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Abstract 
In this paper, an approach based upon Genetic Recombination is proposed, and applied to the 
Traveling Salesman Problem (TSP). The algorithm is composed of two Sample Genetic Algorithms 
(SGAs) which only consist of the basic genetic operators such as selection, crossover and mutation. 
One of the SGAs is named as the Global Genetic Algorithm (GGA), and encompasses the main tours 
where it is designed to search for the global optimal solutions. Another one is named as the Local 
Genetic Algorithm (LGA) and traverses over the sub tours to find the local optimal solutions. The 
LGA is combined to the GGA as an operator. The local optimal solutions are recombined to the 
main tours for improving the search quality. To investigate the features of the proposed algorithm, it 
is applied to a small double circles TSP, and some interesting results are presented in our 
experiments. 
 

Keyword: genetic algorithm, local search, genetic recombination, traveling salesman problem  

I. Introduction 
TSP is one of the well-studied combinatorial optimization problems [8], [21]. Many researchers 

from various fields have devoted to developing new algorithms for solving it. In the TSP, each 
distance between two cities is given for a set of n cities. The goal is to find the shortest tour. There 
are currently three general classes of heuristics for the TSP: classical tour construction heuristics 
such as the Nearest Neighbor method, the Greedy algorithm, and local search algorithms based on 
re-arranging segments of the tour [18]. Many progressive results have been presented in the previous 
studies during the recent years even though there are still improvable spaces with the search 
algorithms, which have been applied to the TSP, such as ant colonies[15], local search[6], neural 
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networks[13], simulated annealing [20], tabu search [3], and genetic algorithms [12]. It has been 
proved that the hybrid of different algorithms is more effective than a single algorithm. For example, 
the local search has been successful for improving GAs in the search processes [1], [19], [22]. Most 
of the works on solving the TSP are focused on the efficiency of how to solve the larger TSP 
instances. Some of the works aim at expanding the theories of search algorithms, especially in the 
GA domain. 

Our attempt is to make a discussion on the GAs based on Genetic Recombination in this paper. 
The algorithm is composed of two SGAs which only contain basic genetic operators. One is the 
GGA which is applied to the main tours, for searching for the global optimal solutions. Another is 
the LGA which is applied to the sub tours for searching for local optimal solutions. The SGA was 
developed by John Holland, and his original algorithm is approximately the same as shown in the 
Fig.1. [10]. In the early studies, the SGA played an important role in the development of GAs, and 
attracted the researchers' attentions widely. Goldberg made a detailed discussion on how the SGA 
works with some simple optimal mathematical functions and other problems in his book [5]. Reeves 
discussed the differences, and similarities between the SGA and the neighborhood search [4]. 
Michael D. Vose provided an introduction to what is known about SGA theory. He also made 
available algorithms for the computation of mathematical objects related to SGA [16]. All the 
studies have shown that the SGA is still valuable in heuristic search algorithms. 
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Fig.1   Simple GA 

II. Local Search in GAs 
Every successful strategy to produce near-optimal solutions necessarily relies upon the local 

search algorithm. All these algorithms differ with respect to their neighborhood structures. Any such 
structure specifies a set of neighboring solutions that are in some sense close to that solution. The 
associated local improvement operator replaces a current solution by a neighboring solution of better 
value if possible. The local search algorithm is repeated several times, retaining the best local 
optimum found. Our works focus on the local search algorithms. In the hybrid of the Local Search 
and the GAs, the design of the local operator is very important. There are many local search 
heuristics which have been combined into GAs for the TSP. For example, the well-known 2-Opt 
heuristic has been used to optimize the TSP tours in connection with the GAs [21]. The 2-Opt 
removes two edges in a tour, and then one of the resultant segments is reversed and the two 
segments are reconnected. If 2-Opt results in an improved tour, the change is preserved. Otherwise, 
the tour is returned to the original form. The 2-Opt uses a pair of edges which is formed from 4 cities 
in the tour. It is a powerful local search operator used in the GAs for TSP. Compared with the 2-Opt, 
k-Opt (k=3, 4, …) uses more edges to rearrange the tours.  
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Moreover, some crossover methods also emphasize on the use of local operations. Crossover 
methods usually recombine two individuals to reproduce the new individuals, but most of them 
seldom utilize the shorter edges while they are applied to the tour. Some crossover methods aimed at 
the phenotype of the edges use more cities or a set of cities according to the visiting order in the tour. 
For example, YAMAMURA proposed the sub tour exchange crossover (SXX) which mutually 
exchanges the parts which contain the same continuous cities in two individuals [17]. MAEKAWA 
proposed the edge exchange crossover (EXX) which utilizes more edges from different individuals 
[14]. Both of the methods are powerful for solving the TSP. However, there is a problem with few 
variations of the child individuals because the SXX is only available when the parts which composed 
of the same cities in two various individuals are found.  

Except for the TSP, local search is also used in many fields [2], [7], [23]. For example, H. Suzuki 
et al. proposed a local search algorithm using a vision-related technique for a real-time visual 
servoing [11]. The method utilizes the global search feature of a GA and a local search technique of 
the GA. Their local operations are very similar to our LGA. They used a sub population generated 
from elite individual of the global GA, then only applied the mutation to the sub population to 
improve the local optimal solution.  

Our approach is to use a sub tour which contains a set of continuous cities ordered according to 
the visiting order. The basic idea is to find a better sub tour to replace the original one. This 
operation acts like the Genetic Recombination in the Genetic Engineering field. Genetic 
Recombination is the process by which the combination of genes in an organism’s offspring is 
different from the combination of genes in that organism. This definition is commonly used in 
classical genetics, evolutionary biology, and population genetics. Commonly, one gene or a set of a 
few foreign genes is taken out of the DNA of one organism and inserted into the DNA of another 
organism by an artificial manipulation of genes. The manipulation disrupts the ordinary command 
code sequence in the DNA. This disruption may make the individual better if it is applied 
judiciously. As we knew, there are many good phenotypes of plants that have been created in 
biological field with Genetic Recombination. The technical problem is how to find out which are the 
better GENES and to replace the original ones with them. In the TSP, it is the technique related to 
the local search. To find the better cities in the tour, we chose a set of contiguous cities from the 
main tour to form a sub tour, and then apply the LGA to the sub tour to find better solutions to feed 
into the main tour. This operation cultivates fitter GENES in a way that mimics biology, the details 
of which are described in the following section. 
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Fig.2   Proposed Algorithm 
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III. Proposed algorithm 
The proposed algorithm is shown in Fig.2. The parts A and B in the figure are both separately a 

SGA before part B is intercalated into part A. Part B is the LGA in the algorithm. The two parts form 
the new algorithm-GGA. Part B performs as a local search operator in the GGA. The GGA is 
applied to the main tour for searching for global optimal solutions. To obtain the global optimal 
solutions in the process of the TSP, the GGA may just need to improve the order of a set of cities in 
the best tour, especially in the latter stages of the process. A set of continuous cities are chosen to 
create the sub tour in the experiment. The LGA is applied to the sub tour, for finding the local 
optimal solution to replace the original part chosen from the main tour. 

 There are two methods for initializing the sub tour:  (1): Keep the original part from the main 
tour as an individual in the population of the LGA, and then randomly initialize the sub tour, except 
for the start and end cities to match the population size of the LGA. (2): Only reproduce the original 
part from the main tour to the population size of the LGA. It means the population is composed of 
same individuals as the original part. The same operation connoted in both initialization methods (1) 
and (2) is that the original parts from the main tours are preserved in the population of the LGA. If 
the solution of the LGA is shorter than the original part, the main tour will be improved when it is 
recombined. If no solution is found to be shorter than the original part in the LGA, then the original 
part will be recombined back to the main tour. Both of the initialization methods are available for a 
small sub tour in the LGA. But, the first method is not suggested for a big sub tour as it takes too 
long a time to initialize. The local operations described in Suzuki’s paper are the same as the second 
initialization method used in our algorithm for initializing the LGA. The difference is that we used a 
SGA which contains crossover and selection except for the mutation and applied the local search to 
more elite individuals. Only one elite individual is selected to create the sub population in Suzuki’s 
algorithm.  

 In the LGA, the sub tour is an open tour. The length of the tour is calculated from the start city 
to the end city, not including the distance between the end city and the start city. Another important 
point is that all individuals in the population of the LGA have the same start and end cities during 
the processing. This imperative is for avoiding the main tour becoming longer at the connection 
points after the recombination of the sub tour.  

GGA and LGA are complete genetic algorithms; hence all genetic operators for solving the TSP 
are applicable to them. In the experiments, only three genetic operators have been selected: 
Crossover, Mutation and Selection. Crossover is a one point crossover method with two random 
individuals. Mutation is randomly carried out on the individuals by changing the order of two cities 
chosen randomly within a tour. Selection is carried out to replace the four longest individuals with 
the two shortest ones in the population. In the LGA, the mutation and crossover keep the diversity of 
the population, so the mutation rate is set higher than in the GGA. The terminative conditions are set 
to the total number of generations in the GGA and the LGA. 

Obviously, it is computationally expensive running a big LGA in every generation of the GGA. 
But, it is believed that the LGA could be seen as an island for improving the elite individuals of the 
main population in distributed or parallel processing (This will be discussed in our future works). A 
small LGA is effective as an operator in the GGA, which is confirmed latter in the results. 
Local Operations: The tour which consists of n cities is expressed as c=c0, …, ci, ci+1, …, cn-1 (n>=4). 
The distance d(ci, ci+1) is given for the pair of cities ci and ci+1. All cities are coded using path 
representation. 

1. Randomly choose one main tour c= , …, , , …,  from population of the GGA. 0c ic jc 1−nc
2. Randomly choose one sub tour which contains Ns continuous cities in the main tour c. The 
sub tour is cs=ci, …, cj. The start city is ci and the end city is cj. j-i > 4. This is the first individual 
of the LGA. The length of the first individual is set as d0. 
3. Reproduce the first individual to the population size of the LGA. The start city ci and the end 
city cj are kept unchanged. The population of the LGA is created with Ps same individuals. 
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4. Run the LGA in every generation of the GGA. The start and end cities of all individuals of 
the LGA are kept unchanged during the processing. 
5. The best individual in the population of the LGA is obtained when the LGA stopped. Its 
length is set as d1. 
6. The best individual is recombined back into the main tour to replace the original part. 

Let the ratio Ratio=d0/d1, where the range is Ratio > 1.0. The Ratio is discussed again in the next 
section. The cities of sub tour in the LGA ranges from 4 to n. The minimum size of the sub tour is 
set to 4 cities due to the start and end cities being fixed in the sub tour during the processing. The 
maximum size is set to n because it is the largest improvable part in the main tour. The LGA 
performs as the reversion operator in the GGA when the sub tour only contains 4 cities, and the start 
and end cities are fixed. 

IV. Results and Discussions 
The main tour which contains n cities is given as c=c0, …, ci, ci+1, …, cn-1 where the distance 

between two cities ci, ci+1 is d(ci, ci+1). A sub tour which contains m cities from the main tour is c=c0, 
…, ck, ck+1, …, cm-1 where the distance between two cities ck, ck+1 is d(ck, ck+1). Total distances of the 
main tour and the sub tour are dm and ds respectively: 
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The dm and ds are defined as the Fitness of the individuals. The shorter the distance is, the higher 

the Fitness is, in other words, the fitness is inversely proportional to the distance. The parameters are 
shown in Table 1. 

Our source code is written in Java and run on a PC (CPU: Pentium III 1.0GHz, RAM: 256MB) 
with Microsoft Windows2000 Operating System. 

The TSP instance of the double concentric circle, which contains only 24 cities, is used in the 
experiments (Fig.3). The ratio of the inner radius (Ri) and the outer radius (Ro) is Ri/Ro. If Ri/Ro < 
0.58879, the optimal tour is C-type (Fig.3-a). If Ri/Ro > 0.58879, the optimal tour is O-type (Fig.3-
b). 

 
 

Table 1   Parameters in the GGA and the LGA. 
 

 GGA (Main tour) LGA (Sub tour) 
Population size 100 80 
Cities   24 4 ~24 
Generations 1,000 0 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 
Crossover rate 75.0%  75.0% 
Mutation rate 2.0%  2.5% 
Selection 2 shortest individuals replace 

the 4 longest ones 
2 shortest individuals replace the 4 longest 
ones 
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Fig.3   TSP instances 
 
A.  Distributions of Optimal Solutions 

Fig.4 shows the number of the optimal solutions which is obtained in 20 runs. A peak appears 
around the mid point, where the number of cities in the sub tour is about half that of the main tour. 
The Fitness is shown in Fig.5. The process is stopped at the 1,000th generation. The process 
converges faster with the increase of the number of cities in the sub tour at the beginning. This 
happens because there are many more improvable spaces in a big sub tour of the LGA. Stable 
convergences appears when the city numbers of the sub tour range around half that of the main tour. 
The result is not satisfied when the LGA performs as the reversion operator in the experiments. 

 
B. Computation Time 

  The GAs usually take a long time to run to reach a good result. Consequently it increases the 
computation time greatly by combining the LGA into the GGA. The computation time was 
examined by increasing the city number and the generations in the LGA respectively. 

The results are shown in Fig6. and Fig.7. The computation time linearly became longer with the 
increase of the number of cities and the generations in the LGA. Decreasing the number of cities and 
generations in the LGA took a shorter time, but it might not be sufficient for finding a better sub tour 
to improve the main tour.  

 
C. Time and Generations for obtaining the Optimal Solutions 

Fig.8 is the figure of the computational time for obtaining the optimal solutions. There are 3 
points on every vertical line; the low, upper, and central points show the shortest, longest, and mean 
time, respectively for obtaining the optimal solutions in 20 runs. The time for finding the optimal 
solutions increases with the number of cities in the sub tour. In Fig.9, the three points on the lines 
show the earliest, latest, and mean generations for reaching the optimal solutions respectively in 20 
runs. The earliest generations appeared when the number of cities in the sub tour ranged around half 
the number of cities of the main tour. Some optimal solutions appeared early when the sub tours 
contained more cities. But, it takes a far longer computational time when the number of cities of the 
sub tour is increased as stated above. 

 
D. Recombination Rates and Ratios 

Fig.10 is the figure of the recombination rates. We suppose the number of the individuals which 
were recombined with the LGA is Nr and the number of the individuals which were searched by the 
LGA is Ns. The recombination rate 100/Rate ×= NNr . The recombination rates increase with the 
increase of the generations and the number of cities in the sub tours. More generations are 
advantageous for finding a better sub tour to carry out the recombination, but it takes a longer time 
to run the LGA. The same trend appears with the changes of the number of cities because there are 
more improvable spaces in the bigger sub tour. The part chosen from the main tour is easier to 
improve. Fig.11 is the ratio figure. The ratio Ratio = d0/d1 and Ratio > 1.0, where d0 is the original 
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sub tour from the main tour and d1 is a sub tour searched to be shorter in the LGA. The peaks of the 
ratios appear when the number of cities in the sub tour ranged from 8 to 13. The higher ratio means a 
sub tour was found to be shorter in the LGA than the original part from the main tour. The result is 
correlative with the distribution of the optimal solutions in Fig.4.  

 
E. Dynamics of the LGA 

Fig.12 and Fig.13 show the dynamics of the LGA. Fig.12 presents the ratio distributions of a 
single GGA in which the optimal solution is obtained at the 252nd generation. Because the original 
part from the GGA is preserved in the LGA and the ratio Ratio = d0/d1, the value of the Ratio > 1.0. 
It indicates that the LGA creates a shorter sub tour and recombines it to the GGA when Ratio > 1.0. 
The LGA works efficiently and more ratios are bigger than 1.0 before the optimal solution is 
obtained at the 252nd generation. When the population converges to the optimal solution, the LGA 
can not create a better sub tour than the original part from the main tour and the ratios become 1.0. 
Fig.13 shows the ratio distributions of another GGA in which the premature convergence occurs at 
the 151st generation. There are many points distributed over 1.0 after the premature convergence 
occurs, which indicates that the LGA still works efficiently even though the GGA reaches the 
premature convergence. 
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Fig.4   Distribution of optimal solutions             Fig.5   Fitness 
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Fig.6   Computation time with cities increase   Fig.7   Computation time with generations increase. 

 
 

63 



Peng Gang, Ichiro Iimura, and Shigeru Nakayama 
Application of Genetic Recombination to Genetic Local Search in TSP 

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22 24

Cities in subtour

T
im
e
 [
s
]

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20 22 24

Cities in subtour

G
e
n
e
r
a
t
io
n
s

 
Fig.8   Time of optimal solutions         Fig.9   Generation of optimal solutions 
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Fig.10   Rates, generations and population sizes.      Fig.11   Ratios, generations and population sizes. 
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Fig.12   Generation of optimal solution: 252nd        Fig.13   Generation of local solution: 151st 

 

V. Summary 
A local search algorithm based on genetic recombination is discussed in this paper. The LGA 

acts as a local search operator in the GGA. A good result is presented when the number of cities of 
the sub tour is set to around half the number of cities of the main tour. We think it would be 
reasonable running a small LGA for a big TSP instance. It may be more effective in distributed and 
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parallel processing running the LGA as an island to improve the main tour. This will be discussed in 
our future works. 
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