
International Journal of Information Technology Vol. 14 No. 1

41

Abstract
The capability to easily find useful components has become increasingly importance in software
reuse field. Current researches on component retrieval are mostly limited to retrieve the component
whose function is most close to the user requirement. However, in the process of component
retrieval, we frequently face the problem that the individual component can’t completely meet user’s
requirement. This paper proposes a method of composition of business components based on
behavior, our purpose is to settle the problem that individual component can’t completely meet the
user requirement. In this study, deterministic finite state machine is used for modeling the behavior
specification of business component. The composition of business components can be represented as
the product of deterministic finite state machines whose result can be regarded as a nondeterministic
finite state machine. Therefore the problem of component retrieval can be transformed into the
matching between nondeterministic finite state machine and deterministic finite state machine, and
behavior mapping graph is used to check the existence of composition of business components.
Through the composition of business components, we can extract the behaviors in accord with user
requirement from a set of candidate business components, which increase the reuse degree and
reduce the cost of software development.
Keyword: business component, composition, behavior specification matching, behavior mapping
graph

I. Introduction
Component-Based Software Development (CBSD) is a key technology to tackling the rapid

development and software reuse of enterprise information system. CBSD is different from traditional
methodology of software development, it emphasis much on retrieving reusable components from
components repository. In the process of component retrieval, we have to face this problem that the
individual component can not completely meet user requirement. Aim at the problem, a preferred
approach to reducing the development costs combines these components that are functionally close
to the functionality specified by the user. If the behavior of composition of these components can
meet the user requirement, then we can extract these behaviors in accord with the requirement from
these candidate components and reuse directly them, which can increase the reuse degree of
components. A key of the composition of components is checking whether the behavior of
composition of components can meet the user requirement. However, current researches on
component retrieval pay most of their attentions to retrieving the component whose function is close
to the user requirement [9][11][12][13][14][15], and ignore the composition of components, i.e.,

Composition of Business Components Based on
Behavior for Software Reuse

Fanchao Meng, Dechen Zhan and Xiaofei Xu

School of Computer Science Technology, Harbin
Institute of Technology

P.O.Box 315, No. 92 West Da Zhi Street,
Harbin,P.R.China,15001

Mengfanchao74@163.com

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 42

checking whether the behaviors of composition of a set of candidate components meet the user
requirement and how to extract the behaviors in accord with the user requirement from these
components.

Beyond classical signature based interface (such as EJB or CORBA), component behaviors
specify called sequences accepted by a component (as given in a provided interfaces) or call
sequences required by the component (as specified in the required interfaces). The benefit of
including behavior specification in software component interfaces is widely agreed on [1][10].
Different approaches for behavior specifications have been proposed, ranging from state machine
[1][2][3], Petri-nets[4][5][6], predicates[7][8], to process algebras[9][10]. Because finite state
machines based approaches for behavior specifications can support automatic checking of
compatibility, interoperability and substitutability, they are widely used for modeling the distributed
systems and telecommunication systems. Luca de Alfaro [1] uses interface automata to capture the
temporal aspects of software component interfaces. This formalism supports automatic compatibility
checks between interface models and the refinement relation between abstract and concrete version
of the same component. Osamu Shigo [3] describes a design method that defines the interface of a
component by protocol state machine, and then systematically constructs a behavioral state machine
of the component using the interface protocol state machines. This approach can check compatibility
between behavior and its port protocols.

In this paper, we propose a method of composition of business components based on behavior, our
purpose is to settle the problem that individual component can’t completely meet the user
requirement. In this study, deterministic finite state machine that extends the interface automata [1]
is used to model the behavior specification of business component. Compare with interface automata
and protocol state machine [2], we define final states in the deterministic finite state machine, so
block must be considered in checking the compatibility when business components are combined. In
interface automata, alternating simulation relation is used to define the refinement relation between
abstract and concrete version of the same component. Because interface automata don’t define the
final states, refinement relation can’t describe the language containment that ensures that the
behavior of composition of business components can meet the behavior specified by user.
Redondo[12] directly uses language containment to define the matching relation between user
requirement and individual component. This definition is appropriate to describe the matching
relation between two deterministic finite state machines, however, it isn’t appropriate to describe the
matching relation between deterministic finite state machine and nondeterministic finite state
machine. Because different business components maybe include same or similar operations that
don’t belong to the shared operations among them, the behavior specification of composition of
business components can be seen as a nondeterministic finite state machine. Therefore the language
containment isn’t appropriate to describe the behavior specification matching relation between user
requirement and composition of business components.

Aim at the deficiencies of refinement relation and language containment, behavior specification
matching relation is proposed to formalize the matching between user requirement and composition
of business components. The behavior mapping graph is used to check the existence of composition
of business components. To demonstrate the correctness and validity of the proposed method, we
give corresponding theoretical proof and practical case.

Rest of this paper is organized as follows. In section II, we discuss related works. In section III,
we propose our approach to modeling business components and the composition of business
components. In section IV, at first, we introduce the process of business component retrieval, then
propose our approach to checking the existence of composition of business components and
extracting the behaviors in accord with user requirements. In section V, an example is given to
explain our approach. Section VI gives a brief summary on this paper.

International Journal of Information Technology Vol. 14 No. 1

43

II. Related work
Besides finite state machine approaches, there are many approaches to modeling behavior

specifications of components, including predicate, Petri-nets and process algebras. Each of these
approaches has its specific benefits and weakness.

Predicates based approaches for specifying protocols [7][8] can describe protocols of arbitrary
complexity. Unfortunately, this universality makes checking compatibility and substitutability of
composition of components incomputable.

In [4][5], Petri-nets based approaches are used for modeling component behavior specifications.
Nabil[4] presents a new and optimistic approach to the definition of component protocols
compatibility and provides a framework for modeling component protocols together with their
composition. In [5], a formal model of component interaction is proposed by representing
component behaviors by labeled Petri nets. Component compatibility is established by determining
those components which, when connected, are free of deadlock. While efficient algorithms exist for
some Petri-net models to check global properties (such as liveness, absence of deadlocks, etc.) other
properties which are important for component system (like interoperability and substitutability) can’t
be checked in general.

Process algebras being developed for describing the dynamic behavior of system are another
candidate for modeling behavior specifications of components [9][10]. While being more expressive
than finite state machines, they on the other hand lead to behavior specifications that have an infinite
state space and can not be analyzed at all. Furthermore, for a software designer without specific
formal background, finite state machines seem to be easier to create, modify and to understand.

III. Business Component Model
A. Business Component

Traditionally, a component is defined as a self-contained piece of software with well-defined
interface or set of interfaces. A larger-grained component called a business component focuses on a
business concept as the software implement of an autonomous business concept or business process
[16]. A business component is a self-contained software construct, and it can provide a well-defined
and well-known run-time interface, which means that it can be easily combined with other
components to provide useful functionality.

Business components can be identified from enterprise model that includes a business goal,
business objects, business rules and business process [17]. Compare with business object and
business process, they belong to concepts of problem domain, and business component belongs to
concept of solution domain. A business component represents and implements a business object or
business process. In this paper, we focus on the interfaces provided and required by business
components, and deterministic finite state machine is used to model the behavior specification of
business component.

Definition 1. A business components can be defined as C=(n,PI,RI,BS), where, n is the name of
business component. PI={PI1,PI2,…,PIm} is the set of provided interfaces, and each provided
interface consists of a set of provided operations. RI={RI1,RI2,…,RIn}is the set of required interfaces,
and each required interface consists of a set of required operations. BS is the behavior specification
of business component that can be represented as a deterministic finite state machine, denoted as:
BS=(SC,ΣC,TC,sC0,SCF), where SC is a set of finite states; ΣC=ΣC

P∪ΣC
H∪ΣC

R be the set of actions that
represents operation calls or return values of operations, where, ΣC

P is the set of input actions, ΣC
H is

the set of internal actions, and ΣC
R is the set of output actions; TC⊆SC×ΣC×SC is the set of state

transitions; sC0∈ SC is the initial state, each business component includes only one initial state;
SCF⊆SC is the set of final states, and each business component includes at least one final state.

We use symbol s →a s′ to represent a transition of C, where, s, s′∈SC, a∈ΣC, (s,a,s′)∈TC. If
a∈ΣC

P (resp. a∈ΣC
H, a∈ΣC

R), then s →a s′ is called an input (resp. internal, output) transition. We

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 44

denote by TP
C={s →a s′|s,s′∈SC,a∈ΣC

P}, TH
C={s →a s′|s,s′∈SC,a∈ΣC

H}, and TR
C={s →a s′|

s,s′∈SC, a∈ΣC
R} the sets of input, internal and output transitions.

An action a∈ΣC is enabled at state s∈SC if there is a transition s →a s′∈TC for some s′∈SC. We
indicate by ГP

C(s)={a∈TP
C |∃s′∈SC.s →a s′},ГH

C(s)={a∈TH
C|∃s′∈SC.s →a s′}, and ГO

C(s)={a∈TR
C

| ∃ s′∈SC. s →a s′}) the subsets of input, internal and output actions that are enabled at the state s.
Let ГC(s)=ГP

C(s)∪ГH
C(s)∪ГR

C(s) be the subset of actions that are enabled at the state s.
Definition 2. An execution fragment of business component C is a finite alternating sequence of

states and actions, denoted as: η=s0 → 0a s1 → 1a s2…sn-1 → −1na sn, where, s0 is the initial state,
si → ia si+1∈TC for all 0≤i<n. If sn∈SF is a final state, then η is called an execution.

Definition 3. Let η=s0 → 0a s1 → 1a s2…sn-1 → −1na sn be an execution fragment of business
component C, the action sequence: p(η)=a0,a1,…,an-1 is called the trace of η. If η is an execution,
then p(η)= a0,a1,…,an-1 is called a run or a word accepted by C. Let L(C) be the language accepted
by C.

Let s∈SC be a state of business component C, we say that s is reachable if there is an execution
fragment whose last state is in s. we say that s is terminable if there exists an execution η such that s
is on η. In the definition of behavior specification of business component, it is required that all states
are reachable and terminable.

B. The Composition of Business Components

The composition of business components can be defined as a business component system that is
composed of a set of business components and the dependency relationships among them. A
dependency relationship is a connector between two business components that defines that one
business component provides the operations that another business component requires.

Let Ci and Cj be two business components, the dependency relationship between Ci and Cj can be
defined as R(Ci,Cj)={(I,I′)|I∈RIi,I′∈PIj,I⊆I′)}, where, RIi is the set of required interfaces of Ci, PIj is
the set of provided interfaces of Cj, I⊆I′ represents that I′ can provide the operations that I requires.
Let S(Ci,Cj) represent the set of shared actions between Ci and Cj.

Definition 4. A business component system can be defined as N=(CS,RS,BS), where,
CS={C1,C2,…,Cn} is the set of business components, Ci=(ni,PIi,RIi,BSi), BSi=(Si,Σi,Ti,si0,SiF) (0≤i≤n).
RS={R(Ci,Cj)|Ci,Cj∈C}is the set of dependency relationships between business components. BS is
the behavior specification of N, it can be defined as the product of C1,C2,…,Cn, denoted as:
BS=(SN,ΣN,TN,sN0,SNF),where,

• SN=S1×S2×…×Sn is the set of composition states.
• sN0=(s10,s20,…,sn0)∈ SN is the initial state.
• SNF=({s10}∪S1F)× ({s20}∪S2F) ×…× ({si0}∪S2F)\(s10,s20, …,sn0)∈SN is the set of final states.
• ΣN=ΣN

P∪ΣN
H∪ΣN

R is the set of actions, where, ΣN
P=U

n

i
P
i1=

Σ \U jinji ji CCS
≠≤≤ ,,0

),(is the set of

input actions, ΣN
H= () ()UU U

jinji ji
n

i
H
i CCS

≠≤≤=
Σ

,,01
),(is the set of internal actions, and

ΣN
R=U

n

i
R
i1=

Σ \U jinji ji CCS
≠≤≤ ,,0

),(is the set of output actions.

• TN⊆SN×ΣN×SN is the set of state transitions of business component system. If N satisfies any
one condition as follows, it can transfer from state sN=(s1,s2,…,sn)∈SN to state
sN′=(s1′,s2′,…,sn′)∈SN by executing action a∈ΣN:

(1) For an action a∉S(Ci,Cj)(1≤i,j≤n), there exists an input transition si →a si′ in Ci (1≤i≤n),
and for any j (i≠j, 1≤j≤n) such that sj=sj′.

(2) For an action a∈S(Ci,Cj)(1≤i,j≤n), there exists an output transition si →a si′∈Ti
R

 (1≤i≤n),
simultaneously there exists an input transition sj →a sj′∈Tj

P
 (i≠j,1≤j≤n), and for any

k(k≠i,j,1≤k≤n) such that sk=sk′.

International Journal of Information Technology Vol. 14 No. 1

45

Since finite state machine is not necessarily input-enable in every state, in the behavior
specification of business component system, one component may produce an output action that is an
input action of another component in some composition state, but it not accepted, which means that
the environment assumptions of two components with shared interface have mutual contradiction
parts. These states are called as illegal composition states. In checking the compatibility of
composition of business components, we should remove all reachable illegal composition states.

Definition 5. The set of illegal composition states of business component system N can be defined
as: Illegal(N)={(s1,s2,…,sn)∈SN|∃(si,sj)(i≠j,1≤i,j≤n),∃a∈S(Ci,Cj),((a∈ГR

i(si)∧a∉ГP
j(sj))∨(a∈ГR

j(sj)∧
a∉ГP

i(si))}.
In the definition of the behavior specification of business component system, it is required that all

composition states are compatible. We can construct the behavior specification which includes only
compatible composition states by pruning the incompatible composition states, and removing any
unreachable and blocking composition states.

C. A Practical Case

Figure 1 describes a business component system that includes three business components Order,
ChekInv and CheckCred. The component Order consists of one provided interface: PIOrder, and
two required interfaces: RICheckInv and RICheckCred, where, PIOrder includes three provided
operations: receive orders (rece_order), confirm orders (confirm) and cancel orders (cancel),
RICheckInv includes a required operation: check inventory (chk_inv) that is provided by the
provided interface PICheckInv of ChekInv, and RICheckCred includes a required operation: check
credit (chk_cred) that is provided by the provided interface PICheckCred of CheckCred.

0 1 7
rece_order?

Order

chk_inv!
2

inv_ok!

cred_fail!

PICheckInv

4
chk_cred!

6

inv_fail!

Cancel?

chk_inv!

3
cred_ok!

5 confirm?

0 1 2

CheckInv

inv_ok?

inv_fail?

chk_inv?

RICheckInv RICheckCred

PIOrder

PICheckCred

0 1 2

CheckCred

cred_ok?

cred_fail?

chk_cred?

0,0,0 1,0,0 7,2,2
rece_order?

Order || CheckInv ||CheckCred

chk_inv;
2,0,1

inv_ok;

cred_fail;

4,1,2
chk_cred;

6,2,2

inv_fail ;

cancel?

chk_inv;

3,0,2
cred_ok;

5,2,2
confirm?

6,0,2 7,0,2
cancel?

(a) Business components Order, CheckInv and CheckCred. (b) The behavior specification of composition of Order,
CheckInv and CheckCred

confirm?

7,0,0
confirm?

Figure 1. Business component system
After component Order receives the orders send by a customer, it either checks the credit of the

customer or skips this step and enters the step of checking inventory. Two possible return values of
chk_cred are cred_ok, which indicates that the customer has a good credit, and cred_fail, which
indicates that the customer has a poor credit. When component Order calls the operation chk_cred
provided by CheckCred, if the return value is cred_ok, then the component continues to check
inventory, otherwise, it cancels the orders. The two possible return values of check_inv are inv_ok,
which indicates that the available stock can meet the requirement of the customer, and inv_fail,

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 46

which indicates that the available stock can’t meet the requirement of the customer. When the
component Order calls operation chk_inv provided by CheckInv, if the return value is inv_ok, then it
confirms the order, otherwise, it cancels the order.

Figure 1(a) illustrates the behavior specifications of components Order, ChekInv and CheckCred,
and the dependency relation between them. Figure 1(b) illustrates the behavior specification of
composition of Order, ChekInv and CheckCred that includes only compatible composition states.

IV. The composition of business components based on behavior and existence checks
A. The Process of business component retrieval

The process of business component retrieval can be divided into two phases: search phase and
composition phase. Figure 2 illustrates the process of business component retrieval.

Construct User
Requirement Model

Component Search

User Requirement
Model

Candidate
component set

Combine these
candidate components

Check the existence of
composition of components

Existence?

Extract the behavior
meeting user requirement

Component adapter/
assemble

Domain
thesaurus

Component
Repository

yes

no

First Phase Second Phase

Select a composition of
candidate components

Continue?

Satisfy?

yes

no

Select a
candidate component

Figure 2.The process of business component retrieval

In the search phase, at first, the user describes his requirement using behavior specification, and
then uses corresponding search methods to retrieve a set of candidate business components that are
equivalent, extension, compatible or weak compatible behavior specification of the user requirement
[17]. To share the concepts of domain, when the user constructs the requirement model, he needs to
refer to the domain thesaurus. In these candidate business components, if there are individual
components that are equivalent or extension behavior specification of the user requirement, then he
selects a component that is best close to the user requirement from these components as the final
component, otherwise, enters the composition phase.

In the composition phase, when the number of candidate business components is very large, if we
combine all candidate business components, then the complexity of computing the composition will
be very high. To reduce the complexity, these candidate business components should be divided into
several clusters. Components within the same cluster are related by equivalent or extension behavior
specification relation. Two different clusters are related by non-behavior specification. The user can
select one component from each cluster as a combined component. In general, the granularity of user
requirement is not much bigger than that of candidate business components, so the number of
clusters is not much larger, which can decrease the number of combined components. In the process
of composition, these combined components should be also divided into several clusters.
Components within the same cluster are related by dependency relationships. Two different clusters
have not any dependency relationships. We first combine these components within the same cluster
in a gradual fashion, and then continue to combine these clusters (each cluster can be regarded as a

International Journal of Information Technology Vol. 14 No. 1

47

composite component). To educe the number of composition states, the incompatible composition
should be pruned as early as possible. In this paper, we focus on checking the existence of
composition of business components.

B. Behavior Specification Matching

Behavior specification matching aims at formalizing the matching relation between user
requirement and the composition of a set of candidate business components. In this study, we use
deterministic finite state machine whose syntax and semantic are similar to the behavior
specification of business component to describe user requirement.

Definition 6. A user requirement can be defined as R=(SR,ΣR,TR,sR0,SRF), where, SR is the set of
finite states, ΣR is the set of actions, TR⊆SR×ΣR×SR is the set of state transitions, sR0 is the initial state,
and SRF is the set of final states.

Definition 7. Let R=(SR,ΣR,TR,sR0,SRF) be a user requirement, N=(CS,RS,BS) be a business
component system, where, CS={C1,C2,…,Cn} is the set of business components, Ci=(ni,PIi,RIi,BSi),
BSi=(Si,Σi,Ti,si0,SiF) (0≤i≤n). RS={R(Ci,Cj)|Ci,Cj∈C}is the set of dependency relationships between
business components. BS=(SN,ΣN,TN,sN0,SNF) is the behavior specification of N that includes only
compatible composition states, if there exists a behavior specification matching relation from sR to sN:
ρ⊆SR×SN such that satisfies the following conditions, then N is called as an extension behavior
specification of R, denoted as N →M R.

1) ∀sR∈SR, ∃sN∈SN. (sR,sN)∈ρ;
2) (sN0,sN0)∈ρ;
3) ∀sNf ∈SNF, ∃ sNf ∈SNF. (sRf,sNf)∈ρ;
4) ∀(sR,sN)∈ρ and∀ a∈ГR(sR), ∃a′∈ГN

I(sN)∪ГN
H(sN). (a~a′)∧(sR,a,sR′)∈TR∧(sN,a′,sN′)∈TN

P∪TN
H∧

(sR′,sN′)∈ρ.
In the condition (4) above, a~a′ represents that a and a′ is same or similar actions. To evaluate the

similarity between actions, we need to refer to the domain thesaurus. N →M R represents the
behavior of N can meet completely the user requirement R. If N →M R, we can extract the behavior
in accord with user requirement R from N.

0 1 5
rece_order

User Requirement
chk_inv inv_ok

2

4

inv_fail

cancel

3 confirm

0,0,0 1,0,0 7,2,2
rece_order?

Order || CheckInv ||CheckCred

chk_inv;
2,0,1

inv_ok;

cred_fail;

4,1,2
chk_cred;

6,2,2

inv_fail ;

cancel?

chk_inv;

3,0,2
cred_ok;

5,2,2
confirm?

6,0,2 7,0,2cancel?

7,0,0
confirm?

Figure 3.An example of behavior specification matching

Figure 3 describes an example of behavior specification matching between user requirement and
the composition of business components, where, ρ={(0,(0,0,0)),(1,(1,0,0)), (2,(4,1,2)), (3,(5,2,2)),
(4,(6,2,2)),(5,(7,2,2))}.

C. Behavior Mapping Graph

In this study, the behavior mapping graph from R to N that can be regarded as a finite state

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 48

machine with inputs and outputs, is used to check the existence of composition of business
components.

Definition 8. Let R=(SR,ΣR,TR,sR0,SRF) be a user requirement, N=(CS,RS,BS) be a business
component system, where, CS={C1,C2,…,Cn} is the set of business components, Ci=(ni,PIi,RIi,BSi),
BSi=(Si,Σi,Ti,si0,SiF) (0≤i≤n). RS={R(Ci,Cj)|Ci,Cj∈C}is the set of dependency relationships between
business components. BS=(SN,ΣN,TN,sN0,SNF) is the behavior specification of N that includes only
compatible composition states, the behavior mapping graph from R to N can be defined as:
M=(SM,ΣM,TM,sM0,SMF), where,

• SM⊆SR×SN is the set of mapping relations from SR to SN.
• sM0=(sR0,sN0)∈SM is the mapping relation from sR0 to sN0.
• SMF⊆SRF×SNF is the set of mapping relations from SRF to SNF.
• ΣM =ΣR∪ΣN is the set of actions.
• TM⊆SM×ΣR×ΣN×SM is the set of mapping relations from TR to TN. We use symbol

sM  →),('aa sM′ to represent the mapping relation from sR →a sR′ to sN →
'a sN′, where,

sM=(sR,sN)∈SM, sM′=(sR′,sN′)∈SM, a∈ΣR, a′∈ΣN, (sR,a,sR′)∈TR, (sN,a′,sN′)∈TP
N∪TH

N, a~a′.
In the behavior mapping graph M, given a state mapping relationship sM=(sR,sN)∈SM, for a

transition sR →a sR′∈TR in R, it can be mapped into more than one transition whose pre-state is sN
in N, let T(sM,a)={sM  →),('aa sM′| ∃ sN′∈SN. sN →

'a sN′∈TN∧ a~a′} be the set of transition mapping
relations from sR →a sR′ to TN.

Definition 9. Let sM=(sR,sN)∈SM be a mapping relationship from SR to SN, and a∈ГR(sR) is an
action that is enabled in state sR, if T(sM,a)=φ∨(sR∈SRF∧sN∉SNF), then sM is called as an error
mappings relationship. Let ES={(sR,sN)|T((sR,sN),a)=φ∨(sR∈SRF∧sN∉SNF)} be the set of error
mappings relationships from SR to SN, PreS(ES)={sM|∃sM  →),('aa sM′∈TM.sM′∈ES}be the set of pre-
states of ES, and PostS(ES)={sM′|∃sM  →),('aa sM′∈TM.sM∈ES}be the set of post-states of ES.

Definition 10. An execution fragment of behavior mapping graph M can be defined as:
η=sM0  →),('

00 aa sM1  →),('
11 aa sM2…sMn-1  → −−),('

1n1n aa sMn, where sM0=(sR0,sN0). If sMn∈SMF, then η is
called an execution of M. pI(η)=a0,a1,…an-1 is called the input action sequence on η, and
pO(η)=a0′,a1′,K ,an-1′ is called the output action sequence on η. If η is an execution, then pI(η) is
called an input run on η, and pO(η) is called an output run on η. Let LI(M) be the set of input runs of
M, and LO(M) be the set of output runs of M.

Theorem1. LI(M)⊆L(R), LO(M) ⊆L(N).
Proof: If LI(M)=φ and LO(M)=φ, then LI(M)⊆L(R),LO(M)⊆L(N), otherwise we need to prove that:

(1) p∈LI(M)⇒p∈L(R); (2) p′∈LO(M)⇒ p′∈L(N).
Let η=sM0  →),('

00 aa sM1  →),('
11 aa sM2…sMn-1  → −−),('

1n1n aa sMn be an arbitrary execution of M, where,
sMi=(sRi,sNi) (0≤i≤n),sRi∈SR, sNi∈SN, sM0=(sR0,sN0), sMn=(sRn,sNn)∈SMF. pI(η)=a0,a1,…an-1∈LI(M) is an
input run on η, and pO(η)= a0′,a1′,K ,an-1′∈LO(M) is an output run on η.

Let πR(η)=sR0 → 0a sR1 → 1a sR2KsRn-1 → −1na sRn be the projection of η on R. According to the
definition of behavior mapping graph, sRi-1 → −1ia sRi (0≤i≤n) is a transition of R, sR0 is the initial
state of R, and sRn∈SRF is a final state of R, therefore πR(η) is an execution of R, and pI(η) is a run of
R, that is, pI(η)∈L(R) .

Similarly, let πN(η)=sN0 →
'
0a sN1 →

'
1a sN2 K sNn-1 → −

'
1ka sNn be the projection of η on N.

According to the definition of behavior mapping graph, sNi-1 → −
'

1ia sNi (0≤i≤n) is a transition of N,
sN0 is the initial state of N, and sNn∈SNF is a final state of N, therefore πN(η) is an execution of N, and
pO(η) is a run of N, that is, pO(η)∈L(N) .

Thus, we have LI(M)⊆L(R)and LO(M)⊆L(N). ■

International Journal of Information Technology Vol. 14 No. 1

49

D. Check the existence of composition of business components

In this section, we give an algorithm of checking the existence of composition of business
components that only include compatible composition states.

Algorithm 1. Check the existence of composition of business components
Input: User requirement: R=(SR,ΣR,TR,sR0,SRF), business component system N=(CS,RS,BS), where,

CS={C1,C2,…,Cn} is the set of candidate business components. RS is the set of dependency
relationships between candidate business components. BS=(SN,ΣN,TN,sN0,SNF) is the behavior
specification of N that only includes compatible composition states.

Output: T that represents N →M R, and F that represents N  →NM R.
1 Construct the behavior mapping graph from R to N: M.
2 Compute the set of error mappings relationships from SR to SN: ES.
3 Let ES0=PreS(ES)∪PostS(ES).
4 Repeat: For k≥0, let ESk+1=ESk∪PreS(ESk)∪PostS(ESk).
5 Until: ESk+1=ESk.
6 Let SSM=SM/ESk and SSMF=SMF/ESk.
7 Let TSM={sM  →),('aa sM′|sM, sM′∈SSM}.
8 If sM0∈SSM Then
9 Output SM=(SSM,ΣM,TSM,sM0,SSMF) that is a subgraph of M.
10 Return T.
11 Else Return F.

 In algorithm 1, the computational complexity of constructing behavior mapping graph is
O(|SR|2|SN|2), and the computational complexity of checking the existence of composition of business
components is O(|SR|2|SN|2) in the worst case and O(|SR||SN|) in the best case. In the following we
prove the correction of algorithm 1.

In order to prove the correction of algorithm 1, we need to prove theory 2 by giving two lemmas.
Lemma 1. If sM0∈SSM, then L(R)=LI(SM),else L(R)≠LI(SM).
Proof: If we can prove LI(SM)⊆L(R)∧L(R)⊆LI(SM), then we can conclude L(R)=LI(SM).
Since SM is a subgraph of M, LI(SM)⊆LI(M), according to theorem 1, we have LI(M)⊆L(R),

therefore LI(SM)⊆P(R). In the following, we prove only L(R)⊆LI(SM).
Let ηR=sR0 → 0a sR1 → 1a sR2…sRn-1 → −1na sRn be an arbitrary execution of SR, p=a0,a1,…,an-1

∈L(SR) is the run on ηR, if we can prove that p∈L(SM), then we can conclude L(R)⊆LI(SM).
In the following we use mathematical induction to prove that there exists an execution

η=sM0  →),('
00 aa sM1  →),('

11 aa sM2…sMn-1  → −−),('
1n1n aa sMn in SM such that pI(η)=a0,a1,…,an-1=p, where,

sMi=(sRi,sNi)(0≤i≤n).
(1)We need to prove that i=1 is true, which means that there exists an execution fragment

η=sM0  →),('
00 aa sM1 in SM such that pI(η)=a0, where sMj=(sRj,sNj)(0≤j≤1). We use reduction to

absurdity, suppose T(sM0,a0)=φ.
Since T(sM0,a0)=φ, it must be the case that sM0 is an illegal mapping relationship from SR to SN.

According algorithm 1, sM0 should be removed from M, that is, sM0∉SSM, which contradicts our
premise that sM0∈SSM. Therefore, there exists an execution fragment η=sM0  →),('

00 aa sM1 in SM such
that pI(η)=a0, where, sMj=(sRj,sNj)(0≤j≤1).

(2)Suppose that i=k is true, which means that there exists an execution fragment
η=sM0  →),('

00 aa sM1  →),('
11 aa sM2…sMk-1  → −−),('

1k1k aa sMk in SM such that pI(η)=a0,a1,…,an-1, where,
sMj=(sRj,sNj)(0≤j≤k). We prove that i=k+1 is true, which means that we need to prove T(sMk,ak)≠φ. We
use reduction to absurdity, suppose T(sMk,ak)=φ.

Since T(sMk,ak)=φ, it must be the case that sMk is an illegal mapping relationship from SR to SN.
According to algorithm 1, sMk should be removed from M, that is, sMk∉SSM, which contradicts our

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 50

assumption in i=k. Therefore there exists a fragment η=sM0  →),('
00 aa sM1  →),('

11 aa sM2…sMk-1

 → −−),('
1k1k aa sMk  →),('

kk aa sMk+1 in SM such that pI(η)= a0,a1,…,an-1 where, sMj=(sRj,sNj)(0≤j≤k+1).
According to the proof above, η=sM0  →),('

00 aa sM1  →),('
11 aa sM2…sMn-1  → −−),('

1n1n aa sMn is an
execution fragment of SM. In the following we prove that pI(η)= a0,a1,…,an-1 is a run of SM, which
means that we need to prove that sMn=(sRn,sNn)∈SSMF. We use reduction to absurdity, suppose
sMn=(sRn,sNn)∉SSMF.

Since sMn=(sRn,sNn)∉SSMF and sRn∈SRF, it must be the case that sNn∉SNF. Therefore sMn=(sRn,sNn) is
an illegal mapping relationship from SR to SN, according to algorithm 1, sMn should be removed from
M, that is, sMn∉SSM, which contradicts our assumption that sMn∈SSM, therefore, sMn=(sRn,sNn)∈SSMF,
which means p=pI(η)= a0,a1,…,an-1∈LI(SM). That is L(R)⊆ LI (SM).

If sM0∉SSM, then LI(SM)=φ, but L(R)≠φ, thus L(R)≠LI(SM). ■
Lemma 2. L(R)=LI(SM)⇔ N →M R.
Proof: (⇒) If we can prove that SSM⊆SR×SN satisfies the behavior specification matching relation

from SR to SN, then we can conclude that N →M R. According to definition 7, we need to prove the
four conditions as follows:

(1) ∀sR∈SR, ∃sN∈SN .(sR,sN)∈SSM.
We use reduction to absurdity, suppose that ∃sRk∈SR, ∀sN∈SN. (sRk,sN)∉SSM.
Let ηR=sR0 → 0a sR1 → 1a sR2 …sRk → ka sRk+1… sRn-1 → −1na sRn be an execution that includes

state sRk. p(ηR)=a0,a1,…,ak,…,an-1 is run on ηR. Since ∀ sN∈SN.(sRk,sN)∉SSM, it must be the case that
there doesn’t exist a run ηSM=sM0  →),('

00 aa sM1  →),('
11 aa sM2…sMk  →),('

kk aa sMk+1…sMn-1

 → −−),('
1n1n aa sMn that includes state sMk in SM such that sMi=(sRi,sNi)∈SSM, (0≤i≤n), therefore

pI(ηSM)=a0,a1,…,ak,…,an-1∉LI(SM), but p(ηSR)=a0,a1,…,ak,…,an-1∈L(SR), thus L(R)≠LI(SM), which
contradicts our assumption, therefore ∀ sR∈SR, ∃ sN∈SN. (sR,sN)∈SSM.

(2) (sR0,sN0)∈SSM.
We use reduction to absurdity, suppose that (sR0,sN0)∉SSM.
Since (sR0,sN0)∉SSM, LI(SM)=φ. Because L(R)≠φ, it must be the case that LI(SM)≠L(R), which

contradicts our assumption that (sR0,sN0)∉SSM, thus (sR0,sN0)∈SSM.
(3) ∀sRf ∈SRF, ∃sNf ∈SNF. (sRf,sNf)∈SSM.
We use reduction to absurdity, suppose that ∃sRf ∈SRF, ∀sNf∈SNF. (sRf,sNf)∉SSM.
Since ∀sNf∈SNF.(sRf,sNf)∉SSM, according to the result of (1), there exists a state sN∈SN\SNF such that

(sRf,sN)∈SSM. Since sNf ∈SRF and sN∉SNF, and hence (sRf,sN)∉SSMF, according to algorithm 1,
(sRf,sN)∉SSM, which contradicts our assumption that (sRf,sN)∈SSM, therefore, ∀SRf ∈SRF, ∃sNf∈SNF.
(sRf,sNf)∈SSM.

(4) ∀(sR,sN)∈SSM and ∀a∈ГR(sR), ∃a′∈ГN
I(sN)∪ГN

H(sN). (a~a′)∧(sR,a,sR′)∈TR∧(sN,a′,sN′)∈TP
N∪TH

N

∧(sSR′,sN′)∈SSM.
Since there doesn’t exist illegal mapping relationships in SM, ∀(sR,sN)∈SSM and ∀a∈ГR(sR),

∃a′∈ГN
I(sN)∪ГN

H(sN). (a~a′)∧(sR,a,sR′)∈TR ∧(sN,a′,sN′)∈TN ∧(sSR′,sN′)∈SSM.
According to the proof above, we have N →M R.
(⇐) Because N →M R, there exists a behavior specification relation ρ⊆SSR×SN from SR to N, let

SM be a behavior mapping subgraph that is composed of the states in ρ and the transitions between
them, because SM doesn’t include illegal mapping relationships from SR to SN, and sM0∈ρ, according
to lemma2, L(R)=LI(SM). ■

Theorem 2. Let R be a user requirement, and N be a business component system, M is the
behavior graph from R to N, sM0 is the initial state of M, SM is a subgraph of M that is constructed
according to algorithm 1, if sM0∈SSM, then N →M R, else N  →NM R.

According to lemma 1 and lemma 2, we can prove easily theorem 2. According to theorem 2, if
we want to justify whether N can meet R, we only need to justify after we remove all error mapping

International Journal of Information Technology Vol. 14 No. 1

51

relationships and corresponding states from M, whether sM0 is still exists, if it exists, then N →M R,
else N  →NM R that represents that the behavior of N can’t completely meet the behavior specified by
R.

F. Extract the Behavior Satisfying User Requirement from Behavior Mapping Graph

If N →M R, we can extract the behavior is accord with user requirement from the behavior
mapping subgraph SM. Given a state sSM=(sR,sN)∈SSM, for a transition sR →a sR′ in R, it can be
mapped into more than one input or internal transition in N, i.e., |T(sSM,a)|>1. Because R is a
deterministic finite state machine, we should choice a transition from T(sSM,a), and then delete other
transitions, after we delete redundant transitions, there maybe exist many unreachable states, we
continue to delete these states and corresponding transitions from SM until there aren’t unreachable
states in SM, let SSM be the subgraph of SM that doesn’t include illegal states and unreachable states.
Based on SSM , we can extract the behavior satisfying user requirement from N. In the following we
give the method extracting the behaviors.

(1) For each state sSSM=(sR,sN) in SSM, omit the state of user requirement sR, therefore sSSM
becomes sN.

(2) For each transition sN  →),('aa sN′ in SSM, omit the action of user requirement a, sN  →),('aa sN′
becomes sN →

'a sN′.
(3) After we omit all states of user requirement, if there are homonymous states in SSM, we merge

these states into one state that called as composition state. For each merged state sN, if there exists
transition sN →

'a sN′ (sN′ →
'a sN), then

a) if sN=sN′, substitute sN and sN′ with composition state;
b) if sN≠sN′, substitute sN with composition state.

(4) Merge all homonymous transitions into one transition.
According to the method above, we can abstract the behavior in accord with user requirement

from business component system.

V. Example of application
In this section, we give an example to explain the process of checking the existence of

composition of business components and the method of extracting the behaviors in accord with user
requirement from these business components.

Figure 4(a) describes a user requirement R, and figure 4(b) describes a composition that consists
of five candidate components: Order, CheckInv, CheckCred, Shipping and Billing, where, the
behavior specifications of Order, CheckInv and CheckCred are shown as figure 1, and the behavior
specifications of Shipping and billing are shown as the right side of figure 4(b).

Figure 5 shows the behavior mapping graph from R to the composition of Order, CheckInv,
CheckCred, Shipping and Billing. Because T((6,(7,2,2,1,0),rece_reminotif)=φ, (6,(7,2,2,1,0)) is a
error mapping relationship. In (6,(7,0,0,0,0)), for transition: 5  →shipping 8 in R, there are two possible
mapping relationships. According to the approach proposed in section IV, we can extract the
behavior in accord with user requirement (shown as figure 6) from the behavior mapping graph
shown as figure 5.

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 52

0 1 8rece_order

User Requirement

chk_inv inv_ok
2

4

inv_fail

cancel

3
confirm

rece_billnotif?
0 1 2

shiping? rece_reminotifi?
3

cancel?

shiping?

5
rece_billnotif

6
rece_reminotif

7 shipping

confirm shipping

cancel

Order

CheckInv CheckCred

Shipping

rece_billnotifi?
0 1 2shiping?

rece_reminotif? cancel?

shiping? Billing

(a) User Requirement

(b) Candidate Business Components

Figure 4. User requirement and candidate components

0
00000

1
10000

5
72200

(rece_order,
rece_order?) 2

42100

63200

3
52200

5
70000

(chk_inv,
chk_inv;)

(inv_ok,
inv_ok)

(confirm,
confirm?)

(inv_fail,
inv_fail;) (cancel,

cancel?)

(confirm,
confirm?)

8
70020

8
70003

(shipping,
shipping?)

(shipping,
shipping?)

6
72210

(rece_billnotif,
rece_billnotif?)

6
72201

(rece_billnotif,
rece_billnotif?)

8
72220

(cancel,
cancel?)

5
72203

(cancel,
cancel?)

7
72202

(rece_reminotif,
rece_reminotif?) 7

72203

(shipping,
shipping?)

R → Order || CheckInv ||CheckCred||Shipping||Billing

Figure 5. Behavior mapping graph

00000 10000 72200
rece_order?

42100

63200

52200

70000

chk_inv; inv_ok; confirm?

inv_fail;

cancel?

confirm?
70003

shipping?

72201
rece_billnotif?

72203cancel?

72202
rece_reminotif?

72203
shipping?

Figure 6. Behavior specification in accord with user requirement

International Journal of Information Technology Vol. 14 No. 1

53

VI. Conclusion
This paper proposes a method of checking the existence of composition of components based on

behavior specification matching. We use determine finite state machine that extends the interface
automata to model behavior specifications of business component, and use the product of
deterministic finite state machine describe the composition of business components whose behavior
can be regarded as a nondeterministic finite state machine. The behavior mapping graph is used to
check the existence of composition of components and extracting the behavior in accord with user
requirement. In the future, we intend to study more ways of composition of business components.

Acknowledgements
This paper is supported by the National Natural Science Foundation of China under Grant
No.60673025 and the National High-Tech Research and Development Plan of China under Grant
No.2006AA04Z150

References

[1] Alfaro L, Henzinger TA. Interface automata. In: Wermelinger M, Gall H, eds. Proc. of the

9th Annual ACM Symp. on Foundations of Software Engineering (FSE 2001). New York:
ACM Press, 2001. 109-120.

[2] Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, Pascal Van Hentenryck.
Parameterized Interfaces for Open System Verification of Product Lines. 19th IEEE
International Conference on Automated Software Engineering (ASE'04) 2004. pp.258-267.

[3] Osamu Shigo, Atsushi Okawa, Daiki Kato. Constructing Behavioral State Machine using
Interface Protocol Specification, XIII Asia Pacif ic Software Engineer ing
Conference (APSEC'06) . IEEE Computer Society, December 2006, pp.191-198.

[4] By D.C. Craig, W.M. Zuberek. Compatibility of Software Components - Modeling and
Verification, Internat ional Conference on Dependabi l i ty of Computer
Systems (DEPCOS-RELCOMEX'06). IEEE Computer Society, May 2006, pp.11-18.

[5] Nabil Hameurlain. A Formal Framework for Component Protocols Behavioural
Compatibility. Proceedings of the XIII Asia Pacific Software Engineering Conference,
IEEE Computer Society, Washington, DC, USA , 2006, pp.87-94.

[6] N. Hameurlain. Formalizing Compatibility and Substitutability of Role- based. 4th
International/Central and Eastern European Conference on Multi-Agent Systems, CEEMAS
2005, Lecture Notes in Computer Science, Springer-Verlag, LNAI/LNCS Vol. 3690, 2005,
pp 153-162.

[7] A. M. Zaremski, J. M. Wing. “Specification Matching of Software Components”. ACM
Transactions of Software Engineering and Methodology, 1997,6 (4): 333-369.

[8] Bracciali A, Brogi A, Canal C. A formal approach to component adaptation. Joural of
Systems and Software, 2005,74(1):45-54.

[9] C. Canal, E. Pimentel, and J.M. Troya. “Compatibility and Inheritance in Software
Architectures” Science of Computer Programming, 41(2):105-138. 2001.

[10] Frantisek Plasil, Stanislav Visnovsky. Behavior Protocols for Software Components. IEEE
Transactions on Software Engineering, 2002, 28(11)：1056-1076.

[11] B.H.C. Cheng and J.J.Jeng. Reusing analogous components. IEEE Transaction on
Knowledge and Data Engineering, 9(2), March, 1997.

[12] Redondo, R.P.D.; Arias, J.J.P.; Vilas, A.F.; Martinez, B.B. Approximate Retrieval of
incomplete and formal specifications applied to vertical reuse. Proceedings of International
Conference on Software Maintenance (ICSM’02), 3-6 Oct. 2002:618- 627.

[13] Hai Zhuge. An inexact model matching approach and its applications. The Journal of
Systems and Software 67 (2003) 201–212.

Fanchao Meng, Denchen Zhan, and Xiaofei Xu
Composition of Business Components based on Behavior for Software Reuse

 54

[14] Praphamontripong, U.; Hu, G. XML-based software component retrieval with partial and
reference matching. Proceedings of the 2004 IEEE International Conference on Information
Reuse and Integration，8-10 Nov. 2004:127 – 132.

[15] Mili, R. Mili, and R. Mittermeir, Storing and Retrieving Software Component: A
Refinement Based Approach. IEEE Transactions on software Engineering, 1999, 23(7), pp.
139-170.

[16] Somjit Arch-int, Dentcho N. Batanov. Development of industrial information systems on
the Web using business components. Computer in Industry 2003,50(2):231-250.

[17] Fanchao Meng, Dechen Zhan, Xiaofei Xu. A web service retrieval method based on
behavior specification matching. System and Information Science Notes, 2007,1(4),pp.402-
408.

Fanchao Meng is a Ph.D candidate at School of Computer Science and
Technology in Harbin Industrial of Technology(HIT),China. His current research
areas include software engineering, Model Driven Architecture(MDA), software
reuse and reconfiguration.

Dechen Zhan is a professor in School of Computer Science and Technology at
Harbin Institute of Technology (HIT), China. His research interests include
computer integrated manufacturing system (CIMS), enterprise resource
planning(ERP), decision support systems (DSS), Model Driven
Architecture(MDA), software reuse and reconfiguration, etc.

XiaoFei Xu is a professor and dean of School of Computer Science
andTechnology at Harbin Institute of Technology (HIT), China. His research
interests include computer integrated manufacturing system (CIMS), management
and decision information system, software engineering, etc.

