1) and each meeting mi ∈ (x, x
+ t(mn+1)), if there is a time interval (s, s + t(mi)) to the left and disjoint with (x, x + t(mn+1)) such that
s ∈ w(mi) and no person in ρ(mi) attends any meeting during (s, s + t(mi)), then change the start time
of mi to s.

SR: Shifts meetings horizontally to the right. For each person j ∈ ρ(mn+1) and each meeting mi ∈ (x,
x + t(mn+1)), if there is a time interval (s, s + t(mi)) to the right and disjoint with (x, x + t(mn+1)) such
that s ∈ w(mi) and no person in ρ(mi) attends any meeting during (s, s + t(mi)), then change the start
time of mi to s.

Figure 2. Operations used in the A*

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

78

CP: Changes a person vertically within a group. This operation makes free slots for the persons
ρ(mn+1) in (x, x + t(mn+1)) within groups. For each meeting mi ∈ (x, x + t(mn+1)), if no person in ρ(mi)
except some person j∈ρ(mi) attends mi and if there is a person k in {a | a, j ∈ gr and gr ∈ p(mi), k j}
who does not attend any meeting during (τ(mi), τ(mi) + t(mi)), then change the attendant j of mi to k.

XP: Exchanges persons within a group on different meetings. This makes free slots for the current
meeting by making changes diagonally. For any two persons j, k ∈ gp in p(mi) and j, k ∈ gq in p(mn)
such that j ∈ ρ(mi) and k ∈ ρ(mn), then swap j and k between ρ(mi) and ρ(mn) if j is free in (x, x +
t(mn)) and k is free in (x, x + t(mi)).

CSL: Shifts the meetings in (x, x + t(mn+1)) as well as the meetings to the left of this interval further
to the left in order so that each person j ∈ ρ(mn+1) is free in (x, x + t(mn+1)).

CSR: Shifts the meetings in (x, x + t(mn+1)) as well as the meetings to the right of this interval further
to the right in order so that each person j ∈ ρ(mn+1) is free in (x, x + t(mn+1)).

The A*-Algorithm using the above operations in the local meeting scheduler is given below.

 Algorithm1

Schedule(T(n), I(mn+1))

// T(n) – schedule of n meetings.
// I(mn+1) – inputs of the requested meeting, mn+1.
// start-time(mn+1) – a start time at which mn+1 could be scheduled.
// deadline(mn+1) – before which mn+1 should be scheduled.
// p(mn+1) – a set of group of persons considered for (mn+1).

1. Initialize the open-heap and the node-set.
2. Create a search tree, G, starting with the root node s of the schedule T(n).
3. Insert s into the open-heap and the node-set.
4. While(answer is not found)
5. Begin
6. If(open-heap is empty)
7. Print the error message and exit.
8. n ← delete the root of the open-heap.
9. If(n is a goal node)
10. Schedule the meeting mn+1 and exit.
11. Generate a set M of successors which are satisfying the distance

factor and are not in the node-set by applying the operations: CP,
XP, SL, SR, CSL, and CSR on n; insert into the node-set.

12. For each node in M, apply the heuristic function and establish a
pointer to n.

13. Insert the nodes of M into the open-heap according to their
heuristic values.

14. End
15. End Schedule

International Journal of Information Technology Vol. 12 No. 8 2006

79

Theorem 1: If the operations CP, XP, SL, SR, CSL, and CSR are applied to Algorithm1, it finds an
optimal solution if any exists.

Proof:
Let us consider Figure 2. The operations CP, XP, SL, SR, CSL and CSR are used to enumerate all
possible states for the current meeting, mn+1. As the algorithm starts with the root node and the
operations are applied in each level of the search tree, it generates a finite number of nodes on each
level. The heap always has the minimum value or the most probable node at the root for expansion
and removed each time of expansion.

Case (i): If slots are free for ρ(mn+1) in (x, x + t(mn+1)), Algorithm1 finds the solution and that is the
optimal one.

Case (ii): If slots are not free for ρ(mn+1) in (x, x + t(mn+1)), then the six operations CP, XP, SL, SR,
CSL and CSR are applied to enumerate all possible states for the current meeting, mn+1, from the
current node.

The algorithm starts with the root node and the operations are applied at each level of the
search tree. As the operations correctly capture all possible states from the root and the nodes are
stored without duplicates into the heap, it generates a finite number of nodes on each level. Since
the heap is used to get the most probable node for expansion and removed, it leads an optimal
solution in a fewer levels of expansion, otherwise ends up with the empty heap.

Theorem 2. The heuristic function used in the Algorithm1 gives the optimal solution.

Proof:
Let L(n) be the minimum cost incurred on applying the operations to arrive n from the root. When
this is proved, the optimality of the algorithm follows since when z (solution node) is chosen at line
8, L(z) will give the minimum cost operations required to arrive z from the root.

Basis Step (i = 1): The first time we arrive at line 8, the root is chosen. Since L(root) is zero, L(root)
is the minimum cost operations from root to root.
Inductive Step: Assume that for all k < i, the kth time we arrive at line 8, L(n) is the minimum cost
operations from root to n.

Suppose that we are at line 8 for the ith time and we remove n from the top of the heap with
minimum value L(n).

First we show that if there is a sequence of operations applied from the root to a node w
whose cost is less than L(n), then w is not in the heap (that is, w was previously removed from the
heap and expanded at line 8).

Suppose that, by contradiction, w is in the heap. Let P be a minimum path from the root to
w, x be the node nearest to the root on P that is in the heap, and u be the predecessor of x on P. Then
u is not in the heap, so u was chosen at line 8 during a previous iteration in the while loop. By the
inductive assumption, L(u) is the minimum cost operations from the root to u.

Now L(x) L(u) + h(u, x), where h(u, x) is the heuristic value from u to x
 cost of P
 < L(n).

But this inequality shows that n is not the node in the heap with minimum L(n). This
contradiction completes the proof that if there is a path from the root to a node w whose cost is less
than L(n), then w is not in the heap.

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

80

A. Negotiation Protocol for Global Meeting Scheduler
A negotiation strategy refers to a decision function used by an agent to make a proposal or counter
proposal. Different negotiation strategies have been used to solve negotiable problems. But the
problem of choosing the correct negotiation strategy has significant impact on convergence. The
negotiation protocol used here is based on [8] and works in multi-stages. Depending upon the
problem requirement, the number of stages may vary (two or three). The negotiation protocol
presented here uses three phases, shown in Figure 3. The host negotiates with executives in the first
phase, negotiates with regular invitees in the second phase, and then it takes decision about
confirmation or cancellation of scheduling the current meeting in the third phase.

Agents communicate through messages by exchanging information at higher levels of abstraction so
as to have less communication cost. Since the selection of a room or venue for mi from R1, R2, …, Rk

is represented by considering a group of corresponding pseudo-persons in p(mi) [11], this may be
considered along with executives or before executives for negotiation. In general, on receiving a
request/proposal, the host, executive and invitee searches the user calendar for free slots. If enough
free slots are not available, it applies the A*-Algorithm to have reschedule of meetings. Based on
this result, called tentative schedule, it chooses some (three, by default) slots and blocks, then sends
them as proposals or bids. After fixing the current request, the tentative schedule of previous
meetings is made permanent. The negotiation protocol is given below in three phases.

Phase 1 - Proposals to the Executives
In this first phase, the host waits for request from its user. After receiving a request, it consults its’
user calendar with user preferences for availability then sends proposals to the executives. The
proposals consist of a set of <Date, Hour> pairs with duration of a particular meeting. Normally, the
agents use three proposals at a time. On receiving the proposals, the executives process the
proposals and then send their bids to the host. The host collects the bids from the executives then
decides whether to go for the next-phase, negotiation or new proposals.

• Host receives Request and sends Proposals to Executives: When the host receives a
request from its user to schedule a meeting, it looks at the user calendar with user
preferences for free time slots to schedule the current meeting request. If it finds any free
time slots, prepare the proposals and sends them to the executives, otherwise applies A*-
Algorithm to find if there is any possibility to schedule the meeting request. If free slots
are there, based on the importance of the meeting request, the host chooses some time-slots,
blocks them in its calendar and proposes them through messages to the executives.

- Host - Executive - Invitee
- Proposal from Host to Executives/Invitees
- Bids from Executives/Invitees to Host
- Confirmation from Host to Executives/Invitees
- ACK from Executives/Invitees to Host
- Negotiation/Re-proposal

Figure 3. Multi-stage negotiation protocol

International Journal of Information Technology Vol. 12 No. 8 2006

81

• Executives receive Proposals and send Bids: Executives receive the proposals then look
at their users’ calendars with user preferences. The executives decide based on the priority
of the meeting, instruction from the host and its own opinion, it may apply A*-Algorithm
for the proposals. Then they send their bids to the host whether the proposed time slots are
acceptable and also its availability of other free slots in the neighborhood of the proposals.
If an executive sends a “yes” bid, the corresponding time slot is blocked in the executive’s
calendar. If there are any time slots already blocked for the same meeting, they are
unblocked.

After collecting the bids from the executives, the host decides whether to go for second phase,
negotiation with those executives who are not available for the proposals or new proposals.

Phase II - Proposals to the Invitees
In the second phase, the host sends the proposals to the invitees based on the result of the bids
received from the executives and waits for the bids from the invitees. On receiving the proposals,
the invitees process the proposals and then send their bids to the host. After collecting the bids from
the invitees, the host decides whether to go for third phase, negotiation with those invitees not
available for the proposals or new proposals.

• Host sends Proposals to Invitees: The host sends the proposals based on the result of the
bids received from the executives to all invitees and waits for the bids from them.

• Invitees Receive Proposals and send Bids: The invitees receive the proposals and decide
based on the priority of the meeting, instructions from the host and its own opinion, it may
apply A*-Algorithm for the proposals. Then they send their bids to the host whether the
proposed time slots are acceptable and also its availability of other free slots in the
neighborhood of the proposals. If an invitee sends a “yes” bid, the corresponding time slot
is blocked in the invitee’s calendar. If there are any time slots already blocked for the same
meeting, they are unblocked.

• Host receives Bids from the Invitees and takes decision: The host collects and evaluates
the bids received from the regular invitees. If there are any common free slots accepted by
all, the host picks up the earliest slot and unblocks other slots, then enter into the next
phase. If there are no common free time slots acceptable to all, it negotiates and try to get
the time-slots free with those invitees who are all sent “no” bids, if not, the host sends
cancellation message to all executives and invitees and starts new proposals with the
available information obtained so far from the executives and invitees.

Phase III - Confirmation/Cancellation to Executives/Invitees
In this phase, the host sends Confirmation/Cancellation of the current meeting to all executives as
well as invitees. On receiving the Confirmation/Cancellation message from the host, the executives
and invitees send one of ACK/OK/Cancel reply message to the host. Then the host performs the
appropriate action.

• Host sends Confirmation/Cancellation message to Executives/Invitees: The host sends
Confirmation or Cancellation message, based on the decision taken at the end of the second
phase, to all executives and invitees. If it is a Cancellation message, the host unblocks the
slots already blocked for this meeting, sends cancellation message to all executives and
invitees then waits for the OK reply message from the executives and invitees to complete
the transaction. Otherwise, it sends a Confirmation message to all executives and invitees
and waits for the ACK message from them.

• Executives/Invitees send ACK/OK/Cancel message to the Host: On receiving a
confirmation message from the host, the executives and invitees check whether the time
slot specified in the confirmation is still available for the current meeting. If it is available,
they reserve the time slot, record the scheduling of the meeting, and then send the ACK to

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

82

the host. If any of the executives or invitees find that the already blocked time slot is not
available during the mean time, it applies the A* algorithm to find any user is free in that
particular group for the promised slot, if possible then it reserves that promised time slot
for the current meeting and sends an ACK message, otherwise sends a Cancel message to
the host. If it is a Cancellation message it unblocks the blocked slots for the current
meeting and send OK message.

• Host waits for ACK/OK/Cancel message: If the host receives ACK from all executives
and invitees then schedule the meeting in that particular slot. If at least one of them is a
Cancel message, it negotiates to get the time slot free with those executives/invitees who all
sent Cancel message, otherwise it unblocks the blocked time slots for the current meeting,
then it may enter the first phase for new proposals with the available information obtained
so far, or inform the user that the current meeting request is unable to schedule.

IV. Implementation

The DMS was implemented in Linux environment (Red Hat Linux 8.0) using the network simulator
(ns2.1b8a). The OTcl interface for the ns2 offers creation of nodes of the network, the
communication links between the nodes, and placing the agents on the nodes, etc. The type of traffic
and other inner details are supported by the ns2. The agents located on different organizations
communicate and negotiate with each other on behalf of their users over the network.
 The different states of an agent of the global meeting scheduler are given in Figure 4. All
agents use this state transition diagram. At any point of time, the agents may be in any one of the
states. We use this state transition diagram to describe the coordination among the host, executives
and invitees during the scheduling process. There are one or more transitions from each state.

Figure 4. State transition diagram of an agent

 7. Waits for ACKs

1. Initial State (Wait)

 4. Bids-2 from Inv. 2. Wait for Bids-1

 6. Waits for Bids-2

 3. Bids-1 from Exe.

9. Schedule Meeting

8. CANCEL

 5. Wait for Confirm

International Journal of Information Technology Vol. 12 No. 8 2006

83

Usually the transitions are from one state to other states, sometimes to the same state. The states are
represented by rectangles and transitions by arrows. For each transition there is an input and output
message with <in>/<out> format, where <in> represents a condition or an input message of an
event and <out> represents an output message. A transition takes place when an event occurs, a
certain condition is satisfied, or an input message is received, causes the agent to process and sends
an output message. The symbol “-” is used to indicate that there is no input or output message.

All agents are initially in state 1, called the waiting state. When an agent receives a request
from its user to organize a meeting, that agent becomes the host of that meeting. Then the
negotiation may proceed with three or two phases, according to the inputs given by the user. The
paths taken by the host, executives and invitees are given in Table 1. All agents run simultaneously
using the same agent code. The implementation of the negotiation protocol with three phases is
shown in Figure 4.

Table 1. Path taken by host, executives and invitees

In the first phase, all agents are initially in the waiting state 1. When an agent receives a
meeting request from its user it becomes the host for that meeting, say mn+1. The host prepares and
sends proposal-1 to the agents, mentioned as executives by the user, enters and waits in state 2 for
bids-1 from them. The agents who receive the proposal-1 become the executives of the meeting
mn+1, reach state 3, prepare bids-1 and send to the host then reach state 5 and wait for confirmation or
cancellation message from the host. The host receives the bids-1 from all the executives, processes
them and decides one of the following:

• Negotiates with those executives who are not available for the proposal-1.
• Enters the state 1 for new proposal if the executives are not having the same free slots, or

a cancel message to all executives, enters state 8 to close the transaction for this meeting
and then enters the state 1.

• Enters the second phase if all executives have same free slots.

 In the second phase, the host prepares proposal-2 and sends to the agents, mentioned by the
user as the invitees, then enters and waits in state 6 for bids-2 from them. The agents in the state 1
who receive the proposal-2 become the invitees of the meeting mn+1, enter state 4. The invitees
process the proposal-2 and send their bids-2 to the host, enter the state 5 and wait for the
conformation or cancellation message. After collecting the bids-2 from the invitees, the host decides
one of the following:

• Negotiates with those invitees who are not available for the proposal-2.
• Enters state 1 for new proposals if the invitees are not having free slots, or a cancellation

message to all the executives and invitees.
• Confirmation message to all the participants (both executives and invitees).

In the third phase, the host sends Conformation/Cancellation message to all participants (both
executives and invitees) and enters state 7/8 respectively. For this, the participants may send one of
ACK/OK/Cancel reply messages to the host.

No. of Phases Host Executives Invitees

 3 {1, 2, 6, 7, 9, 1} {1, 3, 5, 9, 1} {1, 4, 5, 9, 1}

 2 {1, 6, 7, 9, 1} {1, 4, 5, 9, 1}

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

84

• If it is a Cancellation message, the executives and invitees reply with OK message, enter
the state 8 and do all the relevant undo operations then enter the state 1.

• If it is a Confirmation message, the executives and invitees may reply with ACK/Cancel
reply message, enter state 9/8 and schedule the current meeting/undo the operations, close
the transaction and then enter the state 1.

The host receives one of OK/Cancel/ACK reply messages from the participants.
• If the reply message is Cancel, the host negotiates with those executives or invitees for

the confirmation slots.
• If it is ACK/OK reply message, the host enters the state 9 and schedules the

meeting/undo the relevant operations then enters the state 1.

V. Results

This section contains the experiments and results of the DMS. Three kinds of experiments were
performed to study the effects of DMS. The first sets of experiments were performed where global
meetings are scheduled with different densities of local schedules. The second experiments were
performed when the duration of meetings are varied. The last sets of experiments were performed
where the numbers of slots in calendars are varied. The performance parameters of the scheduler are
the number of organization (org) is 3 to 8, number of time slots in a calendar (ns) is 24, number of
meetings (n) vary between 1 and 500, number of persons in each organization (m) is 8, and duration
of meetings (dur) is between 1 and 4.

A. Global Meetings with No Local Meetings: It is seen from Figure 5 that the number of meetings
scheduled increases as the number of organization increases (3, 5, and 6), however it is reduced for
the number of organization 8. This is due to unavailability of the participants and hence the number
of nodes generated is particularly more for the case of number of organization 8. It is observed that,
as there are no local meetings in the local schedules for rescheduling so as to have free slots for
global meetings, the number of global meetings scheduled is reduced. Further, since the
rescheduling operations are not applied in the local schedules, the numbers of nodes generated are
also less.

0

20

40

60

80

100

120

0 100 200 300 400 500

Meeting Request

N
o.

 o
f N

od
es

 G
en

er
at

ed

org = 3
org = 5
org = 6
org = 8

0

20

40

60

80

0 100 200 300 400 500

Meeting Request

N
o.

 o
f M

ee
tin

gs
 S

ch
ed

ul
ed org = 3

org = 5
org = 6
org = 8

 (a) (b)

Figure 5. Global meetings while no local meetings

International Journal of Information Technology Vol. 12 No. 8 2006

85

 (b)

B. Global Meetings with Lightly Loaded Local Meetings: Figure 6 shows the performance of the
DMS with global meetings while local meetings are lightly loaded in the local schedules. Here, the
number of organizations is taken as 3, 5, 6, and 8, whereas the number of meeting requests varied
between 1 and 500. For the first 50 meeting requests, the percentage of meetings scheduled is nearly
100% and nearly same for all cases of organizations. However, as the number of meeting requests
increases, the percentage of meetings scheduled is gradually reduced for all cases of organizations.
This is due to the more number of filled slots in the calendars of the local schedules.

0

100

200

300

400

500

600

0 100 200 300 400 500

Meeting Request

N
o.

 o
f N

od
es

org = 3
org = 5
org = 6
org = 8

0

40

80

120

160

0 100 200 300 400 500

Meeting Request

No
. o

f M
ee

tin
gs

org = 3
org = 5
org = 6
org = 8

C. Global Meetings with Moderately Loaded Local Meetings: Figure 7 shows the effects of
scheduling global meetings while local meetings are moderately loaded. It is observed that the
number of meetings scheduled is 100% for all the cases of organizations at the beginning as the slots
of the local schedules are free. After that, the percentage of meetings scheduled is gradually reduced
for all the cases of organizations as the number of meeting requests increases and the reductions of
free slots in the calendars. However, as the number of organizations is increased the number of
meetings scheduled is also increased with respect to the increasing number of meeting requests.
This may be due to the availability of the participants from more number of organizations.

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

Meeting Request

No
. o

f N
od

es

org = 3
org = 5
org = 6
org = 8

0

50

100

150

200

250

0 100 200 300 400 500

Meeting Request

N
o.

 o
f M

ee
tin

gs

org = 3
org = 5
org = 6
org = 8

 (a) (b)

Figure 6. Global meetings while local meetings are lightly loaded

(a) (b)

Figure 7. Global meetings while local meetings are moderately loaded

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

86

D. Global Meetings with Heavily Loaded Local Meetings: Figure 8 shows the effects of
rescheduling operations for scheduling global meetings while local meetings are heavily loaded. For
the first 35 meeting requests, the number of meetings scheduled is 100% for all the cases of
organizations. However as the number of meeting requests increases the percentage of meetings
scheduled is reduced gradually for all organizations. Particularly in this case, the number of
meetings scheduled is high as the number of scheduled local meetings available is more for
rescheduling and hence the numbers of nodes generated are also high.

0

200

400

600

800

1000

1200

0 100 200 300 400 500

Meeting Request

N
o.

 o
f N

od
es

org = 3
org = 5
org = 6
org = 8

0

50

100

150

200

250

0 100 200 300 400 500

Meeting Request

No
. o

f M
ee

tin
gs

org = 3
org = 5
org = 6
org = 8

E. Comparisons of DMS with Different Approaches: The overall performance of the DMS using
A*-Algorithm with and without negotiation protocol under different densities of local meetings,
such as global meetings with no local meetings, global meetings with local meetings lightly loaded,
global meetings with local meetings moderately loaded, and global meetings with local meetings
heavily loaded with respect to different sets of simulations were carried out and the results are
briefly given in Table 2.

 It is observed that as the density of the local schedules (or the number of local meetings)
increases, the average number of global meetings scheduled is reduced with respect to the number of
meeting requests in both schedulers with or without negotiation protocol. In all the four types of
local meetings, the scheduler with negotiation protocol performs better than the scheduler without

Table 2. DMS with varying density of local meetings with A*

Average no. of Global
Meetings ScheduledDensity of Local

Meetings Without
Negotiation

With
Negotiation

No Local Meetings 8.23 13.73

Local Meetings -
Lightly Loaded

6.13 10.33

Local Meetings -
Moderately Loaded

4.83 6.86

Local Meetings -
Heavily Loaded

2.53 3.93

(a) (b)

Figure 8. Global meetings while local meetings are heavily loaded

International Journal of Information Technology Vol. 12 No. 8 2006

87

negotiation protocol. It is also generally observed that for smaller numbers of meeting requests the
average number of meetings scheduled is high and as the number of meeting requests increases, the
average number of meetings scheduled is decreased irrespective of the type of local meetings.

 The summary of the distributed meeting scheduler with the different densities of local
meetings with respect to the number of organizations, number of global meeting requests, number of
meetings scheduled with and without negotiation, number of local meeting requests, number of
local meetings scheduled with and without A*-Algorithm, and user preferences is given in Table 3.

Table 3. Comparison of distributed meeting schedulers with different density of local meetings

Global Meetings Local Meetings

#Meetings
Committed

#Meetings CommittedType of
Meetings

No.
of

Org
No. of

Requests
General

With
Negotiation

No. of
Meetings

General
Without

Negotiation
& A*

With User
Preference

With
A*

3 500 60 19 - - - - -
4 500 68 26 - - - - -
5 500 69 30 - - - - -
6 500 75 35 - - - - -
7 500 72 26 - - - - -

No
Local

Meetings

8 500 68 29 - - - - -

3 379 55 14 121 45 31 9 5
4 376 37 15 124 65 51 12 2
5 387 60 23 113 60 52 3 5
6 371 55 26 129 82 65 10 7
7 366 53 20 134 89 66 16 7

Local
Meetings-

Lightly
Loaded

8 378 50 28 122 79 64 7 8

3 251 33 9 249 81 57 15 9
4 255 32 6 245 106 76 11 19
5 261 38 11 239 104 76 19 9
6 246 32 9 254 139 102 19 18
7 243 36 15 257 153 118 19 16

Local
Meetings-

Moderately
Loaded

8 249 35 11 251 159 128 18 13

3 121 18 6 379 95 66 14 15
4 121 18 6 379 95 66 14 15
5 113 19 4 387 160 119 20 21
6 129 20 10 371 190 145 27 18
7 134 22 7 366 195 149 22 24

Local
Meetings-
Heavily
Loaded

8 122 21 9 378 211 163 21 27

F. Local Meetings with Different Durations of Meetings: A set of simulations is carried out to
schedule only local meetings without global meetings to see the performance of the DMS on
different durations of meetings (dur = 1, 2, and 3). Here, the parameter values used are: number of
meetings is 100, number of time slots is 16, and the number of organization is 3.

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

88

In Figure 9, it is clearly seen that the percentage of meetings scheduled is reduced as the
duration of the meetings increases. The scheduler based on A*-Algorithm performs better than
without A*-Algorithm in all the three cases of meeting durations.

ns = 16, org = 3, and n = 100

0

20

40

60

80

100

0 1 2 3

Duration of Meetings

%
 o

f M
ee

tin
gs

S
ch

ed
ul

ed

Without A*

With A*

Figure 9. DMS with only local meetings for durations 1, 2, and 3

Another set of simulations is carried out to schedule global meetings when the local meetings
are lightly loaded with the combinations of negotiation protocol and A*-Algorithm, particularly
under different durations of meetings. For this run the parameters used are: the number of slots of
the calendar (ns) is 8, number of organizations (org) is 8, duration of meetings (dur) are 1, 2, and 3,
and different sets with number of meetings (n) are 1, 25, 50, 100, 200, 300, 400, and 500. The
results are given from Figures 10 to 13.

0

20

40

60

80

100

0 100 200 300 400 500

Meeting Requests

#M
ee

tin
gs

 S
ch

ed
ul

ed

~Nego. and ~A*
Nego. and ~A*
Nego. with A*

0

20

40

60

80

0 100 200 300 400 500
Meeting Request

#M
ee

tin
gs

 S
ch

ed
ul

ed

~Nego. and ~A*
Nego. without A*
Nego. with A*

 Figure 10. Local meetings lightly loaded Figure 11. Local meetings lightly loaded
 with maximum duration 1 with maximum duration 2

International Journal of Information Technology Vol. 12 No. 8 2006

89

0

10

20

30

40

50

60

70

0 100 200 300 400 500
Meeting Request

#M
ee

tin
gs

 S
ch

ed
ul

ed

~Nego & ~A*
Nego. & ~A*
Nego. & A*

ns = 8, org = 8

0

10

20

30

40

50

dur = 1 dur = 2 dur = 3
Duration of Meetings

%
 M

ee
tin

gs
 S

ch
ed

ul
ed

~Nego and ~A*
Nego and ~A*
Nego and A*

Figure 12. Local meetings lightly loaded with Figure 13. Local meetings lightly loaded with
 maximum duration 3 different duration of meetings

It is observed from the Figures 10 to 12 that the numbers of meetings scheduled are reduced
as the duration of meetings increases. In all the cases, the scheduler with the combination of
negotiation protocol and A*-Algorithm schedules more number of meetings than the other two
combinations. The overall performance of the combinations of negotiation protocol and A*-
Algorithm with respect to different duration of meetings is shown in Figure 13.

G. Calendars with Different Number of Slots: A set of simulations is carried out to estimate the
performance of the DMS with local meetings moderately loaded. The values of the parameter are:
numbers of slots of the calendar are 8, 16, and 24; number of organizations is 6; maximum duration
of meetings is 2; and different sets with number of meetings are 1, 25, 50, 100, 200, 300, 400, and
500. The simulations with the above sets conducted for different combinations of negotiation
protocol and A*-Algorithm are shown in Figures 14 to 17.

0

50

100

150

200

0 100 200 300 400 500

Meeting Request

#M
ee

tin
gs

 S
ch

ed
ul

ed ns = 8
ns = 16
ns = 24

0

50

100

150

200

0 100 200 300 400 500

Meeting Request

#M
ee

tin
gs

 S
ch

ed
ul

ed ns = 8
ns = 16
ns = 24

Figure 14. DMS without negotiation and Figure 15. DMS with negotiation and without
 without A*-Algorithm A*-Algorithm

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

90

0

50

100

150

200

250

0 100 200 300 400 500
Meeting Request

#M
ee

tin
gs

 S
ch

ed
ul

ed
ns = 8
ns = 16
ns = 24

n = 100

0

20

40

60

80

100

ns = 8 ns = 16 ns = 24

No. of slots in a Calendar

%
 o

f M
ee

tin
gs

 S
ch

ed
ul

ed

~Nego. & ~A*
Nego. & ~A*
Nego. & A*

 Figure 16. DMS with negotiation and A*- Figure 17. DMS with different numbers of
 Algorithm time slots (8, 16, and 24)

It is clearly observed from the Figures 14 to 16, the number of meetings scheduled increases
as the number of time slots increases irrespective of the approaches. The scheduler with negotiation
and A*-Algorithm schedules more number of meetings than the other approaches monotonically.
Figure 17 also shows that the percentage of meetings scheduled increases as the number of time slots
in calendars increases. In all the three cases, the scheduler with the combination of negotiation and
A*-Algorithm performs better than the other two.

VI. Conclusion

In this paper, an agent-based distributed meeting scheduler is proposed and implemented to consider
equivalence classes of persons for delegation. The proposed scheduler schedules local meetings
within the organizations and global meetings between organizations. The A*-Algorithm is used for
searching and locally scheduling the meetings to have efficient schedules. Multi-stage negotiation
protocol is also used to coordinate distributed agents for scheduling global meetings. In all the cases
of simulations user preferences are taken into account. The performance of the scheduler is
considered in terms of the number of meetings scheduled with respect to the number of meeting
requests, and verified for four different categories such as increase in the number of meeting
requests, number of time slots in the calendars, duration of meetings, and with the combination of
A*-Algorithm and negotiation protocol. These categories of tests are carried out while the local
schedules are lightly loaded, moderately loaded, heavily loaded, and also no local meetings. In all
the cases, the scheduler produced the expected results. Combination of A*-Algorithm, equivalence
classes of persons, and multi-stage negotiation protocol offers flexible, efficient and more practical
schedules. The modified multi-stage negotiation protocol with A*-Algorithm and equivalence
classes of persons performed better than having neither negotiation nor A*, and thus the number of
proposals and processing time is considerably reduced.

Acknowledgement

The authors would like to thank the referees for their comments and suggestions to improve the
quality of the paper.

International Journal of Information Technology Vol. 12 No. 8 2006

91

References

[1] M. R. Gary, and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, CA: Freeman, 1979.

[2] E. Taub, Sharing Schedules. Mac User, 1993, pp.155-162.
[3] S. Sen, and E. H. Durfee, A Formal Study of Distributed Meeting Scheduling: Preliminary

Results. In Proceedings of the ACM Conference on Organizational Computing Systems,
1991, pp.55-68.

[4] S. Sen, and E. H. Durfee, A Formal Analysis of Communication and Commitment in
Distributed Meeting Scheduler. In 11th International Workshop on Distributed Artificial
Intelligence, 1992, pp.333-342.

[5] S. Sen, and E. H. Durfee, The Effects of Search Bias on Flexibility in Distributed
Scheduling. In 12th International Workshop on Distributed Artificial Intelligence, 1993,
pp.321-334.

[6] S. Sen, and E. H. Durfee, Adaptive Surrogate Agents. In 13th International Workshop on
Distributed Artificial Intelligence, 1994, pp.320-333.

[7] S. Sen, and E. H. Durfee, Unsupervised Surrogate Agents and Search Bias Change in
Flexible Distributed Scheduling. In Proceedings of the First International Conference on
Multi-Agents Systems, 1995, pp.336-343.

[8] R. G. Smith. The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, 1980, C-29, No. 12, pp.1104-
1113.

[9] E. Ephrati, G. Zlotkin and J. S. Rosenschein. A Non-Manipulable Meeting Scheduling
System. Thirteenth International Workshop on Distributed Artificial Intelligence, 1994,
pp.105-125.

[10] K. Sycara, and J. Liu, Distributed Meeting Scheduling. In Proceedings of the Sixteenth
Annual Conference of the Cognitive Society, 1994, pp.538-588.

[11] K. Sugihara, T. Kikuno and N. Yoshida. A Meeting Scheduler for Office Automation, IEEE
Transactions on Software Engineering, 1989, Vol. 15, No. 10, pp.1141-1146.

[12] S. Sen. Developing an Automated Distributed Meeting Scheduler. IEEE Expert, 1997,
pp.41-45.

[13] M. Sugumaran, and P. Narayanasamy, An Intelligent Multi-Agent Meeting Scheduler. In
Proceedings of the International Conference on Artificial Intelligence in Engineering &
Technology, 2002, pp.93-97.

[14] H. Nwana, L. Lee and Nick Jennings. Coordination in software Agent Systems, BT Technol
J, Vol. 14, No. 4, 1996, pp.79-88.

[15] M. Sugumaran, K. S. Easwarakumar, and P. Narayanasamy. A New Approach for Meeting
Scheduling using A*-Algorithm. In Proceedings of the IEEE TENCON International
Conference on Convergent Technologies for Asia-Pacific Region, 2003, Vol. 1, 419-423.

[16] E. Rich and K. Knight, Artificial Intelligence, Tata McGraw-Hill, 1995.
[17] N. J. Nilsson, Principles of Artificial Intelligence, Narosa Publishing House, 1990.
[18] Yan Jin, Shu Lin, Qihua Situ, Xudong Wu, An Intelligent Meeting Scheduler.

http://www.cs.ualberta.ca/~qihua/scheduler/report.html, 1999.
[19] S. J. Russell and P. Norvig, Artificial Intelligence A Modern Approach. Second Edition,

Pearson Education Series in Artificial intelligence, 2004.
[20] E. Crawford and M. Veloso, Opportunities for Learning in Multi-Agent Meeting Scheduling,

http://www.mgci.memphis.edu, 2004.

http://www.cs.ualberta.ca/~qihua/scheduler/report.html,
http://www.mgci.memphis.edu,

M. Sugumaran, P. Narayanasamy, and K.S. Easwarakumar
An Effective Approach for Distributed Meeting Scheduler

92

P. Narayanasamy is a Professor of Computer Science and Engineering in
Anna University, India. He received his bachelor degree in electrical
engineering during 1980 from University of Madras and master degree in
electrical engineering during 1982 from Anna University. He received his
Ph.D in computer science from Anna University during the year 1990.
His current research includes computer network, mobile computing and
wireless network.

K. S. Easwarakumar has completed his doctorate from Indian Institute of
Technology, Madras, in the area of computer science and engineering
during the year 1994. He has obtained his master’s degree in computer
and information sciences from Cochin University of Science and
Technology during the year 1989. He is currently working as Professor of
Computer Science and Engineering at Anna University, Chennai, India.
His areas of interests are theoretical computer science, networks and
molecular computing.

M. Sugumaran received his M.Sc degree in mathematics from University
of Madras during 1986 and M.Tech degree in computer science and data
processing from Indian Institute of Technology, Kharagpur, India during
1991. He is currently working as Assistant Professor of Computer Science
and Engineering at Pondicherry Engineering College, India. His areas of
interests are theoretical computer science, analysis of algorithms, and
parallel and distributed computing.

