
International Journal of Information Technology, Vol. 13 No. 1 2007

Join Size Estimation Over Data Streams Using Cosine Series

Zhewei Jiang1, Cheng Luo1, Wen-Chi Hou1, Feng Yan2, Qiang Zhu3, Chih-Fang Wang1

1Department of Computer Science, Southern Illinois University, Carbondale IL 62901

{zjiang, cluo, hou, cfw}@cs.siu.edu

2Department of Mathematics, Southern Illinois University, Carbondale IL 62901
fyan1@netscape.com

3Department of Computer and Information Science, University of Michigan,

Dearborn, MI 48128, USA
qzhu@umich.edu

Abstract

 In many applications, data takes the form of a continuous stream rather than a
persistent data set. Data stream processing is generally an on-line, one-pass process and is
required to be time and space efficient too. In this paper, we develop a framework for
estimating join size over the data streams based on the discrete cosine transform (DCT). The
DCT generally can provide concise and accurate approximations to data distributions and its
coefficients can be updated easily in the presence of insertions and deletions. These features
make the DCT suitable for dynamic data stream environments. We have performed analyses
and conducted experiments to investigate the applicability of the cosine transform to data
streams. The experimental results show that given the same amount of storage space, our
method yields more accurate estimates most of the time than the sketch-based methods,
which have become the main methods for approximate query processing over data streams.
The experimental results have also confirmed that the cosine series can be updated quickly to
cope with the rapid flow of data streams.

Keyword: Data Stream, Cosine Series, Query Estimation

1. Introduction

Many applications, such as telephone fraud detection, financial tickers, network monitoring,
tele-communications data management, etc., generate data in the form of a continuous stream
rather than a persistent data set. Generally, elements of data streams arrive continuously and
there is no control over the order in which they arrive. Moreover, a data stream is usually
unbounded and there is only one chance to look at it as the data pass by.

 To observe, monitor, or summarize the continuous flow of data, queries are posed
periodically. These queries are typically referred to as continuous queries because they are issued
once and then run continuously [5], unlike the traditional one-time queries that are executed only
once. Examples of continuous queries over data streams include a web-based financial search

 27

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

engine that evaluates queries over real-time streaming financial data, an integrated security
platform that performs complex stream processing, such as the URL-filtering and join queries
over multiple network traffic flows [4]. Continuous query processing generally requires queries
to be executed in real-time with limited storage, and thus it must be an on-line, one-pass, and
time and space efficient process.

The join operator is probably the most important operator in query processing as it can relate
information from different sources (e.g., tables). Some examples of join operations on data
streams are finding similar news items from different media sources and finding correlation
between phone calls and stock trading [35].

 Selectivity estimation or query size estimation plays an important role in query
optimization, OLAP, decision support, etc. It has also found its place in data stream processing,
such as in the trend analysis, fraud detection, quality and performance monitoring, etc. In this
paper, we discuss continuous selectivity estimation over data streams for queries with equi-join
operations.

Approximate aggregation query processing has been an important research topic in
traditional databases for more than a decade. Various techniques, such as sampling [1, 11, 28],
histogram [13, 17, 18, 20], wavelet [6, 7, 27], sketch [2, 3, 32], and discrete cosine transform
[21] etc., have been proposed and some of them have been implemented in commercial database
systems. In a continuous query processing environment, approximate query results are reported
continuously; it poses stern challenges to conventional methods because all these performance
measures, such as accuracy, speed, space, and updatability, now become equally important to the
methods.
 Sampling [14, 15, 22] is a simple and dynamic approach. It can be easily adapted to the
continuous data stream environment, but its accuracy for join queries becomes an issue of
concern [1, 15] unless the sample size is very large. Histogram provides a concise and efficient
way to represent distributions of low-dimensional data. However, as the number of dimensions
increases, the space required increases dramatically. The situation is exacerbated by the
potentially large domains of attributes in data stream applications. Partition of buckets in the
presence of updates can also be very time consuming [19]. The wavelet transform is able to
compress a histogram into a small number of coefficients [23] and offers a space efficient
(compressed) representation of the data distributions. However, in a dynamic streaming
environment, it could require space as large as the size of the data stream itself to calculate the
wavelet coefficients [12] and thus not directly applicable to data stream processing. In addition,
the wavelet also has a complicated update scheme [24]. Sketch [2, 3, 32] has been proposed for
aggregate query estimation recently. Its interesting randomizing algorithm and updatability make
it attractive to data stream processing. Sketch has become the basis of many recent works in
approximate aggregation query processing over data streams [3, 9, 13, 32]. Although it performs
better than the random sampling [3] and histogram [9], large estimation errors are still reported
in [9, 13].
 In this research, we concentrate on join query size estimation over data streams. While there
has been some research on query size estimation over data streams, most of it concentrates on
point and range query estimation [6, 11, 13, 25, 27, 28]. Alon et al. [2, 3] uses sketches to
estimate the sizes of single equi-join queries, including self-join queries. To the best of our
knowledge, only Dobra et al. [9] addresses the same type of query as ours – multi-equi-join
query over continuous data stream. Their research is also based on the sketch approach [3].

 28

International Journal of Information Technology, Vol. 13 No. 1 2007

 Our approach is based on the discrete cosine transform. The discrete cosine transform has
been used to approximate signals and images of various forms successfully. However, it has not
received its due attentions in the field of estimation in databases. In this paper, we develop a
framework for join query size estimation using the cosine series. The cosine series also has a
straightforward update scheme in the presence of insertions and deletions. We will compare the
space requirement, estimation speed, accuracy, and updatability with the sketch approaches. Our
experimental results show that the cosine transform yields better estimates, from several times to
hundreds of times better, than the sketches most of the time using the same amount of storage
space.
 The rest of the paper is organized as follows. Section 2 is a brief survey of techniques used in
approximation query processing. Section 3 introduces the background of the discrete cosine
transform for estimation of aggregation queries. Section 4 details our method on estimating
aggregation query with equi-join operators. In section 5, we compare estimation accuracy, speed,
space, and updatability of our approach with the sketch methods for single and multiple join
queries. Section 6 concludes.

2. Related Work

 In this section, we briefly review techniques used in approximate aggregation query
processing and discuss their potentials in join size estimation over data streams. Here, a join
mainly refers to an equi-join.

There is a long history of using sampling in selectivity estimation on traditional data [14,
15, 22, 28]. In general, with only small samples, accurate estimates can be obtained for point and
range queries. Recently, sampling has been used to create synopses for join queries (with foreign
key constraints) over data streams [1]. While sampling may adapt itself well to the data streams,
the estimation accuracy for join queries is far from satisfactory unless the sample size is very
large [1, 15].
 Histograms provide a simple way to represent the data distributions and they have had much
success in low dimensional selection queries [20, 21, 24, 25]. There have also been some efforts
in estimating join sizes using histograms [17, 18]. However, only special types of join predicates,
such as k-clique queries [17] and chain/tree queries [18], are considered. It is known that the
storage space of histograms can increase dramatically when the number of attributes involved (or
the dimensions) increases [4]. This situation is further exacerbated by the usually large domains
of attribute values in data stream applications. Dynamic updates of the bucket boundaries can
also pose a problem for some types of histograms when used with data streams.
 Wavelet Transform has been used to compress histograms into small numbers of
coefficients [6, 7, 24, 27]. It has been used for range, point, and range-sum queries [6, 27].
Unfortunately, as the number of dimensions increases, the accuracy degrades drastically unless
the number of coefficients used increases significantly. The update of the wavelet coefficients
also faces a severe challenge as new data keep flowing in in a data stream environment. Martias
et al. [24] has addressed the issue, but their method is still very complicated and inefficient.
Recently, Gilbert et al. [12] has shown that wavelet may not be directly applicable to data
streams because it could require a space as large as the size of the data stream itself to generate
the highest coefficients.
 While the above approaches have all shown some deficiencies for data stream processing,
Alon et al.’s randomizing technique [2], called sketch, shows some promise. They use a set of

 29

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

independent randomized linear-projection variables, called atomic sketches, to estimate self-join
sizes. To construct an atomic sketch, join attribute values are first mapped to {-1, 1} with equal
probabilities. Then, an atomic sketch X is derived as the inner product of the frequency vector of
the join attribute values with the random vector of {-1, 1} for the join attribute values, that is,

,where Dom(A) is the domain of the join attribute A, f)(
)(∑∈

=
ADomi iA ifX ξ A(i) is the number of the

value i of attribute A appearing in the relation, and ξi (∈{-1, 1}) is the mapped value of i. It has
been shown that the expected value of X2 is the size of the self-join. To improve the accuracy,
Alon et al. [2] uses groups of such independent atomic sketches to estimate the join size. By
averaging and selecting the group median, the final estimation is generated. Here, we shall call
Alon et al.’s sketch method [2, 3] the basic sketch as it has become the basis of several other
methods.
 Gilbert et al. [12] has used the sketch method to estimate point and range query size, while
others [3, 9, 32] estimate join size over data streams. Alon et al. [3] first uses sketch to estimate
the size of a single equi-join query. To improve the accuracy, Dobra et al. [9] first partitions the
underlying join attribute domains and then estimates the join size of each individual sub-domain
using the sketch [9]. This approach however requires a priori knowledge of the data distributions
(to find a good partition) and relies on the independence assumption of join attributes, which
may not be feasible for data stream environment. Ganguly’s skimmed sketch [32] skims (extracts)
the dense frequencies that are greater than a certain threshold into another distribution. The join
size is estimated as the sum of the sub-join sizes of these sub-distributions using the sketch.
Better estimation results than the basic sketch [3] are reported. However, extra space, in the order
of the attribute domain size, is needed to store the dense frequencies.

Discrete cosine transform (DCT) provides an elegant way to approximate data distributions
[21, 29,]. Similar to the wavelet transform, DCT requires only a small amount of space to store
the (approximated) data distributions. Another advantage of the method is that its coefficients
can be updated easily and dynamically. While (discrete) cosine transform has been successfully
applied to range queries [21, 2], to the best of our knowledge, it has not been used for join size
estimation.

3. Cosine Series Approximation
 In this section, we discuss some properties of discrete cosine transform to lay down the
groundwork for estimation of aggregation join queries.

3.1 Attribute Values and Normalization
 In general, an attribute can be either numerical or categorical. By mapping each categorical
value to a distinct number, we can assume hereafter all attributes are numerical. Let X be the
attribute of concern. To apply the discrete cosine transform, a normalization of attribute values is
needed first. The attribute values are normalized to a predetermined domain [0, 1] as follows. Let
maxX and minX be the maximal and minimal values of attribute X of the data stream,
respectively. Then, each value x of X is normalized as follows:

XX

Xx
x z

minmax
min
−

−
= (3.1)

where denotes the normalized value of x. For example, an attribute domain of {0, 1, 2, 3, 4} is
normalized to {0, 1/4, 2/4, 3/4, 1}. The minimal and maximal values of an attribute can usually
be determined based on knowledge of the data. For example, the minimal and maximal values of

zx

 30

International Journal of Information Technology, Vol. 13 No. 1 2007

the attribute “Age” can be reasonably assumed to be 0 and 150, respectively. From now on, we
shall assume all attributes are so normalized or they all have domains [0, 1], unless otherwise
stated.

3.2 Discrete Cosine Transform
 To illustrate the use of the discrete cosine transform, let us first consider a one-dimensional
case. Let N be the total number of tuples seen so far in the data stream and Dom(X) the domain
of attribute X (i.e., [0,1]). The frequency function of the X values is defined as

)(,)(XDomx
N

count
xf x ∈=

where is the number of elements seen so far in the data stream with the value x. The
frequency function satisfies the relations:

xcount

∑
∈

=
)(

.1)(
XDomx

xf

 Let n = |Dom(x)|. By the theory of discrete cosine transform, f(x) can be represented as

 ∑
−

=

=
1

0
)()(

n

k
kk xxf φα

where 1)(=xkφ when k = 0; otherwise, .cos2)(xkxk πφ = ,0, >kkα are computed by the following
formula,

)(1)(1
1 1

jkx

N

i

n

j
ikk xcount

N
t

N j
φφα ⋅== ∑ ∑

= =

 (3.2)

 where is the X value of the i,1, Niti ≤≤ th element in the data stream, and xj is the jth X value in
Dom(X).
 The DCT is known to have an excellent engergy compaction property, where most of the
signal information, here the frequency function, tends to be concentrated in a few low-frequency
components of the transform [34]. Therefore, the frequency function, in common practice, is
approximated by the first m coefficient terms, where m is a number that is much smaller than the
domain size n. That is,

 ∑
−

=

≈
1

0
)()(

m

k
kk xxf φα

Example. Consider a one-attribute data stream with 6 tuples {0.33, 0.32, 0.12, 0.66, 0.90, 0.80}.
The cosine transformation of this distribution is derived as follows.
 Given the cosine series 0),(≥kxkφ : {1, ,...},cos2,...,2cos2,cos2 xkxx πππ we derive the

respective coefficients as : ,063.0)(
6
1,1

6

1
110 ∑

=

−===
j

jtaa φ ,0951.0)(
6
1 6

1
22 ∑

=

==
j

jta φ … , where

)(jk tφ is ,cos2 jtkπ and t,1≥k j, is the j,61 ≤≤ j th element in the stream. End of example #
 To apply the transform to the d-dimensional case, the distribution is approximated by its md
coefficients , as : ,,...,1 dkka 1,...,0 1 −≤≤ mkk d

 ,])([1
1 1

,...,1 ∑ ∏
= =

=
N

i

d

j
ijkkk t

N
a

jd
φ (3.3)

where tij is the jth attribute of the ith tuple ti, .1 Ni ≤≤
 As observed from Eq. (3.3), each coefficient of the transform is just the average of
the sum of the products of the basis functions (i.e.,

dkka ,...,1

)(xkφ) on the tuples. Therefore, for insertion

 31

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

or deletion of a tuple, we just compute the “contribution” of that tuple to the transform separately
and then combine it with the old coefficients. That is, for the arrival of a new tuple x = (x1, x2,
…, xd) to the data stream, which has already had N tuples, is updated as

dkka ,...,1

 ∏
=+

+
+

=
d

j
jkkkkk x

N
a

N
Na

jdd
1

,...,,...,)(
1

1
1 111

φ (3.4)

Similarly, to delete a tuple x = (x1, x2,…, xd) from the data stream, the coefficient is updated as

 ∏
=−

−
−

=
d

j
jkkkkk x

N
a

N
Na

jdd
1

,...,,...,)(
1

1
1 1111

φ (3.5)

 Coefficients can be updated easily and dynamically. Note that the set of coefficients derived
by the above incremental update scheme (using Eq. (3.4)) is exactly the same as if we had
derived in batch fashion using the Eq. (3.3).
 The updates of the coefficients can also be performed in a batch fashion. That is, one can
store the frequencies of the newly arrived attribute values in a buffer and then update the
coefficients all at once. Note that the time taken to update the coefficients for a batch of newly
arrived elements is same as that for each individual tuple. This batch update method can
significantly reduce the overheads for updates.
 A technique, called the triangular sampling [21], can be used to filter out high frequencies
from the md coefficients without much information loss. It retains only those coefficients whose
indexes satisfy the condition 1....1 −≤++ mkk d . The number of coefficients finally stored is

. Note that the indexes (kdm
d
dm

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+ 1 1, …, kd) of the coefficients need not be stored because they

are uniquely determined for a given m and can be generated automatically. In a d-dimensional
case, the ratio of the coefficients stored is

!
1/

1
d

m
d
dm d ≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+ . That is, we only store around 50%,

17%, and 4% of the md coefficients for d=2, 3, and 4, respectively. We incorporate this technique
in our implementation.

4. Estimating Size of Join Queries
 In this section, we discuss how to estimate the size of a join query using the cosine series. A
typical query under consideration may look like “Select Count(*) from R1, R2, …., Rn where
join-conditions”, where the join-conditions have the form of “Ri.A = Rj.B and Rk.C=Rl.D and
….”.

 4.1 Definitions and Assumptions
 Let intervals [lA, rA] and [lB, rB] be the domains of Ri.A and Rj.B, respectively, before
normalization, and minAB = min(lA, lB)，maxAB = max(rA, rB). By defining the frequency of a
value falling outside of its domain to be 0, we can assume both attributes, i.e., Ri.A and Rj.B,
have the same domain [minAB, maxAB] (with frequencies equal to 0 for those values falling
outside of their original domains). Normalization is then performed on the domain [minAB,
maxAB], converting it to the interval (0, 1). Hereafter, we assume all pairs of join attribute have
the same domains and are normalized to (0, 1).

 32

International Journal of Information Technology, Vol. 13 No. 1 2007

4.2 Join Size Estimation
 Consider a query with an equi-join like “Select COUNT(*) from R1, R2 where R1.A =
R2.B”. Discussions on queries with multiple equi-joins follow naturally. Let n be the domain size
for both attributes A and B, and be the DCT coefficients of R}{ ka }{ kb 1.A and R2.B, respectively.
The join size, denoted as J, is computed as:

 (4.1) ∑
−

=

=
1

0
.

n

k
BA iviv

countcountJ

where and are the numbers of tuples whose values are v
ivAcount

ivBcount i in R1.A and R2.B,

respectively. On the other hand, by Parseval's identity [33],

n

b
n

a
N

count

N

count
k

n

k

kB
n

k

A iviv ⋅=⋅ ∑∑
−

=

−

=

1

02

1

0 1

 (4.2)

Consequently, the join size is obtained as

k

n

k
k ba

n
NN

J ⋅= ∑
−

=

1

0

21 (4.3)

By using only the first m coefficients, J is estimated as:
 ∑

−

=

=
1

0

21
m

k
kk ba

n
NNEst (4.4)

 As shown by Eq. (4.4), the join size estimate can be derived by adding up the products of
corresponding coefficients. The formula for queries with multiple joins is the similar by adding
up the products of the corresponding coefficients on the same dimensions.

4.3 Error Analysis

 In this section, we give a brief discussion on the number of coefficients needed to guarantee
the relative error to be smaller than a threshold e.

 We assume both relations have the same size N, for simplicity. Let n be the size of join
attribute domains. As shown in Eq. (4.4), the join size estimate Est of the two relations is
calculated as

 .
1

1

221

0

2

k

m

k
k

m

k
kk ba

n
N

n
Nba

n
NEst ∑∑

−

=

−

=

+== (4.5)

 As shown in Eq (4.3), we only need the first n terms to compute the actual join size J. That is,

 .
1

1

221

0

2

k

n

k
k

n

k
kk ba

n
N

n
Nba

n
NJ ∑∑

−

=

−

=

+== (4.6)

We know that , and from Eq. (3.2), 10 =a .1,cos21
1

≥= ∑
=

kvkcount
N

a
n

i
ivk i

π

Since ,1cos1 ≤≤− ivkπ we derive .22 ≤≤− ka similarly, 10 =b and 22 ≤≤− kb . Using the
bounds 2,2 ≤≤− kk ba , we obtain

 .)(2||||
212

n
mnNba

n
NEstJ

n

mk
kk

−
≤=− ∑

−

=

 (4.7)

 The relative error is defined as

Jn

mnN
J
EstJerrorrelative)(2||_

2 −
≤

−
= (4.8)

 33

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

by assuming J > 0. To guarantee the relative error to be smaller than or equal to a given number
e, from Eq. (4.8), we derive m

N
eJnn ≤− 22

. Consequently, the space requirement to guarantee an

error e is:

 ⎥⎦
⎥

⎢⎣
⎢−= 22N

eJnnm (4.9)

 As a simple comparison, the basic sketch [3] has a best case space bound and
worst case bound [32]. By boosting the basic sketch’s worst case bound to the
skimmed sketch [32] has a space bound of Θ(N

)/(2 JNΩ

)/(24 JNO),/(2 JNO
2/J). However, this bound is valid only when the

join size is greater than a sanity bound of N3/2 or NlogN [3]. When the join size is small, the
required space could be much greater than the bounds given above. Moreover, the skimmed
sketch uses extra space to store extracted frequencies; this extra space is in the order of n (i.e.,
O(n)). In general, it is very difficult or impossible to derive tighter bounds for our approach as
well as for other approaches because of the diversities of the frequency functions, which are
further complicated by the join operations. However, there are some interesting properties that
may shed some light on the comparisons. That is, the best and worst cases of our approach
happen to be, respectively, the worst and best cases of the sketches’. We discuss these situations
in the following.

4.3.1 Best Case Error
 The cosine transform approximates smooth distributions better. Therefore, the best case, in
terms of estimation accuracy, happens when the join attribute values are uniformly distributed
regardless of the attribute domain size n is. The cosine coefficients a0=1 and b0=1. As for ak and
bk, they can be derived as: ,1 mk ≤≤

 ∑
=

⋅⋅=
n

i
VVk ii

kcount
N

a
1

cos21 π 0
2

)12(cos2
1

=
−

= ∑
=

n

i n
ik

n
π (4.10)

Similarly, bk = 0. Thus, the join size estimate Est is

 J
n

Nba
n

Nba
n

NEst
m

k
kk ==⋅⋅== ∑

−

=

2
2
0

2
0

21

0

2

 (4.11)

That is, using only the first term of the transforms, i.e., a0=b0=1, is already enough to represent
the uniform distributions and gives no-error join size estimation.
 On the other hand, the sketch methods have their worst case here. They require at least

)()
/

()(2

22

nO
nN

NO
J

NO == space, which makes them not better than the brute-force method.

4.3.2. Worst Case Error
 The worst case (of DCT) happens when all the tuples in a data stream have the same and sole
join attribute value. Let and be the sole join attribute values in the two data streams,
respectively. For simplicity, we shall consider only the case where j

1j
v

2j
v

1=j2=j. That is, ,Ncount
jv =

and for Since J=N0=
ivcount .ji ≠ 2 in this case, by Eq. (4.9), the number of coefficients needed

to guarantee the relative error is smaller than or equal to e is :

 34

International Journal of Information Technology, Vol. 13 No. 1 2007

).
2

(enfloornm −= (4.12)

 On the other hand, the sketch methods can obtain the exact join size (J=N2) because there is
only one value in the attributes. The sketch methods have their lower bound O(1) space here.
 From the discussion above, we derive that Ω(1) and))2/((enfloornO − are our lower and upper
space bounds, respectively.
 As observed each method has its strengths and weaknesses. No single method is best for all
distributions. Therefore, in the next section we will perform extensive experiments to see how
they react to different types of data and which method is likely to cope with more types of data,
especially real-life (like) data.

5. Experimental Results
 In this section, we report the experimental results of estimating join queries over data
streams. Alon et al. [3] proposed the seminal sketch method, which we have called the basic
sketch method in this paper. It has become the foundation of many other works [3, 9, 12, 32].
Dobra et al. [9] partition the attribute domains and apply the sketch to sub-domains of the
attributes; it requires a priori knowledge of the data distributions and an independence
assumption of the join attributes. Since this approach is essentially the basic sketch approach
applied to individual sub-domains (with additional assumptions) we will not include it in the
comparisons as the results of the basic sketch approach are directly applicable to sub-domains of
Dobra’s. Ganguly et al. [32] skims the dense frequencies from the original data distributions. It
then uses the sketch to estimate the join size of the non-dense frequency portions. Improved
accuracy has been reported but extra storage space for the extracted dense frequencies is
required, which could be as large as the attribute domain size.
 In this paper, we shall compare our method with Alon’s basic sketch and Ganguly’s
skimmed sketch as none of these requires a priori knowledge of data distributions or an
independence assumption of join attributes. We have implemented the sketches and the cosine
transform in C++. The experiments were run on a PC with a 1,400 MHZ Pentium IV CPU and
1GB memory. Experiments are performed on synthetic data as well as on real-life data.

5.1 Query Description
 The following is an example of an equi-join query, specifically, a three-join query, in the
experiments:
 Select COUNT (*) from R1, R2, R3 , R4
 Where R1.A = R2.A and R2.B = R3.B and R3.C = R4.C
 Tuples are read one after another to simulate the arrival of items in the data stream. Cosine
coefficients and atomic sketches are updated whenever a tuple arrives. To compute the average
errors of each case, each query is executed 200 times, of which each is executed with a different
set of relation instances
 We compare the accuracies of the methods by using the same amount of space. The space is
used to store atomic sketches or the coefficients of our cosine series. For simplicity, instead of
using bytes, we use the number of coefficients or atomic sketches to specify the size of storage
space. We have adopted the commonly used average relative error as the performance measure.
The relative error is defined as |Act(ual) – Est(imate)| / Act(ual). Each result is the average of
200 queries. We have also recorded the estimation time and update speed.

 35

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

5.2 Experiments on Synthetic Data
5.2.1 Synthetic Data

We generate two types of synthetic data for the experiments. The first type consists of
datasets of different characteristics. They are used to explore the strengths and weaknesses of the
methods. The second type consists of real-life like datasets, generated by the data generator used
in [9, 27]. They are used to assess the potentials of these methods in the real world applications.

 In the first type of synthetic data, we use the Zipfian distributions [30] to generate
frequencies of attribute values. The Zipfianly distributed frequencies, with a parameter z (or
zipf), are generated by the formula: ∑

=

=
n

j
zzz ji

if
1

1/1)(, where fz(i) is ith frequency value, ni ≤≤1 .

The z values of 0.5 and 1 roughly represent a slightly skewed and a skewed distribution,
respectively. We will study how skew can affect the performance of the methods.
 Besides the skew, correlations between the join attributes can also influence the performance
of the methods. We generate data with different correlations to study their strengths and
weaknesses. Independent attributes are generated by using different random mappings (from
frequencies to attribute values), while correlated attributes are generated using the same mapping
(for positively correlated attributes) or “inverted” mapping (for negatively correlated attributes).
Here, positively correlated attributes, say, A and B, refer to roughly the situation where if the
frequency of a value x in A is greater than the frequency of another value y in A, then the
frequency of x in B is also greater than y in B. Negatively correlated attributes refer to the
opposite situation. The smoothness of frequency functions can affect the performance too. We
will investigate its effects by comparing their performance on smooth distributions with random
distributions. Smooth distributions are generated by orderly mapping frequencies to attribute
values.
 For the second type of synthetic experiments, we generate real-life like data to assess their
potentials for real-life applications. It is argued that real-life data are often correlated and
sparsely clustered [9, 27]. Vitter [27] implemented a synthetic data generator to generate
relations with such properties, and Dobra [9] extended it to generating correlated joint attributes
between relations. Here, we will also use their methods to generate test datasets for our
experiments.
 Two types of synthetic experiments are performed. The first type aims to find out the
strengths and weaknesses of the methods by observing their performance on different types of
data. The second type is to assess their potentials for real-world applications by using real-life
like data.

5.2.2 Results of Synthetic Data
5.2.2.1 Synthetic Data Type I
 Two relations, R1 and R2, are generated, each with 107 (N) tuples. Each relation has an
attribute with a domain size of 105 (n). These figures are the same as the experimental setting in
related papers [9, 27, 32]. The frequencies of the attribute values in the two relations follow the
Zipfian distributions with zipf values 0.5 and 1.0, respectively. Correlations and smoothness are
instilled in attribute values using different mappings, as mentioned earlier. It should be
mentioned that the skimmed sketch uses additional O(n) space to store extracted dense
frequencies. The additional space, which is not reported in the figures presented here, from
thousands to 105, is much larger than the largest number of DCT’s coefficients or atomic

 36

International Journal of Information Technology, Vol. 13 No. 1 2007

sketches used in the experiments. Readers are advised to note the hidden space consumed by the
skimmed sketch when interpreting the results.

Figures 1 to 4 show how the methods perform with respect to different types of data, from
positively correlated to negatively correlated data. As observed from Figure 1, sketches perform
better than the cosine method. Actually, the positively correlated case is a generalization of the
self-join case for which the sketch was shown to be most suitable [3]. Recall also from the
discussion of Section 4 that sketch’s best case happens when all the join attribute values are the
same, which is the extreme case of the positive correlations. However, as the positive
correlations weaken, their performance degrades and our approach performs better as shown in
Figures 2, 3 and 4. For example, with 500 coefficients (or atomic sketches), which is only 0.5%
of the attribute domain size (n=105), the relative errors of the skimmed and basic sketches are 2.7
and 8.3 times greater than the cosine method in the weak positively correlated case (Figure 2),
24.4 and 49.8 times in the independent case (Figure 3) and 3.0 and 8.9 times in the negatively
correlated case (Figure 4).

The data set used in Figure 2 is obtained by permuting only 10% of the frequencies of R2 in
Figure 1. The permutation introduces some randomness and weakens the positive correlations.
Notice how large difference randomness has made in these two figures. Note that in Figure 1 no
single tuple in the data set violates the positive correlation. The way to permute the frequencies
also may affect the estimation performance.
 Let us now examine the impact of the smoothness of distribution functions on the
performance by comparing Figures 1 and 5. The data used in these two figures are basically
identical, except that the frequency functions of R1 and R2 in Figure 1 are rough (due to the
random mapping between frequencies and attribute values) while they are smooth in Figure 5
(due to the orderly mapping between frequencies and attribute values). The two relations are
positively correlated just like in Figure 1. As observed, smoothness plays in DCT’s favour. The
cosine method has improved its performance a lot here, as compared to Figure 1, on this strongly
correlated dataset due to the smoothness. For example, with 500 coefficients, the cosine method
yields an average error of 56.24% in Figure 4, down from 96.58% in Figure 1. As expected,
smoothness has no effect on the sketches since sketches do not approximate distributions.

Let us now examine the effects of skew by comparing Figures 3 and 6. When the
distributions become skewer, that is, the zipf value of R2 changes from 1.0 (in Figure 3) to 1.5 (in
Figure 6) with R1 remaining the same, all methods suffer from performance degradation. For
example, with 500 coefficients, the relative errors of the cosine, skimmed sketch, and basic
sketch increase from 9.98%, 92.40%, and 333.09% (in Figure 3) to 24.21%, 158.76%, and
837.85% (in Figure 6), respectively. The skew does not seem to play particularly in favour of
any method. But still the errors of skimmed and basic sketches are 7.5 and 39.5 times greater
than ours, respectively.

As a short summary of this qualitative study, we observe that the sketch methods are
suitable for strong positively correlated data, while our approach is more suitable for from weak
positively correlated, random, to negatively correlated data. In addition, our approach can also
benefit from the smoothness of distributions functions, which often exhibits in the real-life data,
such as the distributions of ages and salaries of employees in a company.

 37

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

Single-Join, zipf1=0.5, zipf2=1.0, Strong Positive Correlation

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Single-Join,zipf1=0.5, zipf2=1.0, Weak Positive Correlation

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients/ Atomic Sketches)

Re
la

tiv
e

Er
ro

r (
%

)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 1. Strong Positively Correlated Figure 2. Weak Positively Correlated
 Attributes Attributes

Single-Join, zipf1=0.5, zipf2=1.0, Independent Correlation

0
100
200
300
400
500
600
700
800

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Single-Join, zipf1=0.5, zipf2=1.0, Negative Correlation

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 3. Independent Join Attributes Figure 4. Negatively Correlated Attributes

Single-Join, zipf1=0.5(smooth), zipf2=1.0(smooth)

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Single-Join, zipf1=0.5, zipf2=1.5, Independent Correlation

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 5. Strong Positively Correlated Figure 6. Independent Join Attributes
 Attributes with Smooth Distributions with Skewer distributions

 38

International Journal of Information Technology, Vol. 13 No. 1 2007

5.2.2.2 Synthetic Data Type II
 The purpose of this experiment is to assess the potentials of these methods in real-life
applications. We implemented the data generator proposed by Vitter, et al. [27] and extended by
Dobra, et al. [9] to generate real-life like data. The data are clustered and positively correlated.
The datasets are generated by distributing tuples across and within the randomly picked
rectangular regions (clusters) in the multi-dimensional attribute space of a relation. We chose the
same parameter setting as in [9]: skew across regions (zinter) =1.0 and skew within each region
(zintra) =0.0-0.5; number of regions=10 and 50 (the later is in addition to Dobra’s [9]); size of
each domain=1024; size of each relation=107, volume of each region =1,000 – 2,000 and
perturbation parameter p=0.5 - 1.0.
 Figure 7 and 8 show the results of single-join queries over clustered and correlated datasets
with different numbers of clusters. Again, the cosine method outperforms the sketch methods.
For example, with 500 coefficients in Figure 7, our method generates an average error of 0.60%
while the errors of skimmed sketch and basic sketch method are 7.98% and 8.24%, respectively,
which are 13.2 and 13.6 times greater than ours. Figure 8 shows a similar result as the number of
clusters increases to 50. The superiority of our method in these experiments is mainly due to the
not extremely strong positive correlations (as compared to that in Figure 1) exhibited in the data
although the clusters are still very positively correlated. Randomness sets in when the centers of
the clusters are selected randomly within their respective shrunk regions in the correlated
relations. Clustered data could also make the distribution curves a little smoother than a
completely random distribution.
 Similar results are observed in the two-join query cases, as shown in Figures 9 and 10.
Please note that the attributes space is 10242 =106 in the two-join cases and thus more
coefficients are needed to capture the distribution information. Suffering from the large attribute
space, all methods degrades compared to the single-join case. For example, in the two-join
queries, with 1,000 coefficients, which is only 0.1% of the attribute space, the errors of the
cosine method are 26.27% and 12.65% for 10 and 50 clusters, respectively, while the errors are
only 0.28% and 0.96% in the single-join cases. Our method again performs much better than the
sketch methods in both cases. Their errors are as large as 142.46% (skimmed sketch) and
147.56% (basic sketch) for the 10-cluster dataset, which are 5.4 and 5.6 times greater than ours.
For the 50-cluster dataset, our result is 12.65%, while theirs are 139.89 % and 180.37% for the
skimmed and basic sketches, respectively; theirs are 11.1 and 14.3 times larger than ours. The
ratios do not differ much from those of 10-cluster set.
 The experimental results of three-join queries are shown in Figures 11 and 12. Since too
few resulting tuples could generate large estimation relative errors, the attribute domain sizes are
reduced to 400, instead of 1,024 as in the previous experiments. Figure 11 shows the results of
the three-dimensional 10-cluster dataset. With 1,000 coefficients, the cosine yields an average
error of 86.26% and the error decreases to 9.03% when 20,000 coefficients are used. As for the
skimmed and basic sketches, the errors are too large to be useful for coefficients less than
10,000. Even with 20,000 coefficients, their relative errors are still 2.2 and 3.0 times larger than
ours. Similar results are also observed in Figure 12 for the 50-cluster dataset.

 39

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

Single-Join, Clustered Data, No. of Clusters: 10

0
2
4
6
8

10
12
14
16
18

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Single-Join, Clustered Data, No. of Clusters: 50

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 7. Single-Join Query, Cluster Data, Figure 8. Single-Join Query, Cluster Data,
 No. of Clusters: 10 No. of Clusters: 50

Two-Join, Clustered Data, No. of Clusters:10

0

20

40

60

80

100

120

140

160

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Two-Join, Clustered Data, No. of Clusters: 50

0
20
40
60
80

100
120
140
160
180
200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Storage Space (No. of Coefficents / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 9. Two-Join Query, Cluster Data, Figure 10. Two-Join Query, Cluster Data,
 No. of Clusters: 10 No. of Clusters: 50

Three-Join, Clustered Data, No. of Clusters:10

0

400

800

1200

1600

2000

1000 4000 7000 10000 13000 16000 19000
Storage Space (No. of Coefficients / Atomic Sketch)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Three-Join, Clustered Data (No. of Clusters: 50)

0

400

800

1200

1600

2000

1000 4000 7000 10000 13000 16000 19000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
) Cosine

Skimmed Sketch
Basic Sketch

Figure 11. Three-Join Query, Cluster Data, Figure 12. Three-Join Query, Cluster Data,
 No. of Clusters: 10 No. of Clusters: 50

5.3 Experiments on Real Data
5.3.1 Real Datasets
 Three real-life datasets - the Current Population Survey (also used in [9]), the Income and
Program Participation Survey from the Bureau of Census, and the Internet Traffic Archive, are
used for the experiments. The Current Population Survey (also denoted as real dataset I),
containing 133,696, 143,598, and 135,872 tuples for the January, February, and March 2004,
respectively, are used for the experiments. The two attributes selected for the experiments are
Age and Education, whose ranges are [1, 99] and [1, 46], respectively.
 For the Income and Program Participation Survey (also denoted as real dataset II), we use
the attributes SSUSEQ (Sequence Number of Sample Unit), WHFNWGT (Weight for household

 40

International Journal of Information Technology, Vol. 13 No. 1 2007

reference person), and THEARN (Total household earned income) for the years 2001 and 2004.
Their ranges are [1, 50,000], [1, 9,999] and [1, 1,500], respectively. The 2001 data has 361,046
tuples and 2004 data 441,849 tuples.
 The Internet Traffic Archive (also denoted as real dataset III) contains the traces of internet
network traffic. We use the DEC-PKT traces that record four hours’ worth of the wide-area
traffic between the Digital Equipment Corporation and the rest of the world for our study.
Records of the TCP and UDP packets in the first three hours are used in our experiments. The
sizes of the TCP files are 94MB, 113MB and 128MB, and size of the UDP files are 21.4MB,
21.4MB and 26.9MB respectively. Two attributes, the source and destination hosts are used as
the join attributes. Their ranges are [0, 2394] in TCP files and [0, 7327] in UDP files.

5.3.2 Results on Real Data

The experimental results of single-joins on the real dataset I are shown in Figure 13. The
join attribute is “Age”. All methods give good estimation, as shown in Figure 13. For example,
with only 20 coefficients or atomic sketches, the relative errors of the cosine, skimmed, and basic
sketches, are already as low as 4.71%, 8.08%, and 16.05%, respectively. Two reasons contribute
to this high accuracy are the small attribute domain (0-99) and large number of resulting tuples
(0.26 billion). In general, the smaller the domain size, the better the approximation.

Singe-Join, Real Data I

0

5

10

15

20

25

10 20 30 40 50
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Two-Join, Real Data I

0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000 3500 4000

Storage Space (No. of Coefficients / Atomic Sketches)

Re
la

tiv
e

Er
ro

r (
%

) Cosine
Skimmed Sketch
Basic Sketch

 Figure 13. Single-Join Query, Real Data I Figure. 14. Two-Join Query, Real Data I

 For two-join queries, the resulting size is 1.02 × 108. As shown in Figure 14, the relative

error of ours is less than 15% with only 1,500 coefficients while the relative errors of the
skimmed and basic sketches are as large as 38.1% and 44.81%. We attribute the superiority of
the cosine method to (1) the not extremely strong positive correlations like that in Figure 1,
where there is absolutely no tuple violating the positive correlation, and (2) some smoothness in
the distribution curves (as compared to the totally rugged curves). In fact, the positive
correlations between the two “Age” attributes and the two “Education” attributes are rather
strong, but the cosine method still outperforms the sketches methods.

 41

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

Single-Join, Real Data II

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Two-Join, Real Data II

0
5

10
15
20
25
30
35
40

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 15. Single-Join Query, Real Data II Figure 16. Two-Join Query, Real Data

 Figures 15 and 16 show the results on the real dataset II (the Income and Program
Participation Survey data). The single-join query (Figure 15) is performed on the SSUSEQ
attribute, which has a rather large domain [1, 50,000]. Our method achieves high accuracy with
just a few coefficients while the two sketch methods could not provide satisfactory estimation
until using 10 times more coefficients. With 100 coefficients, the relative errors of the cosine,
skimmed sketch, and basic sketch are 0.12%, 16.23%, and 22.12%, respectively. The skimmed
and basic sketches generate 136 and 185 times larger error than our method. When the number of
coefficients increases to 1,000, the relative errors of the cosine, skimmed sketch, and basic
sketch decrease to 0.07%, 0.29%, and 4.06%, respectively. Cosine provides much better
estimation all the time. Figure 16 shows the results of two-join queries on attributes WHFNWGT
and THEARN. Again, the cosine method outperforms the skimmed and basic sketch methods.
With 1,000 coefficients, the relative error of cosine is 6.6% while the relative error of the
skimmed and basic sketch is 10.5% and 12.3%.
 The experimental results on real dataset III (Internet Traffic Archive) are shown in Figures
17 to 20. The single-join is performed on the source (Figure 17) and destination (Figure 18) host
attributes of the TCP datasets. In Figure 17, with 100 coefficients, the cosine has an error of
10.79% while the skimmed and basic sketches’ errors are 57.6% and 60.1%, respectively. With
900 coefficients, the relative error of the cosine is 6.10% while 15.3% and 22.6% for the
skimmed and basic sketches, respectively.
 The results of two-join experiments are shown in Figures 19 (for the TCP files) and 20
(for the UDP files). The performance of the skimmed and basic sketches is again much worse
than our method. In Figure 19, with 1,500 coefficients, our method generates an error of 0.57%
while the skimmed and basic sketch still has errors as large as 66.04% and 93.72%, respectively.
A similar result is observed in Figure 20 for the two join experiment on the UDP files.

Single-Join (1), Real Data III

0
10
20
30
40
50
60
70

100 200 300 400 500 600 700 800 900
Storage Space (No. of Coefficients/Atomic Sketches)

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

Single-Join (2), Real Data III

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900 1000
Number of Coefficients / Atomic Sketches

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 42

International Journal of Information Technology, Vol. 13 No. 1 2007

 Figure 17. Single-Join Query (1), Figure 18. Single-Join Query (2),
 Real Data III Real Data III

Two-Join (1), Real Data III

0

200

400

600

800

1000

1200

100 300 500 700 900 1100 1300 1500
Number of Coefficients/Atomic Sketches

R
el

at
iv

e
Er

ro
r (

%
) Cosine

Skimmed Sketch
Basic Sketch

Two-Join (2), Real Data III

0

100

200

300

400

500

250 500 750 1000 1250 1500 1750 2000 2250 2500
Number of Coefficients / Atomic Sketches

R
el

at
iv

e
Er

ro
r (

%
)

Cosine
Skimmed Sketch
Basic Sketch

 Figure 19. Two-Join Query (1), Figure 20. Two-Join Query (2),
 Real Data III Real Data III

5.4 Computation Speed
 When a tuple arrives, we immediately update the coefficients, following Eq. (3.4). On the
average, it takes 0.32 µs to update one coefficient. So, even for the case with 10,000 coefficients,
it takes only 3.2 ms to do the job. To estimate join sizes, we follow Eq. (4.6). On the average, it
takes about 0.4 ms to derive an estimate from 10,000 coefficients. As for the sketch methods, to
update 10,000 atomic sketches, it takes about 1.0 ms, which is faster than ours; this is due to
simpler computations involved in updating atomic sketches. But to derive an estimate from
10,000 atomic sketches, it would take 1.6 ms, as compared to our 0.4 ms, because they need to
find the median of a large number of group means.
 It is worth mentioning that all the methods can update their coefficients in a batch fashion.
That is, updates to the distributions can be stored aside and then applied to the coefficients or
atomic sketches all in once. As a result, there should not be any problem for all these methods to
cope with the fast on-line one-pass data streams.

6. Conclusions and Future Work
 In this paper, we discuss approximate aggregation query processing over data streams
with limited storage space. Specifically, we concentrate on the estimation of aggregation queries
with equi-joins. We use cosine series to approximate the data distributions of the data streams
and then use them to estimate the size of equi-join queries. Experimental results have shown that
our approach produces much more accurate estimates than sketches for most cases. We have also
demonstrated that our approach can be updated dynamically and quickly. The proposed method
is well suited for on-line approximate aggregation equi-join queries over continuous data
streams. Our method can also be applied to non-equal-joins, range, and point queries.

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. “Join synopses for approximate query
answering”, In SIGMOD. ACM Press, 1999，pp275-286.
[2] N. Alon, Y. Matias and M.Szegedy. “The Space Complexity of Approximation the Frequency
Moments”, In Proc of 28th Annual ACM Symp.on the Theory of Computing, May 1996, pp 20-29.

 43

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

[3] N. Alon, P.B Gibbons, Y. Matias and M.Szegedy. “Tracking Join and Self-join Sizes in Limited
Storage”, In proc of the 18th ACM SIGACT-SIGMOD-SIGART Symp. on the Principles of Database
Systems, May 1999, pp.10-20.
[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models and Issues in Data Stream
Systems”. 21st ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems,
Madison, June 2002, pp 1-16.
[5] S. Babu and J. Widom. “Continuous queries over data streams”. SIGMOD Record, 2001, 30(3):
pp109-120.
[6] A. Bulut and A. K. Singh. “SWAT: Hierarchical stream summarization in large networks”. In IEEE
19th International Conference on Data Engineering, Bangalore, India, Mar 2003 pp303-314
[7] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. “Approximate query processing using
wavelets”. In Proceedings of 26th International Conference on VLDB, Cairo, Egypt, 2001, pp111-122.
[8] C.Cui, An Introduction to Wavelets, Academic Press, 1992.
[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing complex aggregate queries over
data stream”, In ACM-SIGMOD, Madison, Wisconsin, June 2002, pp61-72.
[10] E. Dudewicz and S. Mishra, Modern Mathematical Statistics, John Wiley & Sons. Inc, 1988.
[11] P. Gibbons and Y. Matias. “New sampling-based summary statistics for improving approximate
query answers”. In ACM SIGMOD 1998, Seattle, Washington , June 1998, pp331-342.
[12] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss, “Surfing Wavelets on Streams: One-
pass Summaries for Approximate Aggregate Queries”, In Proc. of VLDB, 2001, Roma, Italy, Sep, 2001 ,
pp79-88.
[13] S. Guha, N. Koudas, and K. Shim. “Data-streams and histograms”. In Proc. ACM Symp. on the
Theory of Computing (STOC), 2001, Hersonissos, Greece, 2001, pp471-475
[14] P. Haas, J. Naughton, S. Seshadri, L. Stokes, “Sampling-based estimation of the number of distinct
values of an attribute”, Proc. of VLDB, Zurich, Switzerland, September, 1995, pp311-322.
[15] W-C. Hou, G. Ozsoyoglu and B. Taneja, “Statistical Estimators for Relational Algebra Expressions”,
Proceedings of the 7th ACM Symposium on Principles of Database Systems, Austin TX, March 1988,
pp276-287.
[16] P. Hall, “Orthogonal Series Distribution Function Estimation with Applications”, Journal of the
Royal Statistical Society, Series B, Vol.45, No.1 pp81-88, 1983
 [17] Y. Ioannidis and S. Christodoulakis. “Optimal Histograms for Limiting Worst-Case Error
Propagation in the Size of Join Results”. ACM Transactions on Database Systems,December 1993, Vol.
18, No. 4, 709-748.
[18] Y. E. Ioannidis and V. Poosala. “Balancing Histogram Optimality and Practicality for Query Result
Size Estimation”. In Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, San Jose, California, 1995, pp233-244.
[19] Y. E. Ioannidis and V. Poosala “Histogram-Based Approximation of Set-Valued Query Answers”,
Proc. of 25th VLDB Conference, pp174-185
[20] N. Koudas, S. Muthukrishnan and D. Srivastava. “Optimal Histograms for Hierarchical Range
Queries (Extended Abstract) (2000)”, Proc. of the 19th ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, Dallas, Texas, United States, 2000, pp196 - 204
[21] J-H. Lee, D-H. Kim and C-W Chung, “Multi-dimensional Selectivity Estimation Using Compressed
Histogram Information”, SIGMOD 1999, pp205-214.
[22] R. Lipton, J. Naughton and D. Schneider, “Practical Selecting Estimation through Adaptive
Sampling”, ACM SIGMOD 1990, Atlantic City, NJ, May 1990, pp1-11.
[23] Y. Matias, J. S. Vitter, and M. Wang. “Wavelet-Based Histograms for Selectivity Estimation”, In
Proceedings of the ACM SIGMOD Conference 1998, Seattle, Washington , June 1998, pp 448-459.
[24] Y. Matias, J. Scott Vitter and M. Wang, “Dynamic Maintenance of Wavelet-Based Histograms”.
Proc 26th VLDB Conference 2000, Cairo, Egypt, 2000, pp101- 110
[25] V. Poosala and Y.E.Ioannnis, “Selectivity Estimation Without Attribute Values Independence
Assumption”, Proc 23rd VLDB Conference, Athens,Greece, 1997, pp 486- 495

 44

International Journal of Information Technology, Vol. 13 No. 1 2007

[26] TPC benchmark D, (decision support, 1995)
[27] J.S. Vitter and M. Wang. “Approximate Computation of Multidimensional Aggregates of Sparse
Data Using Wavelets.” In SIGMOD, 1999, pp193- 204
[28] Y-L Wu, D. Agrawal and A. E. Abbadi, “Applying the Golden Rule of Sampling for Query
Estimation”, In ACM SIGMOD 2001, Santa Barbara, California, May 2001, pp 449- 460
[29] F. Yan, W-C. Hou, Q. Zhu, “Selectivity Estimation Using Orthogonal Series”, 8th International
Conference on Database Systems for Advanced Applications (DASFAA), Kyoto, Japan, March, 2003, pp
157-164.
[30] G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Reading, MA, 1949)
[31] M. Pinsky, “Introduction to Fourier Analysis and Wavelet”, Brooks/Cole Thomson Learning, Inc.,
2002
[32] S. Ganguly, M. Garofalakis, R. Rastogi, “Processing Data-Stream Join Aggregates Using Skimmed
Sketches”, Proc of EDBT, Heraklion-Crete, Greece, March 2004, pp. 569-586
[33] E. Issacson and H. B. Keller, Analysis of Numerical Methods Theorem 3, Dover Publications, 1994,
P. 238
[34] W. L. Briggs and V. E. Henson, DFT : an owner's manual for the discrete Fourier transform,
Philadelphia : Society for Industrial and Applied Mathematics Published, 1995.
[35] http://www-static.cc.gatech.edu/projects/disl/specialProjects/StreamJoins.htm

Zhewei Jiang is currently a Ph.D student in the Computer Science
Department at Southern Illinois University, Carbondale, IL, USA. Her
interests are in databases and data mining.

 Cheng Luo is currently a Ph.D student in the Computer Science
 Department at Southern Illinois University, Carbondale, IL, USA. His
 interests are in databases and data mining

Wen-Chi Hou received the MS and PhD degrees in computer science and
engineering from Case Western Reserve University, Cleveland Ohio, in
1985 and 1989, respectively. He is presently an associated professor of
computer science at Southern Illinois University at Carbondale. His
interests include statistical databases, mobile databases, XML databases,
and data streams.

Feng Yan received his MS in computer science and PhD in Mathematics
from Southern Illinois University at Carbondale in 1999. He is currently a
senior quantitative analyst at FPL Energy. His interests are in statistical
databases, data mining, optimization and stochastic calculus and its
applications.

 45

Z. Jiang, C. Luo, W. Hou, F. Yan, Q. Zhu, C. Wang
Join Size Estimation Over Data Streams Using Cosine Series

Qiang Zhu received his PhD degree in computer science at the University
of Waterloo, Canada, in 1995. He is currently an associate professor of
computer and information science at The University of Michigan,
Dearborn, MI, USA. He is also an IBM CAS Faculty Fellow at the IBM
Toronto Laboratory. His research interests include database query
optimization, data streams, multidimensional indexing, self-managing
database systems, data mining, and Web data management.

Chih-Fang Wang received his PhD in computer engineer at University
 of Florida in 1998. His current research interests include sequential,
 parallel and distributed algorithms, data structures, high performance
 computing, optical networks, quantum computing, DNA computing,
 bioinformatics, wireless/mobile security, data mining, and mobile
 agents and secure mobile agent platforms.

 46

