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Abstract 
ime human arm motion detector that has been developed to aid 
stroke patients. Two tri-axial inertial sensors are adopted to 
. Kinematics models then allow us to recover the coordinates of 
 still shoulder joint. One of the significant contributions of this 
 based optimization in smoothing the erroneous measurements 
ments. Comprehensive experiments demonstrate favorable 
tial tracking system in different sensor positions and motion 
 of a marker-based optical motion tracker that is commercially 

tracking, inertial sensor, total variation.  

 people in the UK experienced stroke and 30% of these people 
ween 2001 and 2002 [1]. These stroke patients needed locally 
nts and appropriate rehabilitative treatments after they were 

pital-based rehabilitation can provide the stroke patients with 
treatments and nursing care. However, it raises a huge demand 
ing human resources and equipments, etc., if the rehabilitation 
. 
f sensor and Internet technologies, researchers have worked on 
devices and systems equipments home-based post stroke 
al [3]. Rehabilitative progresses are immediately reported to 
ew and comment on the outcomes. Further instructions on the 
 to the patients. On the one hand, these home-based systems 
f face-to-face therapy with healthcare professionals, and also 
On the other hand, home-based rehabilitation is more focused 
nd can support patients to challenge the states of depression 
ercises [4]. Therefore, developing home-based rehabilitation 
ore and more overwhelming. 
 enable a person who has experienced a stroke to regain the 
ence and be as productive as before. Although a majority of 

ored soon after a stroke, recovery is an ongoing process. 
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Rehabilitation is a dynamic process of using the available facilities to correct any undesired 
motion behavior in order to reach its expectation (e.g. reach mouth). To achieve this target, 
trajectories during the rehabilitation course have to be quantified, and hence appropriate 
instruments for quantitative measurements are desirable to capture motion trajectories and 
specific details of task execution. In this paper, we address on designing a motion detector to 
track the movements of human upper limbs. This is a critical component of the home-based 
rehabilitation system to be designed. However, the application of this motion detector in real 
home-based rehabilitation is beyond the scope of this paper and will be reported in due course. 

II. Related work 
 
There exists a number of motion tracking systems that can be used nowadays, which to our 
knowledge can be classified as non-vision based, marker based vision, markerless based vision, 
and robot-guided systems. Despite their favorable performance, significant weaknesses also have 
been found when these systems are deployed. In this section, these systems will be briefly 
summarized. 
• Non-vision based systems: These systems recruit sensors, e.g. inertial, mechanical and 

magnetic ones, to continuously collect motion data. These sensors are of modality-specific, 
measurement-specific and circumstance-specific behaviors. For example, inertial sensors 
MTx [5] and magnometers Polhemus [6] have been successfully applied to detection of static 
and dynamic activities in daily life, etc.  The systems of using these sensors may be used in 
most circumstances without specific limitations (e.g. illumination, temperature, or space, etc.). 
Unfortunately, accumulating errors (or drifts) can deteriorate the system performance after a 
long time execution.  

• Marker based vision systems: In 1973 Johansson explored his famous Moving Light 
Display (MLD) psychological experiment to perceive biological motion [7]. He attached 
small reflective markers to the joints of human subjects, which allow these markers to be 
monitored during trajectories. Although Johansson's work established a solid theory for 
human movement tracking, it still faces the challenges such as space constraints, mutual 
occlusion and pre-calibration. CODA [6] and Qualisys [8] are two examples, where the 
former uses “active” markers and the latter exploits “passive” markers that can be observed 
by the surrounding cameras. These systems cannot ideally solve the problems as mentioned 
previously. 

• Markerless based vision systems: As a less restrictive motion capture technique, a 
markerless based sensing system is capable of overcoming the mutual occlusion problem as it 
can detect boundaries or features on human bodies, which are normally invariant to rotation 
and scale. The main problem remaining as a challenge is the computational cost during the 
rendering. To solve this problem, people are exploring possible solutions by compromising 
robust performance and computational efficiency. For example, Fua et al. [9] proposed to 
fuse stereo and silhouette data for improvement of 3-D modeling, incorporating least squares 
tracking techniques. Comport et al. [10] presented a virtual visual servoing approach in order 
to address the problem of efficient tracking. They derived point-to-curves interaction matrices 
for different 3-D geometrical primitives and then used a local moving edges tracker to 
provide real-time tracking of points normal to the object contours. A vast number of similar 
systems/algorithms have been reported in literature. Regardless their partial successes, these 
markerless vision systems are still lack of sufficient efficiency and robust performance in 
practice. 

• Robot-guided systems: Exercise therapy very likely influences plasticity and recovery of the 
brain following a stroke. Furthermore, abnormally low or high muscle tone may misguide the 
therapy expert to apply wrong forces to achieve the desired motion of limb segments. To 
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quantify these issues, an automatic system, named MIT-MANUS, was designed to move, 
guide, or perturb the movement of a patient's upper limb, whilst recording motion-related 
quantities, e.g. position, velocity, or forces applied [11]. This is a milestone work in 
biomechanics as it well combines the state of the art of engineering and biomechanics. The 
main constraint of this system is that the patient’s arm must be fixated on the robot arm. This 
indicates that the system reluctantly supports free and flexible rehabilitation exercises. 

     In a home environment, there commonly exist cluttered scenes and occlusion (observation of 
the movements of upper limbs can be obstructed by the body parts). These limitations discourage 
the application of vision-based systems that easily suffer from them. Moreover, professional 
interaction in computation or program proceeding, e.g. pre-calibration, is desirable in using these 
systems. Therefore, a vision-based system is not an ideal solution to home-based rehabilitation. 
Robot-guided systems are costly. Moreover, if a wireless feature needs to be concerned, then 
these robot systems may become less applicable. Evidence shows that inertial/magnetic-sensing 
systems can be an optimal solution to this specific environment [12, 13]. In spite of the 
weaknesses, e.g. the drift problem, inertial/magnetic sensors have fewer costs, compact size, 
lightweight, and no motion constraint. Most importantly, these sensors do not suffer from the 
occlusion problem [6]. In this paper we report an inertial/magnetic sensor based system for 
monitoring human upper limbs. It has the advantages such as computation efficiency, reliability 
and wireless communication. In addition, a novel optimization strategy for minimizing the errors 
due to rapid or unstable movements is integrated. 

 
Fig. 1 Illustration of a home-based rehabilitation system including the proposed motion detector 

III. Methodology 

 
A. General 
A human arm can be represented by a skeleton structure with two segments linked by a revolute 
joint. Assuming the shoulder is still, only the position of the wrist (in the middle between the 
radial and ulnar styloid processes) and elbow (lying anterior to the olecranon process) needs to be 
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calculated (the application with a moving shoulder was described in [13]). The arm movements 
are sampled using two commercially available MTx inertial/magnetic sensors (Xsens, 
Netherlands), placed on the two segments respectively. The motion tracking system (attached 
with the stroke patient shown in Fig. 1) is implemented in the environment of Visual Studio C++, 
where the computer is a Media PC with a VIA Nehemiah/1.2 GHz CPU. 

 
Fig. 2 Flowchart of the estimation of the arm position by our method 

Measurements from the proposed tracking system are compared to the ground-truthed data 
from an optical motion tracker, Qualysis (Qualysis Motion Capture Systems, Gothenburg, 
Sweden), which as a reference provides absolute position of the moving arm. For system 
comparison, the coordinate system of the proposed tracker can be aligned with that of the 
reference data using a direct 3-D coordinate transformation. To relate the movements of the 
sensor to those of the segments, a sensor calibration needs to be conducted [14]. Errors in motion 
estimation can be presented using the mean, standard deviation, and root of the mean of the 
squared errors (RMS). The numerical statistics are tabulated for individual motion excercises, and 
based on the repeated trials as required. Additionally, correlation coefficients and non-parametric 
tests (Wilcoxon sign rank tests or p-values) are used for evaluating the similarity between the 
outcomes of our system and the Qualysis system.  

 
B. Estimation of the joint position  
The flowchart of the dynamic estimation is illustrated in Fig. 2. The raw acceleration signals are 
low-passed filtered (cut-off frequency: 10 Hz) to remove high-frequency noise, while the raw 
gyroscopic signals are high-pass filtered (cut-off frequency: 0.05 Hz) to reduce the internal drift. 
To determine the position of an arm in a world (global) coordinate system, we need to transform 
the inertial measurements from the sensor coordinate system to the world (global) coordinate 
system. Then, kinematic models will be used to locate the wrist and elbow joints. 
     Consider a rigid body moving in the earth frame. The world frame is w, and the sensor body 
frame is b. Rb

w, a 3-by-3 rotation matrix, indicates the orientation transformation from the b-
frame to the w-frame: vw = Rb

w vb, where vw and vb represent the linear velocity vector of the 
sensor in the w- and b-frames, respectively. The state of Rb

w at the next instant, Rb
w_, can be 

updated as follows: _Rb
w = Rb

wS(ωb), where S(ωb) = [ωb×] is the skew-symmetric matrix that is 
formed using the cross-product operation of the angular velocity estimates ωb. In fact, the new 
rotation matrix Rb

w_ will be equivalent to the previous Rb
w plus _Rb

w multiplied by a time interval 
(0.04 seconds herein). Once the rotation matrix has been obtained, then the acceleration readings 
in the w-frame will be deduced as aw = Rb

wab + Gw, where Gw = [0, 0, 9.81]T m/s2 is the local 
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gravity vector whose effect on the acceleration needs to be eliminated. Euler angles can be 
estimated using a Kalman filter based strapdown integration scheme, based on the method 
reported in [15], where signals from the tri-axial magnometers, gyroscopes and accelerometers in 
the MTx sensors are fused to provide stable and driftless orientation. To improve the performance, 
we have used the estimated accelerations as a proper threshold to evaluate whether or not the 
estimated Euler angles are valid. In this study, we used Euler angles rather than quaternion to 
represent the angular changes, as the latter demands a non-linear and intensive computation.  

Once having the representation of accelerations and Euler angles in the world frame, we can 
locate the position of the wrist and elbow joints in the world frame using the estimated Euler 
angles. This will be done using kinematic models. Before this computation starts, let us assume 
that the length of the upper arm (olecranon process to acromian process) is L1, and the length of 
the lower arm (ulna styloid to olecranon process) is L2. In the static state, the x-axis of these two 
inertial sensors was collinear with the direction of the upper and lower arm. During dynamic 
movements, the elbow tri-axial position Pe (x, y, z) in the shoulder-originated coordinate system 
was calculated as  Pe = ResPe0, where Res is the rotation matrix of the upper arm and can be 
computed using three Euler angles of the upper arm that are estimated above, and Pe0  = [L1, 0, 0]T. 
Based on the estimation of the elbow position, the wrist position Pw in the shoulder-originated 
coordinate system was deduced as Pw = RwePw0 + Pe, where Rwe is the rotation matrix of the lower 
arm (the origin is the elbow joint) and can be computed using three Euler angles of the lower arm, 
and Pw0 = [L2, 0, 0]T. Up to now, the position of the human arm can be fully determined. The 
entire algorithm for arm positioning has been outlined in Fig. 3.  

 
Fig. 3 Illustration of the proposed kinematic modeling method for arm positioning 

 
Fig. 4 Comparison of position estimates by the kinematic modeling method and the Qualysis 

system 
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C. Error reduction  
It has been observed that significant errors, e.g. rapid variations, quite often appeared in the 
measurements. This mainly results from the soft tissue effects and inertial properties, where the 
relative movements between the sensors and the rigid structures (i.e. bones) are sampled. These 
erroneous measurements do not represent the real movements of the rigid body. Fig. 4 illustrates 
a comparison between the estimation of the wrist position (x-axis) by the proposed kinematic 
models and the absolute position by the Qualysis system. The Qualysis system consists of three 
infrared cameras allocated around the object at a distance of 2-5 meters. These cameras can allow 
the markers mounted on the object’s segments to be identified and localized in space. In terms of 
Fig. 4, in the area with the arrow symbol our estimates present significant biases. It has been 
found that this “jump” was due to the fast orientation change leading to overshoots of the inertial 
recordings. This overshoot cannot be totally removed and will strongly affect the accuracy 
evaluation. However, it may be lessened to some extent. One of the potential methods is an 
attempt to “smooth” the areas that have abrupt amplitude changes. To “smooth” this jump, we 
utilize a total variable based minimization strategy that follows the kinematic modeling 
introduced above. 
     Total variation exhibits the solution of recovery of corrupted data as a minimizer of an 
appropriately chosen function. The minimization technique of applying total variation involves 
the solution of nonlinear partial differential equations (PDFs) [16], subject to constraints from the 
statistics of the noise. The constraints are applied via Lagrange multiplier, which leads to a 
solution based on the gradient-projection method [16].  
     Let us start the algorithmic description by estimating the wrist position (the estimation of the 
elbow will be very similar). The goal is to reconstruct a true data point u from its observation ũ 
(i.e. position vector): ũ = u + τ, where τ is noise or an unknown error. This uncertainty can be 
solved using a minimization function of gradient as 

)(min , uF pu ε  

subject to  
2

, ||~||||)( uudxuuF p
p −+∇= ∫Ω λε

ε  

where λ is a non-negative Lagrangian multiplier, and ε is a regularization coefficient:  
2

122 )(|| εε +=∇ uu  
     The Euler-Lagrange equation is used to solve the minimization problem:  

)~()
||

( 21 uu
u
uu p −+

∇
∇

•∇= − βε  

where β (= 2λ/p) is the constraint parameter for the descent direction, and λ is available if we take 
the derivative for the minimization function with respect to u and then set it to zero. In a simple 
case, ε = 0 and p = 1. Searching for an ideal solution u involves a number of iterations. The initial 
value of u is randomly chosen.  
     Let (x, y, z) be the estimated wrist coordinates, (ωx, ωy, ωz) be the Euler angles of the forearm, 
and r be the segment length of the forearm (equal to L1). Assume , , 

and . Since orientation is the main variable used here, we then have the required 
first order derivatives with respect to three Euler angles estimated individually [17]: 

2)(cos xa ω= 2)(cos yb ω=
2)(cos zc ω=
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where )1)(1(1 22222222 cbacbccbad −+−+−= . The stopping criterion of the iteration is that 
the difference between two neighboring steps is smaller than 0.001. One example is illustrated in 
Fig. 5, where an elbow flexion test was performed and trajectories were hence recovered. Clearly, 
the optimization method has improved the estimates of the kinematics modeling by “smoothing” 
the estimates from the kinematics models.  
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Fig. 5 Trajectories recovered by different methods in the elbow flexion test (units: cm) 

 
IV. Experimental work 
 
We here evaluate the performance of the proposed motion detector against that of the 
commercially available “Qualysis” motion tracking system. The Qualysis system uses retro-
reflective ball marker that can be captured by three cameras surrounding the object (the distance 
between the subject and the cameras is 2-5 meters). These cameras are used to reduce the 
possibility of occlusion. The Qualysis system directly reconstructs 3-D position of the arm after a 
proper calibration has been achieved.  
     In our experiments, the first Qualysis marker is attached to an area next to the MTx sensor. 
Both the marker and sensor are very close and placed nearby the wrist joint (1 cm between the 
sensor/marker and the wrist joint). The second marker is placed on the upper arm and is next to 
the elbow joint (1 cm away). All sensors and markers face outwards away from the human body. 
Appropriate alignment between the coordinate system of the inertial sensors and that of the 
Qualysis system is conducted using the method reported in [18]. The Qualysis markers and MTx 
sensors are attached to the arm using double adhesive tapes.   
     Three healthy male subjects are recruited in the experiments. Before the experiments start, the 
length of each segment of upper limbs is measured and then encoded into the computer program 
to be executed. Each of the subjects is seated and performs the requested experiments 
individually. These experiments consist of reach-target, drink, elevation, and elbow flexion. Each 
of these tests lasts 20 seconds and is repeated three times. Between any two sessions of each test, 
subjects are allowed to take a rest of 30 seconds. To avoid the violation of the rigidness 
assumption in the mathematical modeling, we notify the subjects that regular and repeated 
movements are preferable, while they can use the motion speeds that they like. Any inter-rotation 
due to the bones under the skins will be avoided or minimized.  
• The reach test: all the subjects are asked to reach two specific points in space. This is a 

periodic motion. It involves the displacement of both wrist and elbow joints. To demonstrate 
the system performance, we show the estimated trajectory by our method, in comparison to 
that by the Qualysis system. Fig. 6 illustrates two cycles of the recovered trajectory of the 
wrist and elbow joint, respectively. Clearly, the estimates by the new method are very similar 
to those by the Qualysis system. The maximum discrepancy in the wrist and elbow estimates 
between our method and the optical system is 0.014 m. The similarity of the two approaches 
is verified in Table 1, where the correlation coefficients of the measurements of the two 
approaches are 97% (wrist) and 98% (elbow), respectively. Results of the Wilcoxon sign rank 
tests aslo confirm this observation (p > 0.05). 
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• The drink test: the subjects repeatedly simulate the drinking activity by lifting the hand to 
meet the mouth and then returning to the starting point. This test in physiotherapy will be 
used to train a stroke patient for improvement of motion coordination. Fig. 7 illustrates that 
the outcomes of our method approximate those of the optical system. Interestingly, we 
observe that the elbow estimates are of a significant discrepancy in Fig. 7 (b) but it is due to 
the visualizing effect. The maximum discrepancy in the elbow case is 0.017 m. Table 1 shows 
that the RMS error of the elbow is 0.013 m and the correlation coefficient is 94%. This 
suggests that the estimation by our method is still satisfactory.  

• The elevation test: we ask the subjects to lift the whole arm from a lower position to a higher 
position. During trajectory, the wrist and elbow joints will experience similar rotation and 
displacements. In Fig. 8, it is observed that the estimates of the two joints by our method have 
small discrepancy to the Qualysis system. Table 1 reveals that the RMS errors of the two 
positions are less than 0.01 m. The correlation coefficients of the two methods are 98% and 
97%, respectively. Wilcoxon sign rank tests show the results complying with the correlation 
coefficiencts (p > 0.05).  

• The flexion test: the subjects are asked to flex the forearm while attempting to keep the upper 
arm still. This test is used to aid a stroke patient to regain the motor function of controlling 
different segments. Due to insignificantly small outcomes from the elbow joint we here only 
show the recovered trajectory of the wrist joint. Fig. 9 shows the wrist trajectories rendered 
from the outcomes of our method and the optical system, respectively. Both measurements 
are very close with a RMS error of 0.007 m. Table 1 shows a good similarity between the two 
data groups (correlation: 97%; p > 0.05). 

     To evaluate whether or not our method has robust performance in different sensor positions 
and motion speeds, we apply the same subjects and allow the two sensors to be re-located. In the 
new testing trials, the sensors are about 0.03 m from their original places but still on the same 
segments. Two test protocols are made up: in the first testing protocol the overall subjects carry 
out the same tests as introduced above. In the second testing protocol, when the subjects 
undertake the tests, they significantly change the motion speeds of the arm. The second protocol 
to our knowledge has never been reported in a similar work and may challenge the proposed 
motion detector. The corresponding results are tabulated in Table 2, where only a range of the 
statistic values is generated (the wrist and elbow estimates are not shown independently). These 
results verify the favorable performance of our method in these experiments.   

 
(a) Wrist trajectory 

                                                                                                                                                                9



Huiyu Zhou and Huosheng Hu 
Upper limb motion estimation from inertial measurements 

 
(b) Elbow trajectory 

Fig. 6 Comparison of the wrist and elbow measurements in the reach test by our method (“o”) 
and the Qualysis system (“-“). Units: m. 

 

 
(a) Wrist trajectory 

 
(b) Elbow trajectory 

Fig. 7 Comparison of the wrist and elbow measurements in the drink test by our method (“o”) and 
the Qualysis system (“-“).Units: m. 
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(a) Wrist trajectory 

 
(b) Elbow trajectory 

Fig. 8 Comparison of the wrist and elbow measurements in the elevation test by our method (“o”) 
and the Qualysis system (“-“).Units: m. 

 

 
Fig. 9 Comparison of the wrist measurements in the flexion test by our method (“o”) and the 

Qualysis system (“-“).Units: m. 
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Table 1 Error statistics of the estimates by the proposed method in regular exercises (w – wrist; e 
– elbow; cc – correlation coefficient). Units of mean and RMS: m 

 

 Mean (w/e) RMS (w/e) CC %(w/e) p-value (w/e) 

Reach -0.002 / 0.003 0.013 / 0.011 97 / 98 0.18 / 0.26 

Drink -0.005 / -0.002 0.009 / 0.013 96 / 94 0.26 / 0.21 

Elevation 0.004 / -0.006 0.008 / 0.009 96 / 96 0.31 / 0.3 

Flexion -0.001 0.007 97 0.22 

 
Table 2 Error statistics of the estimates by the proposed method in different sensor locations and 
motion speeds (w – wrist; e – elbow; cc – correlation coefficient). Units of mean and RMS: m 
 

 Mean (w/e)  RMS (w/e)  CC % (w/e) p-value (w/e)  

Reach -0.007 – 0.006 0.011 - 0.018 91 - 97 0.14 - 0.23 

Drink -0.004 - 0.008 0.007 - 0.015 93 - 95 0.16 - 0.21 

Elevation -0.002 - 0.005 0.009 - 0.016 90 - 94 0.17 - 0.25 

Flexion -0.004 - 0.006 0.011 - 0.015 91 - 98 0.16 - 0.23 

 

V. Conclusion and future work 
 
We have presented an inertial sensing based tracking system that integrates kinematics of human 
arm movements and a total variation based optimization strategy. The coordinate system of an 
inertial sensor needs to be transformed from local to global, followed by position estimation via 
kinematic models. The 3-D reconstruction of the human arm is performed in real-time. Compared 
to the commercially available tracking system “Qualysis” that uses markers, our system has the 
advantage that it is easy to use and can recover the real human arm movements with a simple set-
up. This is extremely useful when people look at the automatic synthesis of realistic human 
motion in computer graphics in addition to the rehabilitative applications. 

The future work will be addressed to extend the ideas presented here in order to consider the 
improvement of accuracy. Due to high degrees of freedom of upper limbs, in this paper we have 
not addressed the issue where non-rigid movements appear. For example, elbow flexion may 
accompany forearm supinations or pronations, where the rotation of the muscles nearer to the 
wrist and elbow joints respectively is not identical. This situation literally violates the rigidness 
assumption in our model and may lead to erroneous measurements. One of the possible solutions 
is to add an extra MTx sensor, or integrate the current MTx sensors with other non-visual sensors, 
e.g. potentiometers or laser fibers, etc. In the latter solution, the MTx sensors provide an initial 
position for the arm and the other sensors work as a “verifier” or “corrector”. In due course, the 
whole tracking system may have more robust performance in a non-rigid circumstance while 
keeping high accuracy in measurements. 
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