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Abstract 

ing of medical images can ease the search of the representative features in the 
ic images possess rich information expressed by texture. In this paper schemes 
to extract new texture features from the texture spectra in the chromatic and 
or a selected region of interest from each colour component histogram of 
he new M2A Swallowable Capsule. The implementation of a neurofuzzy 
pt of fusion of multiple classifiers have been also adopted in this paper. The 
 support the feasibility of the proposed method. 
aging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy 

ased on information obtained from various sources, such as results of clinical 
ological findings, patients’ history and other data that physician considers in 
iagnostic decision [1]. Imaging techniques have been extensively used, in the 
able tool in the hands of an expert for a more accurate judgment of patients’ 
eginning of computer technology, it becomes necessary for visual systems to 
 that is making its own properties to be outstanding, by enclosing them in a 
 an analysed environment. Computer-assisted image analysis can extract the 
 of the images together with quantitative measurements and thus can ease the 
retations by a physician expert in endoscopy. 
] has been using endoscopic images to define features of the normal and the 
 approaches for the characterisation of colon based on a set of quantitative 
by the fuzzy processing of colon images, have been used for assisting the 
ssessment of the status of patients and were used as inputs to a rule-based 
nd out whether the colon's lumen belongs to either an abnormal or normal 
tive characteristics of the colon are: mean and standard deviation of RGB, 
undary area, form factor, and centre of mass. The analysis of the extracted 
rs was performed using three different neural networks selected for 
lon. The three networks include a two-layer perceptron trained with the delta 
eptron with back-propagation (BP) learning and a self-organizing network. A 
 the three methods was also performed and it was observed that the self-
 more appropriate for the classification of colon status. Endoscopic images 
on of texture. Therefore, the additional texture information can provide better 
nalysis than approaches using merely intensity information. Such information 
LD (colorectal lesions detector) an innovative detection system to support 
nosis and detection of pre-cancerous polyps, by processing endoscopy images 
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or video frame sequences acquired during colonoscopy [3]. It utilised second-order statistical 
features that were calculated on the wavelet transformation of each image to discriminate amongst 
regions of normal or abnormal tissue. A neural network based on the classic BP learning algorithm 
performed the classification of the features. CoLD integrated the feature extraction and classification 
algorithms under a graphical user interface, which allowed both novice and expert users to utilise 
effectively all system’s functions. The detection accuracy of the proposed system has been estimated 
to be more than 95%. 

Recently a new wireless endoscopy system has been developed by Israeli-based Given Imaging 
Limited and produces high-quality images of the small bowel without pain or discomfort to the 
patient [4]. The system consists of a small swallowable capsule containing a battery, a camera on a 
chip, a light source, and a transmitter as shown in Fig. 1. The camera-capsule has a length of three 
centimetres so it can be swallowed with some effort. In 24 hours, the capsule is crossing the patient's 
alimentary canal. For the purpose of this research work, endoscopic images have been obtained 
using this innovative endoscopic device. They have spatial resolution of 171x151 pixels, a 
brightness resolution of 256 levels per colour plane (8bits), and consisted of three colour planes (red, 
green and blue) for a total of 24 bits per pixel. The proposed methodology in this paper is considered 
in two phases. 
 

 
 

  
Fig. 1: Selected endoscopic images of normal and abnormal cases 

 
The first implements the extraction of image features while in the second phase one neurofuzzy 
scheme is implemented / employed to perform the diagnostic task. In this research, a new approach 
of obtaining statistical features/parameters from the texture spectra is proposed both in the chromatic 
and achromatic domains of the image. The definition of texture spectrum employs the determination 
of the texture unit (TU) and texture unit number (NTU) values. Texture units characterise the local 
texture information for a given pixel and its neighbourhood, and the statistics of the entire texture 
unit over the whole image reveal the global texture aspects. For the diagnostic part, the concept of 
multiple-classifier scheme has been adopted, where the fusion of the individual outputs was realised 
using fuzzy integral. The neurofuzzy classifier-scheme adopted in this study utilises a 
defuzzification method, namely area of balance (AOB). 

II. Image Features Extraction 
A major component in analysing images involves data reduction which is accomplished by 
intelligently modifying the image from the lowest level of pixel data into higher level 
representations. Texture is broadly defined as the rate and direction of change of the chromatic 
properties of the image, and could be subjectively described as fine, coarse, smooth, random, 
rippled, and irregular, etc. The analysis of texture in object images is a very important area of 
research as new algorithms are continuously being sought that can improve our ability to 
characterise objects of different types with unique feature signatures. This methodology is better 
developed in the case of grey-scale image analysis as opposed to colour image analysis. In general, 
there are three main approaches to combine colour and texture: parallel, sequential, and integrative 
[13]. In the parallel approach, colour and texture are evaluated separately. Sequential approaches use 
colour analysis as a first step of the process chain: After the colour space is quantised, grey-scale 
texture methods are applied. The integrative method uses the different colour channels of an image 
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and performs the grey-scale texture analysis methods on each channel separately. Similar to texture, 
colour is one of the most important features of objects in image and video data. Each pixel in an 
image has a three-dimensional colour vector and different colour space approaches exist to represent 
colour information. One of these colour space models is the hardware-oriented Red-Green-Blue 
Model (RGB), where the colour vector of a pixel p is the compound of red, green and blue channels. 
Another colour space model is the Hue-Saturation-Intensity Value Model (HSV) that is based on 
colour descriptions rather than individual colour components. The RGB model has a major 
drawback: it is not perceptually uniform. Therefore, most of the systems use colour space models 
other than RGB, such as HSV. The HSV colour space is particularly useful because it is closer to the 
human perception of colours. Hue refers to the dominant wavelength of the colour, while saturation 
depicts the mount of whiteness in the colour. Value describes the brightest intensity among the red, 
green and blue images on the same pixel. 

For the current research work the integrative methodology has been adopted, using the RGB and 
HSV colour channels for the extraction of colour texture information. We exploited the HSV colour 
space, because the lesions present marked differences, especially for the saturation image. The HSV 
colour space can be derived through a transformation of the RGB space. 

We thus focused our attention on nine statistical measures (standard deviation, variance, skew, 
kurtosis, entropy, energy, inverse difference moment, contrast, and covariance). All texture 
descriptors are estimated for all planes in both RGB {R (Red), G (Green), B (Blue)} and HSV {H 
(Hue), S (Saturation), V (Value of Intensity)} spaces, creating a feature vector for each descriptor 
Di=(Ri,Gi,Bi,Hi,Si,Vi) [6]. Thus, a total of 54 features (9 statistical measures x 6 image planes) are 
then estimated. For our experiments, we have used 70 endoscopic images related to abnormal cases 
and 70 images related to normal ones. Fig. 1 shows samples of selected images acquired using the 
M2A capsule of normal and abnormal cases. Generally, the statistical measures are estimated on 
histograms of the original image (1st order statistics) [5]. However, the histogram of the original 
image carries no information regarding relative position of the pixels in the texture. Obviously this 
can fail to distinguish between textures with similar distributions of grey levels. We therefore have 
to implement methods which recognise characteristic relative positions of pixels of given intensity 
levels. An alternative scheme is proposed in this study to extract new texture features from the 
texture spectra in the chromatic and achromatic domains, for a selected region of interest from each 
colour component histogram of the endoscopic images. 
 

A. NTU Transformation 

The definition of texture spectrum employs the determination of the texture unit (TU) and 
texture unit number (NTU) values. Texture unit may be considered as the smallest complete unit 
which best characterises the local texture aspect of a given pixel and its neighbourhood in all 
eight directions of a square raster. In a square raster digital image each pixel is surrounded by 
eight neighbouring pixels. The local texture information for a pixel can be extracted from a 
neighbourhood of 3x3 pixels, which represents the smallest complete unit (in the sense of 
having eight directions surrounding the pixel). Texture units thus characterise the local texture 
information for a given pixel and its neighbourhood, and the statistics of all the texture units 
over the whole image reveal the global texture aspects. Given a neighbourhood of δ δ×  pixels, 
which are denoted by a set containing δ δ×  elements 0 1 ( ) 1{ , ,...., }P P P Pδ δ× −= , where  
represents the chromatic or achromatic (i.e. intensity) value of the central pixel and 

0P

 { 1,2,..., ( ) 1}iP i δ δ= × −  is the chromatic or achromatic value of the neighbouring pixel , 
the , where 

i

0 1 ( ) 1{ , ,...., }TU E E E δ δ× −= { 1,2,...,( ) 1}iE i δ δ= × − is determined as follows: 
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The element occupies the same position as the pixel. Each element of the TU has one of 
three possible values; therefore the combination of all the eight elements results in 6561 
possible TU's in total.  

iE thi

 
Fig 2: Eight clockwise, successive ordering ways of the eight elements of the texture unit.  

The first element  may take eight possible positions from a to h iE
 
The texture unit number (NTU) is the label of the texture unit and is defined using the following 
equation: 

     

( ) 1
1

1
TU i

i
N E

δ δ
ιδ

× −
−

=

= ×∑          (2) 

Where, in our case, 3δ =  
In addition, the eight elements may be ordered differently. If the eight elements are ordered 
clockwise as shown in Fig. 2, the first element may take eight possible positions from the top 
left (a) to the middle left (h), and then the 6561 texture units can be labelled by the Eq. 1, under 
eight different ordering ways (from a to h). Fig. 3 provides an example of transforming a 
neighbourhood to a texture unit with the texture unit number under the ordering way a [11]. 

The previously defined set of 6561 texture units describes the local-texture aspect of a given 
pixel; that is, the relative grey-level relationships between the central pixel and its neighbour. 
Thus the statistics of the frequency of occurrence of all the texture units over a large region of 
an image should reveal texture information. The texture spectrum histogram ( ( ))Hist i is 
obtained as the frequency distribution of all the texture units, with the abscissa showing the 
NTU and the ordinate representing its occurrence frequency.  

 
 

Fig.3: Example of transforming a neighbourhood to a texture unit  
with the texture-unit number 

 
The texture spectra of various image components {V (Value of Intensity), R (Red), G (Green), 
B (Blue), H (Hue), S (Saturation)} are obtained from their texture unit numbers. The statistical 
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features are then estimated on the histograms of the NTU transformations of the chromatic and 
achromatic planes of the image (R,G,B,H,S,V). 

III. Image Features Evaluation 
Recently, the concept of combining multiple classifiers has been actively exploited for developing 
highly reliable “diagnostic” systems [7]. One of the key issues of this approach is how to combine 
the results of the various systems to give the best estimate of the optimal result.   

In this study, six subsystems have been developed, and each of them was associated with the 
six planes specified in the feature extraction process (i.e. R, G, B, H, S, & V). For each subsystem, 9 
statistical features have been associated with, resulting thus a total 54 features space. Each 
subsystem was modelled with the proposed neurofuzzy learning scheme. This provides a degree of 
certainty for each classification based on the statistics for each plane. The outputs of each of these 
networks must then be combined to produce a total output for the system as a whole as can be seen 
in Fig. 4. While a usual scheme chooses one best subsystem from amongst the set of candidate 
subsystems based on a winner-takes-all strategy, the current proposed approach runs all multiple 
subsystems with an appropriate collective decision strategy. The aim in this study is to incorporate 
information from each plane/space so that decisions are based on the whole input space. The adopted 
in this paper methodology was to use the fuzzy integral concept. Fuzzy integral (FI) is a promising 
method that incorporates information from each space/plane so that decisions are based on the whole 
input space in the case of multiple classifier schemes. FI combines evidence of a classification with 
the systems expectation of the importance of that evidence. 
By treating the classification results a series of disjointed subsets of the input space Sugeno defined 
the gλ -fuzzy measure [8]. 

( ) ( ) ( ) ( ) ( );g A B g A g B g A g Bλ∪ = + +  
( 1, )λ∈ − ∞                (3) 

where the λ  measure can be given by solving the following non-linear equation. 

1

1 (1 )        1
K

i

i

gλ λ λ
=

+ = + >∏ −            (4) 

The values are fuzzy densities relating to the reliability of each of the K feature 
networks and satisfy the conditions of fuzzy sets laid out by Sugeno. 

,   {1,..., }ig i K∈

 

 
Fig. 4: Proposed fusion scheme and the neurofuzzy classifier 

 
The classification scheme utilised here is an adaptive fuzzy logic system which utilises the gradient 
descent algorithm as a learning scheme. 
 

A. Adaptive Fuzzy Logic System (AFLS) 

The AFLS is one type of Fuzzy Logic System with a singleton fuzzifier and a defuzzifier. Its 
structure is the same as a normal FLS but its rules are derived and extracted from given 
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training data. In other words, its parameters can be trained like a neural network approach, but 
with its structure in a fuzzy logic system structure. Since we have general ideas about the 
structure and effect of each rule, it is straightforward to effectively initialise each rule. This is a 
tremendous advantage of AFLS over its neural network counterpart. The centroid defuzzifier 
cannot be used because of its computation expense and that it prohibits using the back-
propagation training algorithm. The proposed AFLS includes an alternative defuzzification 
approach, area of balance (AOB). This AFLS has the same approach as the system presented 
by Wang [9] and its feed-forward structure is shown in Fig. 5 with an extra “fuzzy basis” layer. 
The fuzzy basis layer consists of fuzzy basis nodes for each rule. A fuzzy basis node has the 
following form: 

∑
=

=
L

l
l

m
m

x

x
x

1

)(

)(
)(

µ

µ
φ          (5) 

where )(xmφ is a fuzzy basis node for rule m and )(xmµ is a membership value of rule m. 
Since we use a product-inference, the fuzzy basis node )(xmµ is in the following form: 

1
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i

n
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i
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=

= ∏         (6) 

where  is a membership value of the i)( iF
xm

i
µ th  input of rule m. In our case, a Gaussian 

shape as a membership function of each input of each rule has been used hence  will 

be in the following form: 
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i
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b
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         (7) 

where and are the centre and spread parameters, respectively, of the membership 

function i

m
ic m

ib
th input of the mth rule. The most popular defuzzification methods are the centroid 

of area (COA) and centre average (CA). The former although more accurate than the latter, is 

well known for its computational cost. Centroid calculation returns the centroid of the area 

formed by the consequent membership function, the membership value of its rules and the 

max-min or max- product inference.  

 
Fig. 5: Neurofuzzy classifier 
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However, since the COA method provides good performance, its main characteristics, centre of 
gravity and use of the shape of membership function, will be preserved in the design of the 
proposed defuzzification approach. The overall output of the system may be the result of fuzzy 
union or the addition of rule outputs as in Kosko’s method. The proposed AFLS uses Kosko’s 
method with product inference [10]. In general form, the calculation of the output, y, will be 

∑

∑

=

== M

m

m
pm

M

m

m
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m
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p

L

yL
y

1

1

µ

µ
         (8) 

where yp : the pth output of the network, µm : the membership value of the mth rule, : the 
spread parameter of the membership function in the consequent part of the p

m
pL

th output of the mth 
rule, : the centre of the membership function in the consequent part of the pm

py th output of the 
mth rule. 
The gradient descent learning (back-propagation) scheme has been used to update its various 
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where, Jk the objective function is defined as: 

2

1
))()((

2
1∑

=

−=
P

p
kpkpk xdxyJ              (13) 

with P the number of outputs, dp  the desired response of the pth output and )( kp xy defined as 

in Eq. 8. 

IV. Results 
The proposed approach was evaluated using 140 clinically obtained endoscopic M2A images. For 
the present analysis, two decision-classes are considered: abnormal and normal. Seventy images (35 
abnormal and 35 normal) were used for the training and the remaining ones (35 abnormal and 35 
normal) were used for testing. The extraction of quantitative parameters from these endoscopic 
images is based on texture information. Initially, this information is represented by a set of 
descriptive statistical features calculated on the histogram of the original image. In a second stage, 
the NTU-based extraction process, the texture spectrum of the six components (R, G, B, H, S, V) have 
been obtained from the texture unit numbers, and the nine statistical measures have been used  in 
order  to extract new features from each textures spectrum. In this research study, both colour spaces 
(i.e. RGB and HSV) have been utilised. The adopted approach was based on the assumption that 
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different colour spaces produce independent representations of the different colour texture patterns 
[14][15]. A multi classifier consisting of AFLS networks with 9 input nodes and 2 output nodes was 
trained on each of the six feature spaces.  
 

A. Performance of Histograms-based features  

The network trained on the R feature space achieved an accuracy of 92.85% on the testing 
data incorrectly classifying 3 of the normal images as abnormal and 2 abnormal as normal 
ones. The network trained on the G feature space misclassified 2 abnormal images as normal 
but not the same ones as the R space. The remaining one image was misclassified as normal 
ones. The B feature space achieved an accuracy of 94.28% on the testing data with 4 
misclassifications, i.e. 2 abnormal as normal ones and the remaining two images as abnormal 
ones. The network trained on the H feature space achieved 94.28% accuracy on the testing 
data. The network trained on the S feature space achieved an accuracy of only 91.42% on the 
testing data. Finally, the network for the V feature space misclassified 2 normal cases as 
abnormal ones, giving it an accuracy of 97.14% on the testing data. The soft combination of 
neural classifiers using FI fusion concept resulted in 92.85% accuracy over the testing dataset 
(5 mistakes out of 70 testing patterns), demonstrating in this way the efficiency of this 
scheme in terms of accuracy. More specifically, 2 normal cases have been considered as 
abnormal while 3 abnormal as normal ones. The results, as shown in Fig. 6, indicate a high 
confidence levels for each correct classification, such as 0.63, while Table 1 presents the 
performance of individual components. 
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Fig. 6: AFLS with FI fusion for Histogram 
 

B. Performance of NTU-based features  

In the NTU-based extraction process, the texture spectrum of the six components (R, G, B, H, 
S, V) have been obtained from the texture unit numbers, and the same nine statistical 
measures have been used  in order  to extract new features from each textures spectrum. The 
AFLS network trained on the R feature space achieved an accuracy of 94.28% on the testing 
data incorrectly classifying 2 of the normal images as abnormal and 2 abnormal as normal 
ones. The network trained on the G feature space misclassified 3 normal images as abnormal 
but not the same ones as the R space. The B feature space achieved an accuracy of 97.14% 
on the testing data with 2 misclassifications, i.e. one abnormal as normal one and the 
remaining one image as abnormal one. The network trained on the H feature space achieved 
97.14% accuracy on the testing data. The network trained on the S feature space achieved an 
accuracy of only 92.86% on the testing data. Finally, the network for the V feature space 
misclassified two normal cases as abnormal ones, giving it an accuracy of 97.14% on the 
testing data. The soft combination of AFLS classifiers using FI fusion concept resulted in 
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95.71% accuracy over the testing dataset (3 mistakes out of 70 testing patterns), 
demonstrating in this way again the efficiency of this scheme in terms of accuracy. 

 
Table 1: AFLS Performances 

 
Modules Histogram Accuracy 

(70 testing patterns) 
NTU Accuracy 
(70 testing patterns) 

R 92.85% (5 mistakes) 94.28% (4 mistakes) 
G 95.71% (3 mistakes) 95.71% (3 mistakes) 
B 94.28% (4 mistakes) 97.14% (2 mistakes) 
H 94.28% (4 mistakes) 97.14% (2 mistakes) 
S 91.42% (6 mistakes) 92.86% (5 mistakes) 
V  97.14% (2 mistakes)  97.14% (2 mistakes) 
Overall 92.85% (5 mistakes) 95.71% (3 mistakes) 

 
More specifically, 2 normal cases as abnormal and one abnormal as normal one provide us a 
good indication of a “healthy” diagnostic performance [11]. However the level of confidence 
in this case was slight less than the previous case (i.e. the histogram), that is 0.59 as shown in 
Fig. 7.  
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Fig. 7: AFLS with FI fusion for NTU

 
The aim of this research study was to combine the diverse information contained in the two colour 
spaces and to improve thus texture discrimination. This approach provides the opportunity to exploit 
the strengths of different colour representations encapsulated by individual experts while avoiding 
their weaknesses, making the overall final decision more accurate [15]. The performance of the 
combined system (using the fuzzy integral concept) in terms of accuracy (i.e. correct diagnosis) was 
superior those of RGB and HSV colour spaces). This can be shown in Table 1. For example, in the 
NTU case, both RGB and HSV have 9 incorrect cases each, where the overall system by applying the 
fuzzy integral achieved a greater performance with 3 incorrect cases. Thus the overall classification 
results were significantly improved by using this modular system (multi-space) approach. 

However, medical diagnostic tests are often perceived by physicians as providing absolute 
answers or as clarifying uncertainty to a greater degree than is warranted. When a diagnosis turns out 
to be at variance with the results of a diagnostic test, the clinician’s assumption may be that the test 
was either misinterpreted or that the test is no good. Such a binary approach to the interpretation of 
diagnostic testing, i.e., assuming a clearly positive or negative result (like an off-on switch), is too 
simplistic and may be counterproductive in the workup of a patient.  
Instead, the results of a diagnostic test should be viewed on a continuum from negative to positive 
and as giving the likelihood or probability of a certain diagnosis. The performance of a neural 
network is usually expressed in terms of its estimation and prediction rates, that is, the number of 
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correctly classified objects in the train and prediction sets, respectively. While these estimators may 
be adequate in certain instances, e.g., general classification tasks, they should not be employed when 
medical data is involved [12]. This is because such variables give only a measure of overall 
performance. In the case of human beings it is crucial to assess the capacity of a test to distinguish 
between people with (true positive) and without (true negative) a disease, as those individuals may 
or may not be subjected to further evaluations that may be stressing, costly, etc., depending upon the 
result of the test. In these cases, the sensitivity and the specificity are more adequate. The 
performance of all the classification tools evaluated in the present work was thus assessed in terms 
of these variables which are estimated according to [12]: 

  
     

true positive alarms
sensitivity

true positive alarms false negative alarms
=

+  
∑

∑ ∑
 

 
  

      
true negative alarms

specificity
true negative alarms false positive alarms

=
+

∑
∑ ∑

 

 
However, although sensitivity and specificity partially define the efficacy of a diagnostic test, they 
do not answer the clinical concern of whether a patient does or does not have a disease. These 
questions are addressed by calculating the predictive value of the test 

  
     

true positive alarm s
predictability

true positive alarm s false positive alarm s
=

+  
∑

∑ ∑
 

The above methodologies were verified through the calculation of these parameters for the NTU 
AFLS case, and are illustrated in Table 2.  
 

Table 2: Performance indexes  
 

NTU AFLS R G B H S V Overall 
Sensitivity 0.9428 1 0.9714 1 0.914 1 0.9714 
Specificity 0.9428 0.914 0.9714 0.9428 0.9428 0.9428 0.9428 

Predictability 0.9428 0.921 0.9714 0.9459 0.9411 0.9459 0.944 
 

According to literature in medical endoscopy, texture descriptors are calculated with all planes of the 
colour space (i.e. R, G, B for RGB), rather than choosing a specific plane for feature extraction [3] 
[14]. As it is illustrated in Table 2, the performance of the proposed multi-classifier in those indices 
provides indeed a very satisfactory result. In a future work, data-dimensionality principles for each 
classifier could be investigated in order to optimise their input vector. 

V. Conclusion 
The major contribution of the proposed system in the process of medical diagnosis is that it can 
provide additional information to physicians on the characterisation of the endoscopic images / 
tissues, by exploiting its textural characteristics, which are consequently used for the classification of 
the corresponding image regions as normal or abnormal. An approach on extracting statistical 
features from endoscopic images using the M2A Given Imaging capsule have been developed by 
obtaining those quantitative parameters from the texture spectra  from the calculation the texture unit 
numbers (NTU) over the histogram spectrum. In this study, an intelligent decision support system has 
been developed for endoscopic diagnosis based on a multiple-classifier scheme. This multiple-
classifier approach using Fuzzy integral as a fusion method provided encouraging results. Although, 
the AFLS network provided evidence of its strength, future studies will be focused on further 
development of this “diagnostic” system by investigating algorithms for reduction of input 
dimensionality as well as the testing of this approach to the a new endoscopic capsule - IVP,  which 
was developed via the IST a European research  project.  
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