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Abstract 
 

Local cost estimation is essential to global query optimization in a multidatabase system 
(MDBS). The techniques suggested in the literature to develop local cost models in an MDBS 
are suitable for a static environment. Many dynamic environmental factors have a significant 
effect on a query cost. In this paper, we introduce a multistate query sampling method to develop 
local cost models for a dynamic multidatabase environment. The key idea is to divide the system 
contention level, which reflects the combined net effect of dynamic factors on a query cost, in a 
dynamic environment into a number of discrete contention states based on the cost of a probing 
query and then incorporate a qualitative variable indicating the contention states into a cost 
model. To determine an appropriate set of contention states for a dynamic environment, two 
algorithms based on iterative uniform partition and data clustering, respectively, are introduced. 
To build an effective cost model with a qualitative variable for a dynamic environment, we 
extend the techniques from our previous (static) query sampling method, including query 
sampling, automatic variable selection, regression analysis, and model validation. Experimental 
results demonstrate that the presented multistate query sampling method is quite promising in 
developing useful cost models for a dynamic multidatabase environment. Some issues on query 
optimization based on the developed multistate cost models are also discussed. Our study shows 
that multistate cost models improve the effectiveness of query optimization. In addition, how to 
use the cost estimates from multistate cost models to estimate query costs in more complex 
situations is suggested. 
Keywords: multidatabase, query optimization, cost model, dynamic environment, contention 
states, query sampling, regression analysis 
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1.   Introduction 
 
A multidatabase system (MDBS) integrates data from multiple local (component) databases and 
provides users with a uniform global view of data. A global user can issue a (global) query on an 
MDBS to retrieve data from multiple databases without having to know where the data is stored 
and how the data is retrieved. How to process such a global query efficiently is the task of global 
query optimization. 

A major challenge, among others [6,9,10,11,18], for global query optimization in an MDBS is 
that some necessary local information such as local cost models may not be available at the 
global level due to local autonomy preserved in the system. However, the global query optimizer 
needs such information to decide how to decompose a global query into local (component) 
queries and where to execute them. Hence, methods to derive cost models for an autonomous 
local database system (DBS) at the global level are required. Several such methods have been 
proposed in the literature.  

In [5], Du et al. proposed a calibration method to deduce necessary local cost parameters. The 
key idea to construct a local synthetic calibrating database (with some special properties), and 
then run a set of special queries against this database. The access method used for executing such 
a query is known because of the special properties of the database and query. Cost metrics for the 
queries are recorded and used to deduce the coefficients in the cost formulas for the access 
methods supported by the underlying local database system by using the properties of the 
database and queries. In [7], Gardarin et al. extended the above method so as to calibrate cost 
models for object-oriented local database systems in an MDBS.  

Although Du’s calibration method was the first technique that demonstrates the possibility of 
estimating local cost parameters at the global level in an MDBS, it has several drawbacks. First 
of all, it may be impossible (or not allowed) to create a synthetic calibrating database at a local 
site in an MDBS. Unlike a traditional distributed database system (DDBS), local autonomy in an 
MDBS may prevent creating a test database at a local site. Secondly, cost parameters deduced by 
using a synthetic calibrating database may not be valid for real databases because of different 
data distributions, database sizes, file structures, adjustable local system parameters and so on. 
Thirdly, the deduced cost formulas cannot be applied if the local access method for a query is 
unknown, which is frequently the case in an MDBS. The calibration method deduces a set of cost 
formulas, one for each access method. To estimate the cost of a query, the access method used 
for the query needs to be known so that the right cost formula can be applied.  

To overcome the above shortcomings, Zhu and Larson proposed a query sampling method in 
[25, 26, 27]. The key idea is as follows. Local queries that can be performed on a local DBS in 
an MDBS are grouped into homogeneous classes first, based on some information available at 
the global level in an MDBS such as the characteristics of queries, operand tables and the 
underlying local DBS. A sample of queries are then drawn from each query class and run against 
the actual user local database. The costs of sample queries are used to derive a cost model for 
each query class by multiple regression analysis. The cost model parameters are kept in the 
MDBS catalog and utilized during query optimization. To estimate the cost of a local query, the 
class to which the query belongs is first identified. The corresponding cost model is retrieved 
from the catalog and used to estimate the cost of the query. Based on the estimated costs, the 
global query optimizer chooses a good execution plan for a global query. Since the query 
sampling method (1) can capture the performance behavior of queries on the actual databases, (2) 
does not require the creation of synthetic databases, and (3) identifies the right cost model for a 
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query based on available information, it overcomes the aforesaid drawbacks of the calibration 
method.  

There are several other suggested approaches to tackling the local query cost estimation 
problem in an MDBS. In [24], Zhu and Larson introduced a fuzzy method based on fuzzy set 
theory to derive cost models utilizing fuzzy information in an MDBS. In [12], Naacke et al. 
suggested an approach to combining a generic cost model with specific cost information 
exported by wrappers for local DBS’s. In [1], Adali et al. suggested to maintain a cost vector 
database to record cost information for every query issued to a local DBS. Cost estimation for a 
new query is then based on the costs of similar queries. In [17], Roth et al. introduced a practical 
framework for costing in the Garlic federated system.  

All the previously proposed methods only considered a static system environment, i.e., 
assuming no significant change over time. However, in reality, many factors in an MDBS 
environment such as contention factors (e.g., number of concurrent processes), database physical 
characteristics (e.g., index clustering ratio), and hardware configurations (e.g., memory size) may 
change significantly over time. Hence, a cost model derived for a static system environment may 
not give good cost estimates for queries in a dynamic environment. Figure 1 shows how the cost 
of a sample query is affected by the number of concurrent processes in a dynamic system 
environment. We can see that the cost of the same query can dramatically change (from 3.80 sec. 
to 124.02 sec.) in a dynamic environment. This raises an interesting research issue, that is, how 
to derive cost models that can capture the performance behavior of queries in a dynamic 
environment. 

50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

140

The Number of Concurrent Processes in SUN UltraSparc 2

Q
ue

ry
 C

os
t (

E
la

ps
e 

T
im

e 
in

 S
ec

.)
 o

n 
O

ra
cl

e 
8.

0

Table R7(a1, a2, ..., a9) has 50,000 tuples of random numbers

Query:
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  from    R7
  where a3 > 300 and a8 < 2000

 
 

Figure 1:  Effect of Dynamic Factor on Query Cost 
 

In this paper, we propose a qualitative approach to deriving a cost model that can capture the 
performance behavior of queries in a dynamic environment. The key idea is as follows. We 
notice that there are numerous dynamic factors (such as the CPU and I/O loads) that affect a 
query cost. To simplify the development of a cost model for a dynamic environment, our 
approach considers the combined net effect of dynamic factors on a query cost together rather 
than individually. The system contention level that reflects such a combined effect is gauged by 
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the cost of a probing query. The larger the probing query cost, the higher the contention level. To 
capture such contention information in a cost model, we divide the system contention level 
(based on the cost of a probing query) in a dynamic environment into a number of discrete 
contention states (such as high, medium and low contention states) and use a qualitative variable 
to indicate the contention states in the cost model.  This qualitative variable effectively allows 
the cost model to adopt different coefficients for different contention states so that its cost 
estimates can better reflect the dynamic environment. To determine an appropriate set of 
contention states for a dynamic environment, two algorithms, called the iterative uniform 
partition with merging adjustment (IUPMA) and the iterative clustering with merging adjustment 
(ICMA), respectively, are introduced. The former is used for general cases, while the latter is 
specifically designed for a dynamic environment with the contention level following a non-
uniform distribution with clusters. Our previous query sampling method in [25, 26, 27] is 
extended so as to develop the regression cost model incorporating the qualitative variable (i.e., 
the qualitative cost model) for a dynamic environment. In other words, the coefficients of the 
qualitative cost model are obtained from the regression analysis based on observed sample query 
costs in the dynamic environment. Our approach in this paper is therefore an extension of our 
previous query sampling method. In this paper, we call our previous method as the static query 
sampling method and the new approach in this paper as the multistate query sampling method. In 
fact, the static method is a special case of the multistate one when only one contention state is 
allowed (so it can also be called the single-state query sampling method).  

The rest of the paper is organized as follows. Section 2 analyzes the dynamic factors at a 
local site in an MDBS. Section 3 discusses how to develop a regression model with a qualitative 
variable and how to determine contention states of a qualitative variable for a dynamic 
environment. Section 4 extends our previous static query sampling method so as to derive cost 
models with a qualitative variable for different query classes in a dynamic environment. It also 
briefly discusses how to perform query optimization based on multistate cost models. Section 5 
shows some experimental results. Section 6 summarizes the conclusions. 
 
2.   Dynamic Environmental Factors  
 
In an MDBS, many environmental factors may change over time1. Some may change more often 
than others. They can be classified into the following three types based on their changing 
frequencies.  

• Frequently-changing factors: The main characteristic of this type of factors is that they 
change quite often. Examples of such factors are the CPU load, I/O load, and size of used 
memory space, etc. The operating system at a local site typically provides commands 
(such as top, ps and iostats in UNIX) to display system statistics reflecting such 
environmental factors. Table 1 lists some system statistics in UNIX.  

• Occasionally-changing factors: These factors change occasionally. Examples of such 
factors include local database management system (DBMS) configuration parameters (e.g., 
the number of buffer blocks, and the shared buffer pool size), local database 
physical/conceptual  schemas  (e.g.,  new  indexes  and  new  tables/columns),  and  local  

____________________________________ 
1 Since we concern ourselves with local cost models for an MDBS, only dynamic factors at local sites are considered. 
In general, there are also dynamic environmental factors for the network in an MDBS. Some of them were 
considered in [20].  
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hardware configurations (e.g., physical memory size). Note that some other factors such 
as the local database size, physical data distribution, and index clustering ratio may 
change quite frequently. However, they may not have an immediate significant impact on 
a query cost until such changes accumulate to a certain degree. Thus we still consider 
these factors as occasionally-changing factors. The changes of most occasionally-
changing factors can be found via checking the local database catalog and/or system 
configuration files. 

 
Type Statistics for Frequently-Changing Environmental Factors  
CPU 
Statistics 

• rp — number of running processes;                                   • sp — number of sleeping processes 
• tp — number of stopped processes;                                    • zp — number of zombie processes 
• us — percentage of user time;                                            • sy — percentage of system time 
• id — percentage of idle time 
• ld1, ld2, ld3 — load averages for the past 1, 5, and 15 minutes, respectively 

Memory 
Statistics 

• am — available memory;                                                   • um — used memory 
• sm — shared memory;                                                        • bm — buffer memory 
• as — available swap;                                                          • us — used swap 
• fs — free swap;                                                                   • as — cached swap 
• si — amount of memory swapped in;                                 • so — amount of memory swapped out 

I/O 
Statistics 

• bi — number of reads per sec.;                                           • bo — number of writes per sec. 
• du — percentage of disk utilization 

Other 
Statistics 

• nu — number of current users;                                           • in — number of interrupts per sec. 
• cs — number of context switches per sec.;                         • sc — number of system calls per sec. 

 
Table 1:  System Statistics for Frequently-Changing Factors in Unix 

 
• Steady factors: These factors rarely change. Examples of such factors are the local 

DBMS type (e.g., relational or object-oriented), local database location (e.g., local or 
remote), and local CPU speed (e.g., 2.8GHz). Although these factors may affect a cost 
model, the chance for them to change is very small. 

Clearly, the steady factors usually do not cause a problem for a query cost model. If 
significant changes for such factors occur at a local site, they can be handled in a similar way as 
described below for the occasionally-changing factors. 

For the occasionally-changing factors, a simple and effective approach to capturing them in a 
cost model is to invoke the static query sampling method periodically or whenever significant 
changes for these factors have occurred. Since these factors do not change very often, rebuilding 
cost models from time to time to capture them is acceptable. However, this approach cannot be 
used for the frequently-changing factors because frequent invocations of the static query 
sampling method would significantly increase the system load and the cost model maintenance 
overhead. On the other hand, if a cost model cannot capture the dramatic changes in a system 
environment, poor query cost estimates may be used by the query optimizer, resulting in 
inefficient query execution plans. 

Theoretically speaking, to capture the frequently-changing factors in a cost model, one 
approach is to include all explanatory variables that reflect such factors in the cost model. 
However, this approach encounters several difficulties. First, the ways in which these factors 
affect a query cost are not clear. As a result, the appropriate format of a cost model that directly 
includes the relevant variables is hard to determine. Second, the large number of such factors 
(see Table 1) makes a cost model too complicated to derive or maintain even if the first difficulty 
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could be overcome. In the rest of this paper, we introduce a feasible method to capture the 
frequently-changing factors in a cost model 

 
3.  Regression with Qualitative Variable 
 
As mentioned before, the key idea of our method is to determine a number of contention states 
for a dynamic environment and use a qualitative variable to indicate the states. A cost model 
with the qualitative variable can be used to estimate the cost of a query in different contention 
states. The issues on how to include a qualitative variable in a cost model and how to determine 
an appropriate set of system contention states are discussed in this section. 
 
3.1.   Qualitative variable 
 
To simplify the problem, we consider the combined effect of all the frequently-changing factors 
on a query cost together rather than individually. Although these dynamic factors may change 
differently in terms of the changing frequency and degree, they all contribute to the contention 
level of the underlying system environment. The cost of a query increases as the contention level. 
Hence the contention level can be gauged by the cost of a probing query. Depending on the 
observed probing query cost, the system contention level can be divided into a number of 
discrete states (categories) such as “High Contention” (SH), “Medium Contention”(SM), “Low 
Contention” (SL), and “No Contention” (SN). A variable W taking a value from such possible 
discrete states (e.g., SH) is a qualitative variable2 that can be used to indicate the current 
contention state for the environment. This qualitative variable, therefore, reflects the combined 
effect of foregoing frequently-changing environmental factors. A cost model incorporating such 
a qualitative variable can capture the dynamic environmental factors to a certain degree. 

As shown in [25, 27], a statistical relationship between the query cost and its affecting 
factors such as operand and result table sizes can be established by multiple regression. The 
established relationship can be then used as a cost model to estimate query costs. However, only 
quantitative variables (e.g., operand and result table sizes) were considered in such regression 
and other types of existing cost models. To incorporate the foregoing qualitative variable W 
indicating system contention states into a query cost model, a new technique is required. 

Notice that a qualitative variable can be represented by a set of indicator variables. For 
example, the above contention state variable W with four states can be represented by three 
indicator variables: Z1, Z2, and Z3, where Z1 = 1 indicates W = SH, while Z1 = 0 indicates W ≠ SH; 
Z2 = 1 indicates W = SM, while Z2 = 0 indicates W ≠ SM; Z3 = 1 indicates W ≠ SL, while Z3 = 0 
indicates W ≠ SL; and Z1 = Z2 = Z3 = 0 indicate W = SN. Note that no more than one indicator 
variable can be 1 simultaneously (i.e., W can take only one state at a time). Table 2 shows3 how 
the indicator variables indicate different states of W. In general, a qualitative variable that has m 
categories (states) need m−1 indicator variables to represent it. As we will see, using such a set 
of indicator variables allows us to easily express the adjustment of a regression coefficient for 
each contention state in a cost model although other ways to use indicator variables are also 
possible.  
____________________________________ 
2 In general, variables can be classified as either quantitative ones or qualitative ones. A quantitative variable (e.g., 
monthly salary) takes values on a well-defined scale (e.g., 2300.00, 3100.50), while a qualitative variable (e.g., 
person’s gender) only have several discrete categories (states) as its possible values (e.g., ‘male’, ’female’). 
3 Only feasible combinations of the indicator values are allowed. 
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Table 2:  State Representations Using Indicator Variables 
 
3.2.   Qualitative regression cost model 
 
The cost of a query usually consists of (1) initialization cost (for example, to move a disk head to 
the right position); (2) I/O cost (for example, to fetch a tuple from an operand table); and (3) 
CPU cost (for example, to evaluate the qualification condition for a given tuple). A typical cost 
model for a unary query class in a static environment may look like: 
 

UU RNBNBBY ** 0
2

0
1

0
0 ++=                                                       (1) 

 
where Y is the query cost; NU and RNU are the cardinalities (sizes) of the operand and result 
tables, respectively; and 0

2
0
1

0
0  and , BBB  are the parameters (coefficients) representing the 

initialization cost, the cost for retrieving a tuple from the operand table, and the cost for 
processing a tuple in the result table, respectively. Both 0

1B  and 0
2B  may reflect the I/O cost as 

well as the CPU cost. Therefore, the initialization cost affects the intercept coefficient (i.e., the 
1st term) in a cost model, while the I/O and CPU costs affect the slope coefficients (i.e., the 
coefficients of the 2nd and 3rd terms) in the cost model. 

In general, let Y be the response variable (i.e., query cost) and X1, X2, …….,Xn be the 
(quantitative) explanatory variables (e.g., operand and result table sizes) in a regression query 
cost model. The regression cost model in a static environment is of the following general form: 

                            ∑
=

+=
n

i
ii XBBY

1

00
0  ,                                                               (2) 

where 0
iB ’s (1 ≤ i ≤ n) are regression coefficients that can be estimated based on observed costs 

of sample queries in the environment. 
However, as mentioned before, a static cost model may not be useful for a dynamic 

environment. Notice that the contention level of a system can significantly affect not only the 
initialization cost but also the I/O and CPU costs of a query because the resources like the disk, 
I/O bandwidth and CPU are shared by multiple processes. As a result, both the intercept and 
slope coefficients in a query cost model may change when the system contention level changes. 
Assume that the underlying dynamic environment has m contention states: Sm, Sm−1, .... , S1, with 
Sm being the lowest contention state and S1 being the highest4. Our key idea to develop a cost 
model for such a dynamic environment is to adjust the coefficients of the cost model for different 
contention states in the environment. For example, if 00

2
0
1

0
0 ,...,,, nBBBB  are the coefficients of the 

cost   model   in   the   lowest   contention   state   Sm   ( called   the   base   cost  model ),   then 
___________________________________ 
4 A descending index is used here to simplify the description of algorithms and derived cost models in the paper.  

States Z1 Z2 Z3 
SH 1 0 0 
SM 0 1 0 
SL 0 0 1 
SN 0 0 0 
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101
1
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mm BBBBBB are the coefficients of the cost model in contention state Sm−1, 

where 11
2

1
1

1
0 ,...,,, −−−− m

n
mmm BBBB  are the adjustments (values) to the respective coefficients 

00
2

0
1

0
0 ,...,,, nBBBB of the base cost model to reflect the contention state change from Sm to Sm−1. 

Similarly, 202
2

0
2

2
1

0
1

2
0

0
0 ,...,,, −−−− ++++ m

nn
mmm BBBBBBBB are the coefficients of the cost model in 

contention state Sm−2 and 22
2

2
1

2
0 ,....,,, −−−− m

n
mmm BBBB are the relevant adjustments to the base cost 

model to reflect the contention state change from Sm to Sm−2. In general, 
i
nn

iii BBBBBBBB ++++ 0
2

0
21

0
10

0
0 ,....,,,  are the coefficients of the cost model in contention state Si 

(1 ≤ i ≤ m −1), where i
n

iii BBBB ,...,, 210  are the adjustments to the coefficients of the base cost 
model for contention state Si. The base coefficients and all the relevant adjustments of the cost 
model for different contention states can be estimated via the regression analysis based on 
observed data for sample queries.  

Let qualitative variable W with the above m states be represented by indicator variables Zm−1, 
Zm−2,··· ,Z1, where the jth state (1 ≤ j ≤ m − 1) is indicated by Zj = 1 and Zi = 0 for i ≠ j and the 
mth state is indicated by Zi = 0 for all 1 ≤ i ≤ m −1. To incorporate a qualitative variable 
representing the system contention states into a query cost model, we adopt the following 
regression model with a qualitative variable (represented by a set of indicator variables):  

                          
444 3444 2144 344 21
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Specifically, the intercept coefficient for the jth state of the qualitative variable is 
1,...,1,( 0

0
0 −=+ mmjBB j ; and assuming )00 =mB , where jB0  is the adjustment of 0

0B  for the jth 
contention state; and the ith slope coefficient (i = 1, 2, ··· ,n) for the jth state of the qualitative 
variable is j

ii BB +0  (j = 1, 2, ···, m; and assuming )0=m
iB ), where j

iB  is the adjustment of 0
iB  

for the jth contention state. Table 3 shows the adjusted cost model for different contention states. 
 

State Zm-1 Zm-2 … Z1 Adjusted Cost Model In the Corresponding Contention State 
Sm 0 0 … 0 ...** 2

0
21
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0
0 ++++++= −−− XBBXBBBBY mmm  
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1
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0
21

1
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0
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1
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0
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Table 3:  Adjusted Cost Models in Different Contention States from Formula (3) 

 
For example, we can extend cost model (1) from a static environment to a dynamic 

environment following (3). Assuming the underlying dynamic environment has three contention 
states (i.e., S3, S2 and S1), cost model (1) is extended as the following based on (3): 

UU RNZBZBBNZBZBBZBZBBY *)**(*)**()**( 1
1
22

2
2

0
21

1
12

2
1

0
11

1
02

2
0

0
0 ++++++++= .    (4) 

When the current contention state is S3 (i.e., Z2 = Z1 = 0), cost model (4) boils down to the base 



 
 
Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen 
Building Multistate Cost Models for Dynamic Multidatabase Environments 

 32

model: 
                                       UU RNBNBBY ** 0

2
0
1

0
0 ++= .                                                     (5) 

If the contention state is S2 (i.e., Z2=1 and Z1=0), cost model (4) becomes: 

                    . *)(*)()( 2
2

0
2

2
1

0
1

2
0

0
0 UU RNBBNBBBBY +++++=                                       (6) 

We can see that 2
1

2
0 , BB and 0

2B are the adjustments to the base coefficients 0
1

0
0 , BB and 0

2B , 
respectively, for contention state S2. 

Using indicator variables in the way illustrated by Table 2 allows us to easily identify the 
adjustments of the intercept and slope coefficients of the cost model for a contention state in the 
dynamic environment. Specifically, the adjustment to base coefficient 0

iB  in cost model (3) for 
the jth contention state is simply coefficient j

iB  of indicator variable Zj (0 ≤ i ≤ n and 1 ≤ j ≤ 
m−1). Note that no coefficient adjustments are needed for the mth state since 0

iB ’s are assumed 
to be developed for that state. On the other hand, the way to use indicator variables for a 
qualitative variable is not unique. However, if one contention state S’ were indicated by two 
indicator variables Z’ = Z’’ = 1, the adjustment of a (intercept or slope) coefficient of the cost 
model for contention state S’ would have to be split between the coefficients of Z’ and Z’’, 
making their individual meanings unclear. Furthermore, if less than m − 1 indicator variables 
were used, the coefficient of one indicator variable might have to be used to adjust the relevant 
(intercept or slope) coefficient of the cost model for multiple consternation states. Since less 
parameters are used to adjust more cases, some tradeoffs will have to be made, which may lead 
to a less accurate cost model. 

All the coefficients j
iB ’s in cost model (3) can be obtained via the regression analysis, as we 

will see in the remaining sections. Since cost model (3) allows different adjustments for different 
contention states in a dynamic environment, it can give better cost estimates than those given by 
a static cost model in the dynamic environment, as we will see in Section 5. 
 
3.3. Determining system contention states 
 
Combining multiple dynamic environmental factors into a composite qualitative variable with a 
number of discrete contention states greatly simplifies the development of a cost model for a 
dynamic environment. The question now is how to determine an appropriate set of system 
contention states for a dynamic environment. 
 
Two extremes 
 
There are two extremes in determining a set of contention states. One extreme is to consider only 
one contention state for the system environment. A cost model developed in such a case is useful 
if the system environment is static. This, in fact, was the case that the static query sampling 
method assumed. However, as pointed out before, a real system environment may change 
dynamically over time. Using one contention state is obviously insufficient to describe such a 
dynamic environment. For a dynamic environment, usually, the more the contention states are 
considered, the better a cost model. In principle, as long as we consider a sufficient number of 
contention states for the environment, we can get a satisfactory cost model. Hence, the other 
extreme is to consider an infinite number of contention states. However, the more the contention 



 
 
International Journal of Information Technology,  Vol. 14,   No. 2,  2008 
 
 

 33

states are considered, the more the indicator variables are needed in the cost model. The number 
of coefficients that need to be determined in a cost model therefore increases. Hence, if too many 
contention states are considered, the cost model can be very complicated, which is not good for 
either its development or its maintenance. In practice, as we will see in Section 5, a small number 
of contention states (three to six) are usually sufficient to yield a good cost model. 
 
Determining states via iterative uniform partition 
 
Notice that, for a given query, its cost increases as the system contention level increases (see 
Figure 1). Based on this observation, we can use the cost of a probing query to gauge the system 
contention level5. The range of the probing cost (therefore, the contention level) is divided into 
subranges, each of which represents a (discrete) contention state for the dynamic environment. 

Let the cost CQp of probing query Qp fall in the range [Cmin, Cmax] in a dynamic environment. 
A simple way to determine the system contention states is to partition range [Cmin, Cmax] into 
subranges with an equal size. In other words, to determine m contention states Sm, Sm−1, …, S1, 
we divide range [Cmin, Cmax] into m subranges Ii = [Cmin+(m−i)*D, Cmin+(m−i+1)*D) and I1 = 
[Cmin + (m−1)*D, Cmin +m*D] where i = m, m−1,..., 2 and D = (Cmax −Cmin)/m. The system 
environment is said to be in contention state Si if CQp ∈  Ii (i = m, m− 1,..., 1). To obtain more 
system contention states, we can simply increase m. Hence, {Im, Im−1,..., I1 } yields a set mΓ  of 
system contention states for the dynamic environment. 

Using this partition, it is easy to determine the system contention state in which a query is 
executed. Let SP = { Qj | j = 1, 2, ..., t } be a set of sample queries which are performed in the 
dynamic environment and whose observed data (e.g., execution time, operand size and result 
table size, etc.) are to be used to derive a regression cost model for a query class. To determine 
the system contention state SQ j in which sample query Qj is executed, the cost CQp of probing 
query Qp in the same environment is measured. If CQp ∈  Ii (1 ≤ i ≤ m), we say SQ j = Si. We call 
the cost of a probing query associated with a sample query is a sampled probing query cost 
(value). 

One basic question is how to determine a proper m. Another question is how to eliminate 
some unnecessary separations of subranges. Clearly, if queries in neighboring contention states 
Sj−1 and Sj (for some j) have a similar performance behavior, separating Sj−1 and Sj is unnecessary. 
The determination of system contention states should balance the accuracy and the simplicity 
(hence low maintenance overhead) of a derived cost model. 

To solve these two problems, the following algorithm is used to improve the foregoing direct 
uniform partition: 
 
Algorithm 3.1:  Contention States Determination via Iterative Uniform Partition with Merging 
Adjustment (IUPMA) 
Input:  Observed data of sample queries and their associated probing query costs 
Output:  A set of system contention states6 

 

______________________________________________________ 
5 Our experiments showed that most queries, except the ones with extremely small cost (e.g., less than a second), can 
well serve as a probing query to gauge the system contention level. 
6 In fact, the algorithm integrates the contention states determination procedure with the cost model development 
procedure (to be discussed in Section 4). As a result, a cost model is also produced as part of the output of the 
algorithm. 
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Method: 
1.  begin 
2.       Derive a qualitative regression model with one contention state using sample query 

data; 
3.       Let 2

newR  be the coefficient of total determination of the current regression model; 
4.       Let snew be the standard error of estimation of the current regression model; 
5.       m := 1; 
6.       do 
7.             newoldnewold ssRR == :  ;: 22  
8.   m := m + 1; 

        9.              Obtain a set mΓ  of m contention states for the system environment via the  
                                straightforward uniform partition; 

  10.   Derive a qualitative regression model with m contention states using 
                           sample query data; 
11.              Let 2

newR  be the coefficient of total determination for the current regression  
                         model; 
12.              Let snew be the standard error of estimation of the current regression model; 

  13.       until )/)(  and  /)(( 222
oldoldnewoldoldnew sssRRR −−  are sufficiently small  

                         or m is too large; 
  14.       m := m − 1; 
  15.       Let Sj (j = m, m − 1,..., 1) represent the current m contention states in mΓ ; 
  16.       Let j

ii
j

i BBA += 0 (i = 0, 1, ..., n) be the adjusted coefficient of ith variable Xi 
for state Sj in the general model in (3), where X0 1≡ is a dummy variable 
for the intercept coefficient; 

  17.        for k = m down to 2 do  
  18.              { } /)( max: 1

},...,2,1,0{

k
i

k
i

k
inik AAAE −= −

∈
  

  19.               if Ek is too small then 
  20.                     tag that states Sk and Sk−1 should be merged; 
  21.        end for 
  22.        if some states are tagged to be merged then 
  23.              Derive a qualitative regression model with new merged states using sample 

                                 query data; 
  24.              goto step 15; 
  25.        end if; 
  26.        return the current set mΓ  of contention states; 
  27.  end. 

 
There are two phases in Algorithm 3.1. The first phase is to determine a set of contention states 
via the uniform partition. The algorithm iteratively checks each qualitative regression model with 
an incremental number of contention states until (1) the model cannot be significantly improved 
in terms of the coefficient of total determination7 R2 and the standard error of estimation8 s; or (2) 
too many contention states have been generated. Condition (2) is used here to prevent that a 
derived cost model becomes too complicated (in terms of the number of variables involved). The 
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set of contention states obtained from the first phase are based on the uniform partition of the 
probing query cost range (see Figure 2). The partition does not consider whether two 
neighboring states actually have significantly different effects on the cost model or not. It is 
possible that some neighboring states have only slight different effects on the cost model. If so, 
the neighboring states should be merged into one to simplify the cost model. Such a merging 
adjustment is done during the second phase of the algorithm. If the maximum of relative errors 
of the corresponding pairs of adjusted coefficients (i.e., ,  and  , 100 −++ k

ii
k
ii BBBB  i = 0,1,…,n) 

for two states Sk and Sk−1 is too small, these two states are considered not to have significantly 
different effects on the cost model. The subranges in the final adjusted partition of the probing 
query cost range may not have an equal size. 
 

Cmin

Im Im-1 Im-2 Im-3

I’k2nd phase:
after

1st phase:
after

I’k-1 I’k-3

uniform partition

adjusted partition

I2 I1

I’1

Cmax

probing
query
cost

 
 

Figure 2: Contention States Determination via IUPMA 
 
Determining states via data clustering 
 

Note that, to apply the IUPMA algorithm, a set of sample queries need to be run at sampled 
system contention level points (measured by the sampled probing query costs). Typically, the 
sampled system contention level points (i.e., the sampled probing query costs) can be chosen 
randomly from their range [Cmin, Cmax]. However, in reality, the actual (occurred) system 
contention level (points) may not follow the uniform distribution. In other words, the actual 
system contention level may fall in some subranges more often than others. 

Although we can still use uniformly sampled system contention level points (see Figure 3(a)) 
to run sample queries, the derived cost model may not be as good as the one derived by using a 
sample of system contention level points that follow the actual distribution in the underlying 
environment since more frequently occurred system contention level points will receive more 
weights. If the sampled system contention level points follow a non-uniform distribution, the 
uniform partition used in IUPMA may not be the best although the iterating and adjusting 
mechanisms sometimes mitigate the problem. For example, if sampled probing query costs in 
subranges Ii+1 and Ii are clustered around their common boundary (see Figure 3(b)), the adjusting 
phase of IUPMA typically will merge Ii+1 and Ii into one. However, if sampled probing query 
costs are clustered around both boundary ends of each subrange (see Figure 3(c)), the algorithm 
usually will not merge the two subranges into one. Unless the length of each subrange is small, 
the resulting classification may be poor since two strong opposite behaviors of sampled probing 
query costs exist in each subrange (contention state). To overcome the problem, an algorithm for  
_______________________________________________________ 
7 The coefficient of total determination measures the proportion of variability in the response variable explained by 
the explanatory variables in a regression model [16]. The higher, the better. 
8 The standard error of estimation is an indication of the accuracy of estimation given by the model [16]. The smaller, 
the better. 
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Figure 3:  Some Distributions of Probing Query Costs 
 
data clustering is incorporated into the contention states determination procedure as described 
below. 

Let range [Cmin, Cmax] of the cost CQ p of probing query Qp be divided into N small intervals: 
Cmin = x0 < x1 < x2 < ... < xN = Cmax, where |xi − xi−1| = ε  > 0 and 1 ≤ i ≤ N. We choose ε  to be 
sufficiently small so that the difference among probing query costs in each interval ( iη  = [xi−1, xi) 
for 1 ≤ i ≤ N − 1 and Nη  = [xN−1, xN]) is negligible. We then use the mean cost µi = (xi+xi−1)/2 to 
represent the probing query costs in interval iη . Hence the frame for sampling probing query 
costs (i.e., system contention level points) is ∆  = {µ1, µ2, ..., µN}. 

Consider the probing query cost Y in the underlying dynamic environment as a random 
variable. Let f be the probability density function of Y. The probability of Y falling in interval iη  
(1 ≤ i ≤ N) is:  

),()()()( 1
1

−
−

−== ∫ ii

x

x
i xFxFdyyfp

i

i

η  

where F is the cumulative distribution function of Y, In fact, p( iη ) can be measured by observing 
frequencies in experiments. Based on the probability distribution of iη ’s in the environment, we 
draw a sample S of probing query costs (i.e., system contention level points) from ∆  to run 
sample queries in the environment. 

Typically, the probing query costs in S are clustered. A natural classification of system 
contention states is to partition range [Cmin, Cmax] according to the clusters in S so that less 
diverse performance behavior would occur in each contention state. 

There are many techniques to analyze clusters in a data set [8]. The popular ones include the 
k-means method and the agglomerative hierarchical algorithm. Since the k-means method 
requires knowing the number of clusters in the set in advance, which cannot be predetermined in 
our case, we apply the agglomerative hierarchical algorithm to analyze the clusters in the above S 
of probing query costs. The key idea of the algorithm is to place each data object (i.e., sampled 
query cost) in its own cluster initially and then gradually merge clusters into larger and larger 
clusters until a desired number of clusters have been found. The criterion used to merge two 
clusters ω  and 'ω  is to make their distance minimized. We employ a widely used distance 
measure: Dmean( ',ωω ) = |µ(ω ) − µ( 'ω )|, i.e., the distance between the mean µ(ω ) of cluster ω  
and the mean µ( 'ω ) of cluster 'ω . 

Let K be the allowed maximum number of system contention states. The above clustering 
algorithm can be used to obtain clustering mΩ  = { mm

m
m
m 1

1 ,...,, ωωω − } (m = K,K−1, ..., 1, 
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where m
iω ’s are clusters of sampled probing query costs such that µ( m

iω  ) < µ( m
i 1−ω ) for i = 

m,m−1, ..., 2). 
For each clustering mΩ  (with m clusters), we can get m subranges by partitioning range 

[Cmin, Cmax] of the cost of probing query Qp as follows. Let max( m
iω  ) and min( m

i 1−ω ) be the 
maximum and minimum of sampled probing query costs in clusters m

iω  and m
i 1−ω , respectively. 

Since the sampled probing query costs are from ∆  consisting of mean costs of the small intervals 
for [Cmin, Cmax], min( m

i 1−ω ) − max( m
iω  ) is a multiple of interval length ε ; that is, min( m

i 1−ω ) − 
max( m

iω  ) = n*ε . Let 
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Then each m
ia  is a boundary point of some interval. Let subranges m

iI  = [ m
i

m
i aa ,1+ ) and mI1  = 

[ mm aa 12 , ], where i = m, m − 1, ..., 2. Each )1( miI m
i ≤≤  contains one cluster in clustering mΩ . 

Clearly, { mm
m

m
mI 11 I  ,...,I , −  } defines a set mΓ  of the system contention states for the dynamic 

environment (see Figure 4); i.e., if probing query cost )1(  miIC m
iQP

≤≤∈ , we say that the 
environment is in contention state Si. Such a classification of system contention states reflects the 
actual probability distribution of system contention level points (i.e., probing query costs) in the 
environment. If we use such mΓ  in Line 9 in Algorithm 3.1, we get a new algorithm, termed as 
the Contention States Determination via Iterative Clustering with Merging Adjustment (ICMA).  

 
Figure 4:  Contention States Determination via Clustering 

 
Note that, for a clustering of sampled probing query costs, it is possible that some cluster(s) 

may not have a sufficient number of sampled query costs (contention level points) to meet the 
minimum sample size requirement for regression analysis. In such a case, we draw additional 
sample data points (therefore, executing more sample queries) to make the cluster meet the 
minimum requirement rather than simply treat the data points in the cluster as outliers and ignore 
them. Although this way may change the distribution of the contention level slightly, no useful 
contention level points are ignored in the derived cost model. 
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Probing costs estimation 
 
To minimize the overhead for determining a system contention state, a query with a small cost is 
preferred as a probing query. To further reduce the overhead, an estimated cost (rather than the 
observed cost) of probing query PQ  can be used to determine the contention state of a dynamic 
environment. The idea is to first develop a regression equation between probing query cost 

PQY  
and some major system contention parameters9 (such as CPU load ld1, I/O utilization io, and size 
of used memory space um for a dynamic environment in Table 1), e.g., 

 

                                                                         
PQY  = E0 + E1 * ld1 + E2 * io + E3 * um ,                                           (7) 

where Ei (i = 0, 1, 2, 3) are regression coefficients. Afterward, every time when we want to 
determine the system contention state in which a query is executed, we only need to check which 
subrange the estimated cost 

PQY  of probing query Qp lies in by using (7) without actually 
executing the probing query. Since obtaining the parameter values (ld1, io, um) in (7) usually 
requires much less overhead than executing a probing query, using the estimated costs of a 
probing query to determine system contention states is usually more efficient. However, 
estimation errors may introduce certain inaccuracy. 
 
4.   Development of Cost Models 
 
As mentioned before, we extend the query sampling method for a static environment in [25] so 
as to develop cost models for a dynamic environment via introducing a qualitative variable. Such 
extensions include determination of the minimum sample size for query sampling, strategies to 
add/remove quantitative and qualitative variables into/from a cost model, and statistical measures 
to evaluate developed qualitative cost models, which are to be discussed in this section. 
 
4.1.   Query classification and sampling 
 
Similar to the static query sampling method, we group local queries on a local database system 
into classes based on their potential access methods to be employed. The previous classification 
rules and procedures in [25] can be utilized. For example10, 
 
         G1 1 = { π α  ( σ R.a=C ∧  F (R) ) | R.a is a clustered-indexed column in table R, 
                       C is a constant in the domain of R.a, F is the remaining qualification 
                      (in  the conjunctive normal form), α is a list of target columns from R }               (8) 
 
is a class of unary queries that are most likely performed by using a clustered-index scan access 
method in a DBMS. Hence a similar performance behavior is shared among the queries in the 
class and can be described by a common cost model. A classification can be further refined if an 
improvement of a derived cost model is required. In general, the smaller a query class is, the 
better the derived cost model, since queries in the class share more homogeneity. 
____________________________________________________ 
9 A standard statistical procedure can be used to determine the significant parameters for a system environment. 
10 π and σ denote project and select operations in relational algebra, respectively. 
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A set of sample queries are then drawn from each query class in a similar way as before. 
More specifically, sample queries are drawn in two steps. The first step is to use the judgment 
sampling to select a set of representative queries based on one’s knowledge about the queries. 
The second step is to use one or more probability sampling techniques (e.g., simple random 
sampling, stratified sampling, and cluster sampling) to draw a sample of queries from the 
foregoing set of representative queries. For example, representative queries for G1 1 in (8) are of 
the following form: 

 
                                                 π α (σ R.a = C ∧  R.b ω C’ (R))                                                   (9) 

 
where R is a table, R.a is a clustered-indexed column in R, C is a constant in the domain of R.a, 
R.b is another column in R, ω ∈ {=, ≠, <, >}, C’ is in the domain of R.b, and α is a list of 
columns from R. The first predicate R.a = C in (9) is the key conjunct that determines the major 
performance behavior (via the chosen access method) of a query in G1 1, while the second one 
R.b ω C’ is an auxiliary conjunct used to capture the secondary performance effect of remaining 
qualification F of a query in G1 1. Since there are a large number of such representative queries 
due to many possible values for parameters such as C in (9), they cannot all be used as sample 
queries. On the other hand, there is a minimum sample size requirement to avoid poor estimates 
of cost model coefficients. A commonly-used rule for sampling in statistics is to sample at least 
10 observations for every parameter to be estimated [16]. A sampling procedure based on a 
mixture of simple random sampling, stratified sampling and cluster sampling is then used to 
determine one or more sets of values for parameters R, R.a, C, R.b, ω, C’ and α from their 
relevant domains. It has been shown that our sampling procedures can meet the minimum sample 
size requirement and in the meantime do not draw too many extra sample queries so that the 
overhead of the cost model development is minimized [25]. 

For a dynamic environment, since the more parameters associated with the relevant indicator 
variables are included in a multistate cost model, the more sample queries are required. The 
following proposition gives a guideline on the minimum number of sample queries needed for 
regression analysis. 
 
PROPOSITION 4.1  For the qualitative regression cost model in (3) with n quantitative explanatory 
variables and one qualitative variable with m states, at least 10*(m*(n+1)+1) sampling 
observations are needed. 

PROOF: Notice that there are (n + 1) groups of regression coefficients in the cost model, one for 
each independent quantitative variable plus the intercept term. Each group has m coefficients, 
one for each state of the qualitative variable. In addition, the variance of error terms need also to 
be estimated. Hence, there are totally m * (n + 1) + 1 parameters to be estimated, and each 
requires at least 10 sampling observations. 

Sample queries drawn from a query class are performed in a dynamic environment. Their 
observed data as well as their associated probing query costs are recorded and used to derive a 
multistate cost model for the query class. A load builder, which is part of the MDBS agent for 
each local DBS [3], is used to simulate a dynamic application environment (with contention level 
points following any given distribution) at a local site in an MDBS during the query sampling 
procedure. The MDBS agent may also have an environment monitor which collects system 
statistics used for estimating the probing query costs when the estimation approach in Section 3.3 
is employed. 
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4.2.   Multistate cost models 
 
A multistate cost model contains a set VQ of quantitative explanatory variables and a set VD of 
indicator variables for the qualitative variable indicating system contention states. Similar to the 
static query sampling method, we divide a cost model into two parts: basic model + secondary 
part. The basic model represents the essential part of the model, while the secondary part is used 
to further improve the model. The qualitative variable (i.e., the indicator variables) is included in 
both parts of the cost model to capture the dynamic environmental factors. Set VQ is therefore 
split into two subsets VB and VS, where VB contains basic (quantitative) explanatory variables in 
the basic model, while VS contains secondary (quantitative) explanatory variables in the 
secondary part. Table 4 lists potential explanatory variables in each of the subsets for a unary 
query class and a join query class. If all variables (including indicator variables) are included, the 
full cost model is: 
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However, usually, not all variables are necessary for a given cost model. Note that this model is 
obtained by regrouping the explanatory variables in Formula (3) into the basic and secondary 
sets. 
 

Class Basic Explanatory Variables Secondary Explanatory Variables 

Unary 
Query 
Class 

NU – size (cardinality) of operand table  
TNU – size of intermediate table   
RNU – size of result table  
 

LU – tuple length of operand table 
RLU – tuple length of result table 
NZU – operand table length NU* LU 
RZU – result table length RNU * RLU 

Join 
Query 
Class 

NJ1 – size of 1st operand table  
NJ2 – size of 2nd operand table  
TNJ1 – size of 1st intermediate table   
TNJ2 – size of 2nd intermediate table  
RNJ – size of result table  
TNJ12 – size of Cartesian product of  
           intermediate tables 

LJ1 – tuple length of 1st operand table 
LJ2 – tuple length of 2nd operand table 
RLJ – tuple length of result table 
NZJ1 – 1st operand table length NJ1 * LJ1 
NZJ2 – 2nd operand table length NJ2 * LJ2 
RZJ – result table length RNJ * RLJ 

 
Table 4:  Potential Explanatory Variables for Cost Models 

 
To determine the variables to be included in the cost model for a query class, a mixed 

backward and forward procedure described below is adopted. We start with the full basic model 
which includes all variables in VB and use a backward procedure to eliminate insignificant basic 
explanatory variables one by one. Note that, in our algorithm, if an explanatory variable X is 
removed from the model, its coefficients ( ∑ −

=
+

1

1
0 *m

j j
j

xx ZBB ) for all contention states 

(determined by indicator variables Zj’s) are removed. We then use a forward selection procedure 
to add more significant secondary explanatory variables from VS into the cost model. This 
procedure tries to further improve the cost model. Similar to the backward procedure, if a 
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secondary variable X is added into the model, its coefficients ( ∑ −

=
+

1

1
0 *m

j j
j

xx ZBB ) for all 

contention states are included. Since it is expected that most basic variables are important to a 
cost model and only a few secondary explanatory variables are important, both the backward 
elimination and the forward selection procedures most likely terminate soon after they start. The 
above process is therefore quite efficient. 

Assume that we have nj sampling observations in contention state Sj (1 ≤ j ≤ m), with 

∑ =

m

j jn
1

 observations in total. Consider the simple correction coefficient [16] between variables 

X and Y in contention state Sj: 
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where Xij, Yij are the values from the ith sampling observation (1 ≤ i ≤ nj) in state Sj. For any 
explanatory variable X, if its maximum simple correlation coefficient }{ .

max
1

j
YXmj r≤≤  with response 

variable Y is too small, it has little linear relationship with Y in any state. Such explanatory 
variables should be removed from consideration. 

In the backward elimination procedure, the next variable X to be removed from the current 
model is the one which satisfies two conditions (a) its average simple correlation coefficient 

mrr m

j
j

YXYX /)(
1 .. ∑ =

=  with response variable Y for all contention states is the smallest among all 

explanatory variables in the current model; (b) it makes s’ ≤ s or |(s − s’)/s| < ε, where s’ is the 
standard error of estimation [16] for the reduced model (i.e., with X removed) given by: 

                ])1(*/[])'ˆ(['
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                             (10) 

where Yij , '
îjY , k denote the observed query cost, estimated query cost given by the reduced 

model, and number of explanatory variables in the model, respectively; s is the standard error of 
estimation for the original model given by a formula similar to (10); ε  is a given small positive 
constant. Since the average simple correlation coefficient YXr .  indicates the degree of linear 
relationship between X and Y on average in all states, foregoing condition (a) selects an 
explanatory variable X that contributes the least (on average in all states) in explaining the 
response variable Y. Since the standard error of estimation is an indication of estimation accuracy, 
foregoing condition (b) ensures that removing variable X from the model improves the 
estimation accuracy or affects the model very little. Removing a variable that has a little effect 
on the model can reduce the complexity and maintenance overhead of the model. 

In the forward selection procedure, the next variable X from VS to be added into the current 
model is the one satisfies (a) its average simple correlation coefficient mrr m

j
j

YXYX SS
/)(

1 .. ∑ =
=  

with the residuals Ys of the current model for all states is the largest among all explanatory 
variables in the model; i.e., it can explain the most (on average for all states) about the variations 
that the current model cannot explain; and (b) it significantly improves the estimation accuracy, 
i.e., s’ < s and |(s − s’)/s| > ε , where s’, s denote the standard errors of estimation for the 
augmented model (i.e., with X included) and the original model, respectively; and ε  is a given 
small positive constant. 
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Note that the exact number of explanatory variables in a cost model is determined after the 
above mixed backward and forward procedure is done. However, we need such information to 
determine the query sample size from Proposition 4.1 at the beginning of the cost model 
development. Since it is expected that most basic explanatory variables in VB are selected and 
only a few secondary explanatory variables in VS are used for a cost model, we expect the 
number of explanatory variables in a cost model usually not exceed ⎡ ⎤/2||   || SB VV + . Based on 
experiments, the maximum number M of contention states for a dynamic environment in practice 
can also be estimated. Hence, a reasonable query sample size is: 

                                               ⎡ ⎤ )1)12/|||(|*(*10 +++ SB VVM                                            (11) 

from Proposition 4.1.  
 
4.3.   Statistical measures for developing useful models 
 
Multicollinearity occurs when explanatory variables are highly correlated among themselves. In 
such a case, the estimated regression coefficients tend to have large sampling variability. It is 
better to avoid multicollinearity. 

The presence of multicollinearity is detected by means of the variance inflation factor (VIF) 
[13]. When an explanatory variable has a strong linear relationship with the other explanatory 
variables, its VIF is large. In a dynamic environment with multiple contention states, let VIFj (1 
≤ j ≤ m) be the variance inflation factor of explanatory variable X in state Sj. If { } min

1 jmj VIF≤≤  is 
large, X is not included in a cost model to avoid multicollinearity. 

In addition, F-test, the standard error of estimation s, the coefficient of multiple 
determination R2, as well as the percentage of good cost estimates for some test queries are used 
to validate the significance of a developed regression cost model. 
 
4.4.   Query optimization using multistate cost models 
 
In the previous sections, we have developed multistate cost models to estimate query costs in a 
dynamic multidatabase environment. Although estimating query costs is essential to query 
optimization, it is not the ultimate goal. The ultimate goal of query optimization is to choose a 
good execution plan for a query on the basis of the cost estimates by the cost models. 

In general, there are two approaches to processing a query in a database system. The first one 
is called the interpretation approach. In this approach, simple query optimization is performed on 
the fly while a query is being executed. This approach is suitable for ad hoc/interactive queries, 
which are usually executed only once. The second one is called the compilation approach. In this 
approach, comprehensive query optimization is performed for a given query at compile time, 
resulting in an execution plan. The execution plan can be then executed repeatedly at run time. 
This approach is more suitable for stored and embedded queries, which are usually executed 
repeatedly. In an MDBS environment, both stored/embedded queries and ad hoc/interactive 
queries are expected. Another mixed compilation and interpretation approach was proposed for 
processing queries in an MDBS environment [28]. 

The multistate cost models can be easily applied to perform query optimization in the 
interpretation approach for a dynamic environment. The current system contention state at a local 
site can be detected by either running a small probing query or analyzing environmental statistics 
that can be used to estimate probing costs as in Section 3.3. Note that the overhead for detecting 
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the current system contention states is usually negligible, compared with the significant cost 
saving (e.g., hours or days) from a good execution strategy in a distributed multidatabase 
environment. The local costs of (component) queries in the current contention states at local sites 
can be estimated by the relevant multistate cost models. Based on the estimated local costs11, the 
global query optimizer can determine a good execution strategy to run the given global query. 
Since the multistate cost models estimate query costs based on the current system states at local 
sites, they usually yield more accurate cost estimates comparing to the cost estimates given by 
the traditional static cost models, which in turn leads to more efficient query processing in the 
dynamic multidatabase environment. 

It is not easy to perform query optimization in the compilation approach for a dynamic 
environment. This is because it difficult to predict the run-time system environment when a 
query is optimized at compile time. A traditional approach to improving performance for the 
execution plan chosen at the compile time in a dynamic environment is to dynamically modify 
the plan based on dynamic information observed at run time, which is called so-called 
dynamic/adaptive query optimization [2, 4, 14, 19]. Unfortunately, this approach may 
dramatically increase the query response time, which should be avoided for the embedded 
queries that need to be executed repeatedly. 

To perform query optimization at compile time as much as possible and reduce query 
processing time at run time, we can employ the multistate cost models in the following way. We 
generate multiple versions (rather than one) of an execution plan for a query during query 
optimization at compile time. The idea is to use different versions to optimize the query for 
various system contention states. The query will be executed by invoking an appropriate version 
of the execution plan based on the detected system contention states at run time. Although the 
query optimizer takes more time to generate multiple versions of an execution plan for a query at 
compile time, which in fact does not affect the query response time, the cost saving at run time is 
usually very significant so that the overhead is well paid off. The other possible ways to apply 
the multistate cost models for query optimization include the optimistic approach, the 
environment predicting approach, and the lazy approach. Since the focus of this paper is to 
develop cost models for a dynamic multidatabase environment rather than to study query 
optimization strategies, we discuss the details of relevant query optimization techniques in 
separate papers [22, 29]. 
 
4.5.   Estimating query costs for more complex cases using multistate cost models 
 
Using the multistate cost models, we can directly estimate the cost of a query run in any 
contention state in a dynamic environment. However, there are two cases in which a query may 
experience multiple contention states during its execution: (1) the query is too large to be 
completed in one contention state although the environment changes gradually; and (2) the 
environment changes its contention states rapidly although the query may not be large. 

To estimate the cost of a query experiencing multiple contention states in the first case, we 
employ a fractional analysis technique. The key idea is to analyze a query cost by fractionalizing 
it according to the contention states to be experienced. Notice that the system load in a particular 
application environment often demonstrates a certain pattern. For example, in a company, its 
system  load  is  minimum  off  working  hours,  starts  to grow in the morning when the working  
____________________________________ 
11 The query optimizer may also take some other factors such as network status into consideration during query 
optimization in an MDBS. These factors are not the topics to be discussed in this paper. 
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hours begin, and declines when the working hours are close to the end of the day. This load 
pattern repeats every working day in the company. Based on the pattern, the sequence of 
contention states in the system environment for each day can be determined. Let ∆ = { S1, S2, ..., 
SM } be the set of all possible contention states in a given application environment; { S(i), i = 1, 
2, ... } be the sequence of contention states occurring in the environment where S(i) ∆∈ ; and t(i−1) 
and t(i) be the starting and ending time instants for state S(i) (i = 1, 2, ...). Consider query Q 
starting its execution at time instant s

Qt  )( )1( ks
Q

k ttt ≤≤−  in state S(k). Let C(Q) be the cost of 
query Q, which may experience multiple states. Let C(Q, S(i)) (i = k, k+1, ...) be the cost of query 
Q if the query is executed entirely in state S(i), which can be estimated by a multistate cost model 
introduced in the previous sections. Let T(k) = min{ C(Q, S(k)), (t(k)− s

Qt )} and T(i) = (t(i)−t(i−1)) for i 

≥ k+1. If C(Q, S(k)) ≤ (t(k)− s
Qt ), query Q is to experience only one contention state S(k). Hence 

C(Q, S(k)) is the cost for query Q, i.e., C(Q) = C(Q, S(k)). If C(Q, S(k)) > (t(k) − s
Qt ), query Q is to 

experience more than one contention state. Then T(k)/C(Q, S(k)) (clearly, < 1 in this case) is the 
fraction of work done for Q in state S(k). The remaining fraction [1 − T(k)/C(Q, S(k))] of work for 
Q is to be done in the subsequent contention states. If [1−T(k)/C(Q, S(k))]*C(Q, S(k+1)) ≤ 
(t(k+1)−t(k)), all remaining work of Q can be done in state S(k+1). Thus the cost of Q is: C(Q) = T(k) 
+[1−T(k)/C(Q, S(k))] * C(Q, S(k+1)). Following this fractional analysis procedure, similar cost 
estimates can be obtained if the last state that query Q experiences is S(k+2), S(k+3) .... 

To estimate the cost of a query experiencing multiple contention states in the second case, 
we employ a probabilistic technique. The idea is to make use of the theory of Markov chains to 
derive a cost formula to estimate the query costs in such an environment. More specifically, the 
cost estimation formula for query Q in such a dynamic environment can be given as follows: 

                                            ]
),(

/[1)(
1

∑
=

=
M

i i

i

SQC
QC π  ,                                                     (12) 

where πi is the limit probability of state Si, which can be determined by solving a system of linear 
equations based on the transition probabilities for one state changing to another state in the 
Markov chain [15]. 

Clearly, the above two techniques make use of the cost estimates C(Q, Si)’s obtained from 
the multistate cost models to estimate the query cost for more complex cases. The detailed 
discussion of these techniques can be found in [21]. The multistate cost models provide a base to 
analyze query costs in more complex dynamic environments. Hence the multistate query 
sampling method together with the fractional analysis and the probabilistic techniques comprise 
a suite of techniques to estimate the query costs for various dynamic multidatabase environments. 
 
5.   Experimental Results 
 
To verify the feasibility of our multistate query sampling method for developing cost models in a 
dynamic environment, experiments were conducted in a multidatabase environment using a 
research prototype named CORDS-MDBS [3]. Two commercial DBMSs, i.e., Oracle 8.0 and 
DB2 5.0, were used as local database systems running under Solaris 5.1 on two SUN UltraSparc 
2 workstations. Figure 5 shows the experimental environment. Local queries are submitted to a 
local DBS via an MDBS agent. The MDBS agent provides a uniform relational ODBC interface 
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for the global server. It also contains a load builder which generates dynamic loads to simulate 
dynamic application environments. 
 

CORDS-MDBS Server

( . . . . . . )(DB2 5.0)(Oracle 8.0)

local queries

Local DBS  1

Local

Local

Local

Local Local

Local

Local DBS  2 Local DBS  n

DBMSDBMSDBMS

MDBS AgentMDBS AgentMDBS Agent

DBDBDB

 
 

Figure 5:  Experimental Environment 
 

A synthetic experimental database was created for each local DBS in the experiments. Each 
experimental database contains 12 tables as shown in Table 5. Data in the tables are generated 
 

Table Indexed Clustered- 
indexed 

Cardinality

R1(a1, a2, a3) a2, a3  250,000 
R2(a1, a2, a3, a4, a5) a2, a4 a3 200,000 
R3(a1, a2, a3, a4, a5) a3, a4  17,000 
R4(a1, a2, a3, a4, a5, a6, a7) a2, a6  3,000 
R5(a1, a2, a3, a4, a5, a6, a7) a2, a4 a1 30,000 
R6(a1, a2, a3, a4, a5, a6, a7) a4, a7 a1 10,000 
R7(a1, a2, a3, a4, a5, a6, a7, a8, a9) a1, a4, a7 a2 50,000 
R8(a1, a2, a3, a4, a5, a6, a7, a8, a9) a2, a6, a9 a3 150,000 
R9(a1, a2, a3, a4, a5, a6, a7, a8, a9) a1, a3, a5, a8  40,000 
R10(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) a2, a4, a10 a1 100,000 
R11(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) a2, a7 a1 7,000 
R12(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) a2, a5, a11, a13  80,000 

 
Table 5:  Tables in Experimental Databases 

 
as follows. The values for the nth column of a table are randomly generated from the domain [1, 
100*n2]. Hence a predicate on different columns in a table has different selectivities. For an 
equality predicate, for example, the lower the column number is, the higher the relevant 
selectivity (closer to 1). The characteristics of such an experimental database include: (1) the 
number of columns in a table ranges from 3 to 13, with more tables having medium numbers of 
columns; (2) the cardinality of a table ranges from 3000 to 250,000; (3) different selectivities are 
provided in a table for different columns; and (4) various types of columns including indexed, 
clustered-indexed and sequential ones are considered. This experimental database allows us to 
test the feasibility of our technique to build cost models for capturing a variety of factors in a 
database environment. Note that, typically, not all factors have a large changing range in a real 
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database. The flat factors will not be considered in a cost model for a specific environment, 
which would lead to a simpler and more accurate cost model. 

In the experiments, queries on each local DBS were first classified according to Section 4.1. 
A sample of queries with the size meeting condition (11) were then drawn from each query class 
and performed in the dynamic environments at the local sites. Their observed costs together with 
the associated probing query costs are used to derive a cost model with a qualitative variable for 
each query class using the techniques introduced in the previous sections. Some randomly-
generated test queries in the relevant query classes were also performed in the dynamic 
environment, and their observed costs were compared with the estimated costs given by the 
derived cost models. The unary test queries are of the following form: 

))(( RFσπα  

where α is a list of columns from table R, qualification 

]) [  (     :: 321211
RRRRRR PPPPPPF ∨∧∧= , 

i
RP  (i = 1, 2, 3) are valid predicates on table R for the relevant query classes. The join test queries 

are of the following form: 

)  ( 2  1 RR F
><

απ  

where α is a list of columns from tables R1 and R2, qualification 

)]   |  ( [  )]     | [( :: 211
),(

211
22221111 RRRRRRRR P PPPPPPF ∨∧∧∨=  , 

i
R j

P  (j = 1, 2; i = 1, 2, 3) are valid predicates on table Rj for the relevant query classes, and ),( 21 RRP  
is a valid join predicate on tables R1 and R2 for the relevant query classes. These test queries 
cover typical forms of unary and join queries. 

Note that, unlike scientific computation in engineering, the accuracy of cost estimation in 
query optimization is not required to be very high. The estimated costs with relative errors within 
30% are considered to be very good, and the estimated costs that are within the range of one-time 
larger or smaller than the corresponding observed costs (e.g., 2 minutes vs. 4 minutes) are 
considered to be good. Only those estimated costs which are not of the same order of magnitude 
with the observed costs (e.g., 2 minutes vs. 3 hours) are not acceptable. 

Table 6 shows the cost models derived by applying the multistate query sampling method 
suggested in this paper for three representative query classes for each local DBS, namely, a 
unary query class G1 without usable indexes, a unary query class G2 with usable non-clustered 
indexes for ranges, and a join query class G3 without usable indexes12. Let us use the derived 
cost model for query class G3/DB2 in Table 6 as an example to explain why such a multistate cost 
model can usually give better cost estimates in a dynamic environment, compared to a static cost 
model. From the table, we can see that this cost model includes two indicator variables: Z1 and Z2, 
implying that three contention states are needed to capture the query performance behavior for 
query class G3 in this DB2 local database environment. Let the three contention states be: S3 (i.e., 
Z2 = Z1 = 0), S2 (i.e., Z2 = 1 & Z1 = 0) and S1 (i.e., Z2 = 0 & Z1 = 1), where S3 is the lowest 
contention  state  and  S1 is the highest contention state. The coefficients of indicator variables Z2 
____________________________________ 
12 The three query classes correspond to G1 4, G1 5, and G2 4 in [25]. 
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Query 
Class 

Cost Estimation Model with Qualitative Variable (i.e., Multistate Cost Models) 

G1/DB2 (−0.1522e+1−0.5784e+0∗Z2 + 0.1760e+1∗Z1) + (−0.1333e-4−0.2149e-3∗Z2 
+0.4738e-4∗Z1)∗  TNU + (0.5467e-5+0.8293e-4∗Z2 + 0.5145e-4∗Z1) ∗  NU 
+ (0.1378e-2 + 0.1469e-2∗Z2 + 0.3310e-2∗Z1) ∗  RNU + (0.2912e-7+0.1636e-4∗Z2 
+0.8896e-5∗Z1) ∗  NZU 

G2/DB2 (0.6758e+1−0.4563e+1∗Z5− 0.1311e+2∗Z4 − 0.3462e+1∗Z3 − 0.1198e+2∗Z2 
+0.3981e+1∗Z1) + (0.6701e-4−0.3545e-4∗Z5 + 0.6882e-4∗Z4 + 0.1225e-3∗Z3 
−0.1153e-3∗Z2 + 0.1855e-3∗Z1) ∗  NU + (0.6153e-3+0.7202e-3∗Z5+ 0.1472e-2∗Z4 
+0.2740e-2∗Z3 + 0.3729e-2∗Z2 + 0.4015e-2∗Z1) ∗  RNU + (0.5499e-1+0.8548e+0∗Z5 
+0.8651e+0∗Z4 + 0.1126e+1∗Z3 + 0.2258e+1∗Z2 + 0.2269e+1∗Z1) * RLU + (−0.1155e+1 
+0.7266e+0∗Z5 + 0.1288e+1∗Z4 − 0.3080e+0∗Z3 + 0.1167e+1∗Z2 − 0.1680e+1∗Z1) ∗  LU 

G3/DB2 (0.1232e+2+0.6065e+2∗Z2− 0.3505e+2∗Z1) + (0.5634e-7+0.6310e-8∗Z2 
+0.3707e-6∗Z1) ∗  TNJ12 + (0.8489e-3+0.1586e-2∗Z2 + 0.3656e-2∗Z1) ∗  RNJ 

G1/Oracle (0.1648e-1−0.5209e+0∗Z2+ 0.2931e+1∗Z1) + (−0.3030e-3+0.1586e-3∗Z2 
+0.3281e-3∗Z1) ∗  TNU + (−0.1549e-4+0.4146e-4∗Z2 + 0.6483e-4∗Z1) ∗  NU 
+ (0.2691e-2 + 0.1986e-2∗Z2 + 0.3791e-2∗Z1) ∗  RNU + (−0.5699e-4−0.1221e-4∗Z2 
+0.8089e-4∗Z1) ∗  RZU + (0.8557e−5+ 0.3322e-5∗Z2 + 0.1894e-6∗Z1) ∗  NZU 

G2/Oracle (0.5262e+1−0.7762e+1∗Z5− 0.3278e+1∗Z4 − 0.7294e+1∗Z3 − 0.7848e+1∗Z2 
−0.2817e+1∗Z1) + (−0.1034e-3+0.1738e-3∗Z5+ 0.1651e-3∗Z4 + 0.2833e-3∗Z3 
+0.2526e-3∗Z2 + 0.2542e-3∗Z1) ∗  NU + (0.5224e-3+0.2012e-2∗Z5 + 0.2955e-2∗Z4 
+0.4490e-2∗Z3 + 0.6067e-2∗Z2 + 0.6541e-2∗Z1) ∗  RNU 

G3/Oracle (−0.1457e+2− 0.4381e+2∗Z3 + 0.7830e+2∗Z2 − 0.7726e+2∗Z1) + (−0.9777e-7 
+0.1322e-6∗Z3 + 0.2320e-6∗Z2 + 0.1373e-6∗Z1) ∗  TNJ12 + (0.1257e-2+0.1737e-2∗Z3 
+0.3801e-2∗Z2 + 0.5704e-2∗Z1) ∗  RNJ + (0.7793e-3−0.4290e-3∗Z3− 0.8994e-3∗Z2 
−0.1771e-6∗Z1) ∗  TNJ1 + (−0.1887e+1 +0.4723e+1∗Z3 + 0.8677e+1∗Z2 + 0.9416e+1∗Z1) 
∗RLJ + (0.6537e+1+0.2638e-1∗Z3 − 0.2248e+2∗Z2 + 0.3179e+1∗Z1) ∗  LJ1 

 
Table 6:  Multistate Cost Models for DB2 and Oracle 

 
and Z1 in the cost model represent the coefficient adjustments for the corresponding explanatory 
variables in contention states S2 and S1, respectively. For example, the (integrated) coefficient of 
explanatory variable RNJ (i.e., the result table size, which is usually the most significant 
explanatory variable) for all contention states in the cost model is: (0.8489e−3 + 0.1586e−2 ∗  Z2 
+ 0.3656e−2 ∗  Z1). When contention state is S3, S2, or S1, the coefficient is adjusted to: 
0.8489e−3 (Z2 = Z1 = 0), 0.2435e−2 (Z2 = 1 & Z1 = 0), or 0.4505e−2 (Z2 = 0 & Z1 = 1), 
respectively. Clearly, for a higher contention state such as S1, its adjusted coefficient is larger; 
which implies that a larger overhead is needed to process a result tuple in a higher contention 
state. Note that the number of contention states needed and the adjustments of coefficients of 
explanatory variables for each state are determined automatically for a given environment by the 
statistical procedure presented in the previous sections. In this way, the technique can build cost 
model capturing the dynamic behavior of a multidatabase environment. 

Table 7 shows some statistical measures for the derived cost models13. For the comparison 
purpose, two static experimental cases were considered. In the first case, cost models were 
derived by applying the static query sampling method to sampling data obtained from a static 
environment (Static Approach I). In the second static case, cost models were derived by applying 
the static query sampling method to sampling data obtained from a dynamic environment (Static 
____________________________________ 
13 The number in parentheses beside ‘multistates’ in Table 7 indicates the number of contention states used for the 
relevant cost model. 
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Approach II). This, in fact, is to restrict the multistate query sampling method to consider only 
one contention state. 
 

Query 
class 

Cost model 
type R2 s Average 

cost 
Very good 
estimates 

Good 
estimates 

Multistates (3) 0.972 0.157e+2 0.528e+2 55% 78% 
One-state 0.798 0.363e+2 0.511e+2 30% 58% 

G1 for 
DB2 

Static 0.972 0.672e+0 0.290e+1 3% 5% 
Multistates (6) 0.994 0.997e+1 0.620e+2 60% 76% 

One-state 0.779 0.620e+2 0.690e+2 24% 48% 
G2 for 
DB2 

Static 0.986 0.733e+0 0.359e+1 7% 14% 
Multistates (3) 0.996 0.230e+3 0.735e+3 37% 62% 

One-state 0.910 0.254e+3 0.431e+3 27% 45% 
G3 for 
DB2 

Static 0.992 0.116e+2 0.381e+2 9% 13% 
Multistates (3) 0.982 0.160e+2 0.680e+2 69% 81% 

One-state 0.876 0.576e+2 0.865e+2 35% 60% 
G1 for 
Oracle 

Static 0.999 0.917e-1 0.402e+1 3% 6% 
Multistates (6) 0.993 0.143e+2 0.873e+2 63% 74% 

One-state 0.901 0.672e+2 0.108e+3 35% 62% 
G2 for 
Oracle 

Static 0.999 0.301e+0 0.493e+1 4% 8% 
Multistates (4) 0.999 0.148e+3 0.998e+3 51% 67% 

One-state 0.951 0.507e+3 0.882e+3 22% 44% 
G3 for 
Oracle 

Static 0.999 0.503e+1 0.492e+2 0% 1% 
 

Table 7:  Statistics for Cost Models 
 

From the experimental results, we have the following observations: 

• The multistate query sampling method presented in this paper can derive good cost 
models in a dynamic environment. The coefficients of total determination in Table 7 
indicate that all derived models can capture 98.9% variations in query cost on average. 
The standard errors of estimation are acceptable, compared with the magnitude of the 
average cost of relevant sample queries (only 22% of average costs on average). The 
statistical F-tests at significance level α = 0.01 were also conducted, which showed that 
all cost models are useful for estimating query costs in a dynamic environment. In fact, 
the more dynamic an environment is, the more a multistate cost model outperforms a 
one-state cost model. 

• The (static) cost models derived by the static query sampling method for a static 
environment (i.e., Static Approach I) are not suitable for estimating query costs in a 
dynamic environment. Although such cost models may have good coefficients of total 
determination (99.1% on average in Table 7) for the sampling data in a static 
environment, they can hardly give good cost estimates in a dynamic environment (gave 
only 7.8% good cost estimates on average in Table 7 for the test queries in our 
experiments). 

• The (multistate) cost models derived by using the multistate query sampling method for a 
dynamic environment significantly improve the (one-state) cost models derived by 
applying the static query sampling method for the dynamic environment (i.e., Static 
Approach II). In fact, compared with the one-state cost models, the multistate cost models 
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increase the number of very good cost estimates (i.e., with relative errors ≤ 0.3) and the 
number of good cost estimates (i.e., within one time range) by 27.0% and 20.2% (on 
average), respectively, for the test queries. Figures 6 ~ 11 show comparisons among the 
observed costs, estimated costs by the multistate cost models, and estimated costs by the 
one-state cost models for the test queries in a dynamic environment. 
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Figure 6: Costs for Test Queries in G1 on DB2 5.0
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Figure 7: Costs for Test Queries in G1 on Oracle 8.0 
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Figure 8: Costs for Test Queries in G2 on DB2 5.0
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Figure 9: Costs for Test Queries in G2 on Oracle 8.0 

 

• The more contention states are considered, the better the derived cost model usually is. 
For example, the coefficients of total determination for the cost models for query class 
G2/Oracle with 1 to 6 contention states are 0.901404, 0.974606, 0.978702, 0.990002, 
0.990005, 0.993221, respectively. However, the improvement is very small after the 
number of contention states reaches certain point. Table 7 shows that usually considering 
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3 to 6 contention states for a dynamic environment is sufficient to obtain a good cost 
model. 
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Figure 10: Costs for Test Queries in G3 on DB2 5.0
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Figure 11: Costs for Test Queries in G3 on Oracle 8.0
 

• Like static techniques [5, 25], it is also true for the multistate query sampling method that 
small-cost queries usually have worse cost estimates than large-cost queries. The main 
reason for this is that even a small momentary change in the system environment may 
have a significant impact on the cost of a small-cost query. It is not easy to capture all 
such small environmental changes in a cost model. Fortunately, estimating the costs of 
small-cost queries is not as important as estimating the costs of large-cost queries because 
it is more important to identify large-cost queries so that inefficient execution plans can 
be avoided. 

• Contention states determination algorithm IUPMA works well for both uniformly-
distributed and non-uniformly-distributed (clustered) probing query costs, while 
algorithm ICMA can determine an even better set of system contention states for the 
clustered cases. Note that the sampled probing query costs were drawn by following the 
distribution of the contention level in a dynamic environment. In fact, the experimental 
results shown in Tables 6 ~ 7 and Figures 6 ~ 11 were obtained for the uniform case. 
Extensive experiments were also conducted for clustered cases. The experimental results 
showed that, for a given query class, the cost model derived in the clustered cases is 
usually better than the one derived for the uniform case even if IUPMA is used. This is 
because the cost models for the clustered cases only need to capture performance 
behavior of queries in more focused and narrower subrange(s) of the contention level. 
Table 8 shows some typical experimental results for a query class in a dynamic 
environment with clustered contention level points (see Figure 12 for the corresponding 
frequency distribution of the contention level). 

To check the effect of multistate cost models on query optimization, we also conducted some 
experiments. In the experiments, for simplicity, we considered only two dynamic sites A and B 
in the multidatabase environment. Site A ran Oracle 8.0, and Site B ran DB2 5.0. Each site can 
have a contention level point from 1 (least) to 96 (highest). Global test queries were randomly 
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generated and executed to retrieve information from local databases at the two sites. The 
following two execution plans were considered: 

• Plan P1: execute a local query at Site A, transfer the result to Site B, and perform the final 
integration (join) at Site B. 

• Plan P2: execute a local query at Site B, transfer the result to Site A, and perform the final 
integration (join) at Site A. 

 
Query 
class 

States 
determination 

# of 
states 

R2 s Average 
cost 

very good 
estimates 

Good 
estimates 

IUPMA 3 0.978 0.128e+2 0.488e+2 58% 82% G1 for 
DB2 ICMA 3 0.991 0.740e+1 0.465e+2 82% 95% 

 
Table 8:  Statistics for Cost Models in a Clustered Case 
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Figure 12: Histogram of Contention Level Points in a Clustered Case 

 
A global query optimizer should choose a better plan between P1 and P2. Assume that data 
transferring cost is negligible in our fast local area network. Let C(Pi), M(Pi), S1(Pi), and S2(Pi) 
be the costs of plan Pi (i = 1, 2) based on observations, multistate cost models, one-state cost 
models (Static Approach II), and static cost models (Static Approach I), respectively. Notice that, 
as long as the observed cost difference C(P1)−C(P2) and the estimated cost difference (e.g., M(P1) 
− M(P2)) have the same sign (i.e., ”+” or ”−”), the corresponding cost models can help the query 
optimizer determine a correct plan. To include various dynamic environments in the experiments, 
we considered different ratios of contention level points between Site A and Site B as follows: 
96:1, 84:1, 72:1, ..., 12:1, 1:1, 1:12, ..., 1:84, 1:96. Table 9 shows some typical experimental data. 
We use C, M, S1, and S2 to denote the observing, multistates, one-state, and static approaches in 
the table.  Qi (1 ≤ i ≤ 8) denote test queries. From the experimental data, we can see that: 

• The static cost models can only determine a correct plan (i.e., the better one) for 49.3% 
cases. 
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• The multistate cost models can determine a correct plan for 87.5% cases, which 
represents a significant improvement of 38.2% over the static models. 

• Only for those cases in which the costs of two alternate plans are quite close to each other, 
the multistate cost models may fail to determine a better plan. Fortunately, choosing 
either plan does not make much difference in such cases. 

These experimental results demonstrate that the multistate cost models are very promising in 
determining an efficient plan during query optimization. 

 
Ratio of contention level points at Sites A and B   

 96:1 84:1 72:1 60:1 48:1 36:1 24:1 12:1 1:1 1:12 1:24 1:36 1:48 1:60 1:72 1:84 1:96
C + + + + + + + + - - - - - - - - - 
M + + + + + + + - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q1 

S2 - - - - - - - - - - - - - - - - - 
C + + + + + + + + + - - - - - - - - 
M + + + + + + + - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q2 

S2 - - - - - - - - - - - - - - - - - 
C + + + + + + + + + - - - - - - - - 
M + + + + + + - - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q3 

S2 - - - - - - - - - - - - - - - - - 
C - - - - - - - + + + + + + + + + + 
M - - - - - + + + + + + + + + + + + 
S1 + + + + + + + + + + + + + + + + + 

 
 
Q4 

S2 + + + + + + + + + + + + + + + + + 
C + + + + + + + + + - - - - - - - - 
M + + + + + + + - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q5 

S2 - - - - - - - - - - - - - - - - - 
C + + + + + + + + + - - - - - - - - 
M + + + + + + + - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q6 

S2 - - - - - - - - - - - - - - - - - 
C + + + + + + + + + - - - - - - - - 
M + + + + + + - - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q7 

S2 - - - - - - - - - - - - - - - - - 
C + + + + + + + + + - - - - - - - - 
M + + + + + + + - - - - - - - - - - 
S1 - - - - - - - - - - - - - - - - - 

 
 
Q8 

S2 - - - - - - - - - - - - - - - - - 
”+” — cost difference is positive, i.e., P2 is better than P1 
”-” — cost difference is negative, i.e., P1 is better than P2 

 
Table 9: Determining Efficient Query Execution Plan Based on Multistate and Static Cost Models 
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6.   Conclusions 
 
Local query cost estimation is essential to global query optimization in an MDBS. The 
techniques proposed so far in the literature to develop local cost models in an MDBS are only 
suitable for a static environment. A query cost can be dramatically affected by dynamic factors in 
a multidatabase environment. 

The main contribution of this paper is that we have proposed a novel qualitative approach 
(also called the multistate query sampling method) to building a cost model for a dynamic 
multidatabase environment, which includes: (1) a technique to incorporate a qualitative variable 
indicating the system contention states in the cost model; (2) a strategy to utilize the system 
contention level reflecting the combined net effect of dynamic factors on a query cost for the cost 
model development; (3) two algorithms to determine a good set of system contention states for 
dynamic environments with their system contention level following uniform and non-uniform 
distributions, respectively; (4) extensions of our previous static query sampling method including 
the determination of the minimum sample size for query sampling, the strategies and criteria to 
add/remove quantitative and qualitative variables, and the revised statistical measures to evaluate 
a multistate cost model; and (5) empirical studies on the accuracy of multistate cost models and 
the effectiveness of query optimization based on the models in dynamic environments. 

A multistate cost model developed by the above qualitative approach is used to estimate the 
cost of a query run in any contention state in a dynamic environment. To estimate the cost of a 
query experiencing multiple contention states in a slowly-changing environment, a fractional 
analysis technique can be applied. To estimate the cost of a query experiencing multiple 
contention states in a frequently-changing environment, a probabilistic approach based on 
Markov chains can be adopted. The qualitative approach provides a base for the latter two 
techniques. These three techniques together comprise a complete suite of techniques to estimate 
the query costs for various dynamic multidatabase environments. 

Although dynamic environmental factors have a significant effect on query cost, they were 
ignored in most existing cost model development techniques for MDBSs due to lack of 
appropriate techniques. This paper introduces some promising techniques to tackle the problem. 
However, our work is just the beginning of further research that needs to be done in order to 
fully solve all relevant issues for global query optimization in dynamic multidatabase 
environments. 
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