

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 24

Building Multistate Cost Models for Dynamic
Multidatabase Environments *

Qiang Zhu Yu Sun Satyanarayana Motheramgari

Department of Computer and Information Science
The University of Michigan, Dearborn, MI 48128, USA

{qzhu, yusun, motheram}@umich.edu

Wen-Chi Hou
Department of Computer Science

Southern Illinois University, Carbondale, IL 62901, USA
hou@cs.siu.edu

Suyun Chen

Information Management
BMO Financial Group, Toronto, ON M1W 3E8, Canada

Suyun.Chen@bmo.com

Abstract

Local cost estimation is essential to global query optimization in a multidatabase system
(MDBS). The techniques suggested in the literature to develop local cost models in an MDBS
are suitable for a static environment. Many dynamic environmental factors have a significant
effect on a query cost. In this paper, we introduce a multistate query sampling method to develop
local cost models for a dynamic multidatabase environment. The key idea is to divide the system
contention level, which reflects the combined net effect of dynamic factors on a query cost, in a
dynamic environment into a number of discrete contention states based on the cost of a probing
query and then incorporate a qualitative variable indicating the contention states into a cost
model. To determine an appropriate set of contention states for a dynamic environment, two
algorithms based on iterative uniform partition and data clustering, respectively, are introduced.
To build an effective cost model with a qualitative variable for a dynamic environment, we
extend the techniques from our previous (static) query sampling method, including query
sampling, automatic variable selection, regression analysis, and model validation. Experimental
results demonstrate that the presented multistate query sampling method is quite promising in
developing useful cost models for a dynamic multidatabase environment. Some issues on query
optimization based on the developed multistate cost models are also discussed. Our study shows
that multistate cost models improve the effectiveness of query optimization. In addition, how to
use the cost estimates from multistate cost models to estimate query costs in more complex
situations is suggested.
Keywords: multidatabase, query optimization, cost model, dynamic environment, contention
states, query sampling, regression analysis

* Research supported by the US National Science Foundation under Grant # IIS-9811980 and The University of
Michigan under OVPR and UMD grants.

International Journal of Information Technology, Vol. 14, No. 2, 2008

 25

1. Introduction

A multidatabase system (MDBS) integrates data from multiple local (component) databases and
provides users with a uniform global view of data. A global user can issue a (global) query on an
MDBS to retrieve data from multiple databases without having to know where the data is stored
and how the data is retrieved. How to process such a global query efficiently is the task of global
query optimization.

A major challenge, among others [6,9,10,11,18], for global query optimization in an MDBS is
that some necessary local information such as local cost models may not be available at the
global level due to local autonomy preserved in the system. However, the global query optimizer
needs such information to decide how to decompose a global query into local (component)
queries and where to execute them. Hence, methods to derive cost models for an autonomous
local database system (DBS) at the global level are required. Several such methods have been
proposed in the literature.

In [5], Du et al. proposed a calibration method to deduce necessary local cost parameters. The
key idea to construct a local synthetic calibrating database (with some special properties), and
then run a set of special queries against this database. The access method used for executing such
a query is known because of the special properties of the database and query. Cost metrics for the
queries are recorded and used to deduce the coefficients in the cost formulas for the access
methods supported by the underlying local database system by using the properties of the
database and queries. In [7], Gardarin et al. extended the above method so as to calibrate cost
models for object-oriented local database systems in an MDBS.

Although Du’s calibration method was the first technique that demonstrates the possibility of
estimating local cost parameters at the global level in an MDBS, it has several drawbacks. First
of all, it may be impossible (or not allowed) to create a synthetic calibrating database at a local
site in an MDBS. Unlike a traditional distributed database system (DDBS), local autonomy in an
MDBS may prevent creating a test database at a local site. Secondly, cost parameters deduced by
using a synthetic calibrating database may not be valid for real databases because of different
data distributions, database sizes, file structures, adjustable local system parameters and so on.
Thirdly, the deduced cost formulas cannot be applied if the local access method for a query is
unknown, which is frequently the case in an MDBS. The calibration method deduces a set of cost
formulas, one for each access method. To estimate the cost of a query, the access method used
for the query needs to be known so that the right cost formula can be applied.

To overcome the above shortcomings, Zhu and Larson proposed a query sampling method in
[25, 26, 27]. The key idea is as follows. Local queries that can be performed on a local DBS in
an MDBS are grouped into homogeneous classes first, based on some information available at
the global level in an MDBS such as the characteristics of queries, operand tables and the
underlying local DBS. A sample of queries are then drawn from each query class and run against
the actual user local database. The costs of sample queries are used to derive a cost model for
each query class by multiple regression analysis. The cost model parameters are kept in the
MDBS catalog and utilized during query optimization. To estimate the cost of a local query, the
class to which the query belongs is first identified. The corresponding cost model is retrieved
from the catalog and used to estimate the cost of the query. Based on the estimated costs, the
global query optimizer chooses a good execution plan for a global query. Since the query
sampling method (1) can capture the performance behavior of queries on the actual databases, (2)
does not require the creation of synthetic databases, and (3) identifies the right cost model for a

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 26

query based on available information, it overcomes the aforesaid drawbacks of the calibration
method.

There are several other suggested approaches to tackling the local query cost estimation
problem in an MDBS. In [24], Zhu and Larson introduced a fuzzy method based on fuzzy set
theory to derive cost models utilizing fuzzy information in an MDBS. In [12], Naacke et al.
suggested an approach to combining a generic cost model with specific cost information
exported by wrappers for local DBS’s. In [1], Adali et al. suggested to maintain a cost vector
database to record cost information for every query issued to a local DBS. Cost estimation for a
new query is then based on the costs of similar queries. In [17], Roth et al. introduced a practical
framework for costing in the Garlic federated system.

All the previously proposed methods only considered a static system environment, i.e.,
assuming no significant change over time. However, in reality, many factors in an MDBS
environment such as contention factors (e.g., number of concurrent processes), database physical
characteristics (e.g., index clustering ratio), and hardware configurations (e.g., memory size) may
change significantly over time. Hence, a cost model derived for a static system environment may
not give good cost estimates for queries in a dynamic environment. Figure 1 shows how the cost
of a sample query is affected by the number of concurrent processes in a dynamic system
environment. We can see that the cost of the same query can dramatically change (from 3.80 sec.
to 124.02 sec.) in a dynamic environment. This raises an interesting research issue, that is, how
to derive cost models that can capture the performance behavior of queries in a dynamic
environment.

50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

140

The Number of Concurrent Processes in SUN UltraSparc 2

Q
ue

ry
 C

os
t (

E
la

ps
e

T
im

e
in

 S
ec

.)
 o

n
O

ra
cl

e
8.

0

Table R7(a1, a2, ..., a9) has 50,000 tuples of random numbers

Query:
 select a1, a5, a7
 from R7
 where a3 > 300 and a8 < 2000

Figure 1: Effect of Dynamic Factor on Query Cost

In this paper, we propose a qualitative approach to deriving a cost model that can capture the
performance behavior of queries in a dynamic environment. The key idea is as follows. We
notice that there are numerous dynamic factors (such as the CPU and I/O loads) that affect a
query cost. To simplify the development of a cost model for a dynamic environment, our
approach considers the combined net effect of dynamic factors on a query cost together rather
than individually. The system contention level that reflects such a combined effect is gauged by

International Journal of Information Technology, Vol. 14, No. 2, 2008

 27

the cost of a probing query. The larger the probing query cost, the higher the contention level. To
capture such contention information in a cost model, we divide the system contention level
(based on the cost of a probing query) in a dynamic environment into a number of discrete
contention states (such as high, medium and low contention states) and use a qualitative variable
to indicate the contention states in the cost model. This qualitative variable effectively allows
the cost model to adopt different coefficients for different contention states so that its cost
estimates can better reflect the dynamic environment. To determine an appropriate set of
contention states for a dynamic environment, two algorithms, called the iterative uniform
partition with merging adjustment (IUPMA) and the iterative clustering with merging adjustment
(ICMA), respectively, are introduced. The former is used for general cases, while the latter is
specifically designed for a dynamic environment with the contention level following a non-
uniform distribution with clusters. Our previous query sampling method in [25, 26, 27] is
extended so as to develop the regression cost model incorporating the qualitative variable (i.e.,
the qualitative cost model) for a dynamic environment. In other words, the coefficients of the
qualitative cost model are obtained from the regression analysis based on observed sample query
costs in the dynamic environment. Our approach in this paper is therefore an extension of our
previous query sampling method. In this paper, we call our previous method as the static query
sampling method and the new approach in this paper as the multistate query sampling method. In
fact, the static method is a special case of the multistate one when only one contention state is
allowed (so it can also be called the single-state query sampling method).

The rest of the paper is organized as follows. Section 2 analyzes the dynamic factors at a
local site in an MDBS. Section 3 discusses how to develop a regression model with a qualitative
variable and how to determine contention states of a qualitative variable for a dynamic
environment. Section 4 extends our previous static query sampling method so as to derive cost
models with a qualitative variable for different query classes in a dynamic environment. It also
briefly discusses how to perform query optimization based on multistate cost models. Section 5
shows some experimental results. Section 6 summarizes the conclusions.

2. Dynamic Environmental Factors

In an MDBS, many environmental factors may change over time1. Some may change more often
than others. They can be classified into the following three types based on their changing
frequencies.

• Frequently-changing factors: The main characteristic of this type of factors is that they
change quite often. Examples of such factors are the CPU load, I/O load, and size of used
memory space, etc. The operating system at a local site typically provides commands
(such as top, ps and iostats in UNIX) to display system statistics reflecting such
environmental factors. Table 1 lists some system statistics in UNIX.

• Occasionally-changing factors: These factors change occasionally. Examples of such
factors include local database management system (DBMS) configuration parameters (e.g.,
the number of buffer blocks, and the shared buffer pool size), local database
physical/conceptual schemas (e.g., new indexes and new tables/columns), and local

1 Since we concern ourselves with local cost models for an MDBS, only dynamic factors at local sites are considered.
In general, there are also dynamic environmental factors for the network in an MDBS. Some of them were
considered in [20].

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 28

hardware configurations (e.g., physical memory size). Note that some other factors such
as the local database size, physical data distribution, and index clustering ratio may
change quite frequently. However, they may not have an immediate significant impact on
a query cost until such changes accumulate to a certain degree. Thus we still consider
these factors as occasionally-changing factors. The changes of most occasionally-
changing factors can be found via checking the local database catalog and/or system
configuration files.

Type Statistics for Frequently-Changing Environmental Factors
CPU
Statistics

• rp — number of running processes; • sp — number of sleeping processes
• tp — number of stopped processes; • zp — number of zombie processes
• us — percentage of user time; • sy — percentage of system time
• id — percentage of idle time
• ld1, ld2, ld3 — load averages for the past 1, 5, and 15 minutes, respectively

Memory
Statistics

• am — available memory; • um — used memory
• sm — shared memory; • bm — buffer memory
• as — available swap; • us — used swap
• fs — free swap; • as — cached swap
• si — amount of memory swapped in; • so — amount of memory swapped out

I/O
Statistics

• bi — number of reads per sec.; • bo — number of writes per sec.
• du — percentage of disk utilization

Other
Statistics

• nu — number of current users; • in — number of interrupts per sec.
• cs — number of context switches per sec.; • sc — number of system calls per sec.

Table 1: System Statistics for Frequently-Changing Factors in Unix

• Steady factors: These factors rarely change. Examples of such factors are the local

DBMS type (e.g., relational or object-oriented), local database location (e.g., local or
remote), and local CPU speed (e.g., 2.8GHz). Although these factors may affect a cost
model, the chance for them to change is very small.

Clearly, the steady factors usually do not cause a problem for a query cost model. If
significant changes for such factors occur at a local site, they can be handled in a similar way as
described below for the occasionally-changing factors.

For the occasionally-changing factors, a simple and effective approach to capturing them in a
cost model is to invoke the static query sampling method periodically or whenever significant
changes for these factors have occurred. Since these factors do not change very often, rebuilding
cost models from time to time to capture them is acceptable. However, this approach cannot be
used for the frequently-changing factors because frequent invocations of the static query
sampling method would significantly increase the system load and the cost model maintenance
overhead. On the other hand, if a cost model cannot capture the dramatic changes in a system
environment, poor query cost estimates may be used by the query optimizer, resulting in
inefficient query execution plans.

Theoretically speaking, to capture the frequently-changing factors in a cost model, one
approach is to include all explanatory variables that reflect such factors in the cost model.
However, this approach encounters several difficulties. First, the ways in which these factors
affect a query cost are not clear. As a result, the appropriate format of a cost model that directly
includes the relevant variables is hard to determine. Second, the large number of such factors
(see Table 1) makes a cost model too complicated to derive or maintain even if the first difficulty

International Journal of Information Technology, Vol. 14, No. 2, 2008

 29

could be overcome. In the rest of this paper, we introduce a feasible method to capture the
frequently-changing factors in a cost model

3. Regression with Qualitative Variable

As mentioned before, the key idea of our method is to determine a number of contention states
for a dynamic environment and use a qualitative variable to indicate the states. A cost model
with the qualitative variable can be used to estimate the cost of a query in different contention
states. The issues on how to include a qualitative variable in a cost model and how to determine
an appropriate set of system contention states are discussed in this section.

3.1. Qualitative variable

To simplify the problem, we consider the combined effect of all the frequently-changing factors
on a query cost together rather than individually. Although these dynamic factors may change
differently in terms of the changing frequency and degree, they all contribute to the contention
level of the underlying system environment. The cost of a query increases as the contention level.
Hence the contention level can be gauged by the cost of a probing query. Depending on the
observed probing query cost, the system contention level can be divided into a number of
discrete states (categories) such as “High Contention” (SH), “Medium Contention”(SM), “Low
Contention” (SL), and “No Contention” (SN). A variable W taking a value from such possible
discrete states (e.g., SH) is a qualitative variable2 that can be used to indicate the current
contention state for the environment. This qualitative variable, therefore, reflects the combined
effect of foregoing frequently-changing environmental factors. A cost model incorporating such
a qualitative variable can capture the dynamic environmental factors to a certain degree.

As shown in [25, 27], a statistical relationship between the query cost and its affecting
factors such as operand and result table sizes can be established by multiple regression. The
established relationship can be then used as a cost model to estimate query costs. However, only
quantitative variables (e.g., operand and result table sizes) were considered in such regression
and other types of existing cost models. To incorporate the foregoing qualitative variable W
indicating system contention states into a query cost model, a new technique is required.

Notice that a qualitative variable can be represented by a set of indicator variables. For
example, the above contention state variable W with four states can be represented by three
indicator variables: Z1, Z2, and Z3, where Z1 = 1 indicates W = SH, while Z1 = 0 indicates W ≠ SH;
Z2 = 1 indicates W = SM, while Z2 = 0 indicates W ≠ SM; Z3 = 1 indicates W ≠ SL, while Z3 = 0
indicates W ≠ SL; and Z1 = Z2 = Z3 = 0 indicate W = SN. Note that no more than one indicator
variable can be 1 simultaneously (i.e., W can take only one state at a time). Table 2 shows3 how
the indicator variables indicate different states of W. In general, a qualitative variable that has m
categories (states) need m−1 indicator variables to represent it. As we will see, using such a set
of indicator variables allows us to easily express the adjustment of a regression coefficient for
each contention state in a cost model although other ways to use indicator variables are also
possible.

2 In general, variables can be classified as either quantitative ones or qualitative ones. A quantitative variable (e.g.,
monthly salary) takes values on a well-defined scale (e.g., 2300.00, 3100.50), while a qualitative variable (e.g.,
person’s gender) only have several discrete categories (states) as its possible values (e.g., ‘male’, ’female’).
3 Only feasible combinations of the indicator values are allowed.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 30

Table 2: State Representations Using Indicator Variables

3.2. Qualitative regression cost model

The cost of a query usually consists of (1) initialization cost (for example, to move a disk head to
the right position); (2) I/O cost (for example, to fetch a tuple from an operand table); and (3)
CPU cost (for example, to evaluate the qualification condition for a given tuple). A typical cost
model for a unary query class in a static environment may look like:

UU RNBNBBY ** 0
2

0
1

0
0 ++= (1)

where Y is the query cost; NU and RNU are the cardinalities (sizes) of the operand and result
tables, respectively; and 0

2
0
1

0
0 and , BBB are the parameters (coefficients) representing the

initialization cost, the cost for retrieving a tuple from the operand table, and the cost for
processing a tuple in the result table, respectively. Both 0

1B and 0
2B may reflect the I/O cost as

well as the CPU cost. Therefore, the initialization cost affects the intercept coefficient (i.e., the
1st term) in a cost model, while the I/O and CPU costs affect the slope coefficients (i.e., the
coefficients of the 2nd and 3rd terms) in the cost model.

In general, let Y be the response variable (i.e., query cost) and X1, X2, …….,Xn be the
(quantitative) explanatory variables (e.g., operand and result table sizes) in a regression query
cost model. The regression cost model in a static environment is of the following general form:

 ∑
=

+=
n

i
ii XBBY

1

00
0 , (2)

where 0
iB ’s (1 ≤ i ≤ n) are regression coefficients that can be estimated based on observed costs

of sample queries in the environment.
However, as mentioned before, a static cost model may not be useful for a dynamic

environment. Notice that the contention level of a system can significantly affect not only the
initialization cost but also the I/O and CPU costs of a query because the resources like the disk,
I/O bandwidth and CPU are shared by multiple processes. As a result, both the intercept and
slope coefficients in a query cost model may change when the system contention level changes.
Assume that the underlying dynamic environment has m contention states: Sm, Sm−1, , S1, with
Sm being the lowest contention state and S1 being the highest4. Our key idea to develop a cost
model for such a dynamic environment is to adjust the coefficients of the cost model for different
contention states in the environment. For example, if 00

2
0
1

0
0 ,...,,, nBBBB are the coefficients of the

cost model in the lowest contention state Sm (called the base cost model), then

4 A descending index is used here to simplify the description of algorithms and derived cost models in the paper.

States Z1 Z2 Z3
SH 1 0 0
SM 0 1 0
SL 0 0 1
SN 0 0 0

International Journal of Information Technology, Vol. 14, No. 2, 2008

 31

101
1

0
1

1
0

0
0 ,....,, −−− +++ m

nn
mm BBBBBB are the coefficients of the cost model in contention state Sm−1,

where 11
2

1
1

1
0 ,...,,, −−−− m

n
mmm BBBB are the adjustments (values) to the respective coefficients

00
2

0
1

0
0 ,...,,, nBBBB of the base cost model to reflect the contention state change from Sm to Sm−1.

Similarly, 202
2

0
2

2
1

0
1

2
0

0
0 ,...,,, −−−− ++++ m

nn
mmm BBBBBBBB are the coefficients of the cost model in

contention state Sm−2 and 22
2

2
1

2
0 ,....,,, −−−− m

n
mmm BBBB are the relevant adjustments to the base cost

model to reflect the contention state change from Sm to Sm−2. In general,
i
nn

iii BBBBBBBB ++++ 0
2

0
21

0
10

0
0 ,....,,, are the coefficients of the cost model in contention state Si

(1 ≤ i ≤ m −1), where i
n

iii BBBB ,...,, 210 are the adjustments to the coefficients of the base cost
model for contention state Si. The base coefficients and all the relevant adjustments of the cost
model for different contention states can be estimated via the regression analysis based on
observed data for sample queries.

Let qualitative variable W with the above m states be represented by indicator variables Zm−1,
Zm−2,··· ,Z1, where the jth state (1 ≤ j ≤ m − 1) is indicated by Zj = 1 and Zi = 0 for i ≠ j and the
mth state is indicated by Zi = 0 for all 1 ≤ i ≤ m −1. To incorporate a qualitative variable
representing the system contention states into a query cost model, we adopt the following
regression model with a qualitative variable (represented by a set of indicator variables):

444 3444 2144 344 21

slopes

n

i

m

j
ij

j
ii

ercepts

m

j
j

j XZBBZBBY ∑ ∑∑
=

−

=

−

=

+++=
1

1

1

0

int

1

1
0

0
0)(()(. (3)

Specifically, the intercept coefficient for the jth state of the qualitative variable is
1,...,1,(0

0
0 −=+ mmjBB j ; and assuming)00 =mB , where jB0 is the adjustment of 0

0B for the jth
contention state; and the ith slope coefficient (i = 1, 2, ··· ,n) for the jth state of the qualitative
variable is j

ii BB +0 (j = 1, 2, ···, m; and assuming)0=m
iB), where j

iB is the adjustment of 0
iB

for the jth contention state. Table 3 shows the adjusted cost model for different contention states.

State Zm-1 Zm-2 … Z1 Adjusted Cost Model In the Corresponding Contention State
Sm 0 0 … 0 ...** 2

0
21

0
1

0
0 +++= XBXBBY

Sm-1 1 0 … 0 ...*)(*)()(2
1

2
0
21

1
1

0
1

1
0

0
0 ++++++= −−− XBBXBBBBY mmm

Sm-2 0 1 … 0 ...*)(*)()(2
2

2
0
21

2
1

0
1

2
0

0
0 ++++++= −−− XBBXBBBBY mmm

… … … … … …..
S1 0 0 … 1 ...*)(*)()(2

1
2

0
21

1
1

0
1

1
0

0
0 ++++++= XBBXBBBBY

Table 3: Adjusted Cost Models in Different Contention States from Formula (3)

For example, we can extend cost model (1) from a static environment to a dynamic

environment following (3). Assuming the underlying dynamic environment has three contention
states (i.e., S3, S2 and S1), cost model (1) is extended as the following based on (3):

UU RNZBZBBNZBZBBZBZBBY *)**(*)**()**(1
1
22

2
2

0
21

1
12

2
1

0
11

1
02

2
0

0
0 ++++++++= . (4)

When the current contention state is S3 (i.e., Z2 = Z1 = 0), cost model (4) boils down to the base

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 32

model:
 UU RNBNBBY ** 0

2
0
1

0
0 ++= . (5)

If the contention state is S2 (i.e., Z2=1 and Z1=0), cost model (4) becomes:

 . *)(*)()(2
2

0
2

2
1

0
1

2
0

0
0 UU RNBBNBBBBY +++++= (6)

We can see that 2
1

2
0 , BB and 0

2B are the adjustments to the base coefficients 0
1

0
0 , BB and 0

2B ,
respectively, for contention state S2.

Using indicator variables in the way illustrated by Table 2 allows us to easily identify the
adjustments of the intercept and slope coefficients of the cost model for a contention state in the
dynamic environment. Specifically, the adjustment to base coefficient 0

iB in cost model (3) for
the jth contention state is simply coefficient j

iB of indicator variable Zj (0 ≤ i ≤ n and 1 ≤ j ≤
m−1). Note that no coefficient adjustments are needed for the mth state since 0

iB ’s are assumed
to be developed for that state. On the other hand, the way to use indicator variables for a
qualitative variable is not unique. However, if one contention state S’ were indicated by two
indicator variables Z’ = Z’’ = 1, the adjustment of a (intercept or slope) coefficient of the cost
model for contention state S’ would have to be split between the coefficients of Z’ and Z’’,
making their individual meanings unclear. Furthermore, if less than m − 1 indicator variables
were used, the coefficient of one indicator variable might have to be used to adjust the relevant
(intercept or slope) coefficient of the cost model for multiple consternation states. Since less
parameters are used to adjust more cases, some tradeoffs will have to be made, which may lead
to a less accurate cost model.

All the coefficients j
iB ’s in cost model (3) can be obtained via the regression analysis, as we

will see in the remaining sections. Since cost model (3) allows different adjustments for different
contention states in a dynamic environment, it can give better cost estimates than those given by
a static cost model in the dynamic environment, as we will see in Section 5.

3.3. Determining system contention states

Combining multiple dynamic environmental factors into a composite qualitative variable with a
number of discrete contention states greatly simplifies the development of a cost model for a
dynamic environment. The question now is how to determine an appropriate set of system
contention states for a dynamic environment.

Two extremes

There are two extremes in determining a set of contention states. One extreme is to consider only
one contention state for the system environment. A cost model developed in such a case is useful
if the system environment is static. This, in fact, was the case that the static query sampling
method assumed. However, as pointed out before, a real system environment may change
dynamically over time. Using one contention state is obviously insufficient to describe such a
dynamic environment. For a dynamic environment, usually, the more the contention states are
considered, the better a cost model. In principle, as long as we consider a sufficient number of
contention states for the environment, we can get a satisfactory cost model. Hence, the other
extreme is to consider an infinite number of contention states. However, the more the contention

International Journal of Information Technology, Vol. 14, No. 2, 2008

 33

states are considered, the more the indicator variables are needed in the cost model. The number
of coefficients that need to be determined in a cost model therefore increases. Hence, if too many
contention states are considered, the cost model can be very complicated, which is not good for
either its development or its maintenance. In practice, as we will see in Section 5, a small number
of contention states (three to six) are usually sufficient to yield a good cost model.

Determining states via iterative uniform partition

Notice that, for a given query, its cost increases as the system contention level increases (see
Figure 1). Based on this observation, we can use the cost of a probing query to gauge the system
contention level5. The range of the probing cost (therefore, the contention level) is divided into
subranges, each of which represents a (discrete) contention state for the dynamic environment.

Let the cost CQp of probing query Qp fall in the range [Cmin, Cmax] in a dynamic environment.
A simple way to determine the system contention states is to partition range [Cmin, Cmax] into
subranges with an equal size. In other words, to determine m contention states Sm, Sm−1, …, S1,
we divide range [Cmin, Cmax] into m subranges Ii = [Cmin+(m−i)*D, Cmin+(m−i+1)*D) and I1 =
[Cmin + (m−1)*D, Cmin +m*D] where i = m, m−1,..., 2 and D = (Cmax −Cmin)/m. The system
environment is said to be in contention state Si if CQp ∈ Ii (i = m, m− 1,..., 1). To obtain more
system contention states, we can simply increase m. Hence, {Im, Im−1,..., I1 } yields a set mΓ of
system contention states for the dynamic environment.

Using this partition, it is easy to determine the system contention state in which a query is
executed. Let SP = { Qj | j = 1, 2, ..., t } be a set of sample queries which are performed in the
dynamic environment and whose observed data (e.g., execution time, operand size and result
table size, etc.) are to be used to derive a regression cost model for a query class. To determine
the system contention state SQ j in which sample query Qj is executed, the cost CQp of probing
query Qp in the same environment is measured. If CQp ∈ Ii (1 ≤ i ≤ m), we say SQ j = Si. We call
the cost of a probing query associated with a sample query is a sampled probing query cost
(value).

One basic question is how to determine a proper m. Another question is how to eliminate
some unnecessary separations of subranges. Clearly, if queries in neighboring contention states
Sj−1 and Sj (for some j) have a similar performance behavior, separating Sj−1 and Sj is unnecessary.
The determination of system contention states should balance the accuracy and the simplicity
(hence low maintenance overhead) of a derived cost model.

To solve these two problems, the following algorithm is used to improve the foregoing direct
uniform partition:

Algorithm 3.1: Contention States Determination via Iterative Uniform Partition with Merging
Adjustment (IUPMA)
Input: Observed data of sample queries and their associated probing query costs
Output: A set of system contention states6

__
5 Our experiments showed that most queries, except the ones with extremely small cost (e.g., less than a second), can
well serve as a probing query to gauge the system contention level.
6 In fact, the algorithm integrates the contention states determination procedure with the cost model development
procedure (to be discussed in Section 4). As a result, a cost model is also produced as part of the output of the
algorithm.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 34

Method:
1. begin
2. Derive a qualitative regression model with one contention state using sample query

data;
3. Let 2

newR be the coefficient of total determination of the current regression model;
4. Let snew be the standard error of estimation of the current regression model;
5. m := 1;
6. do
7. newoldnewold ssRR == : ;: 22
8. m := m + 1;

 9. Obtain a set mΓ of m contention states for the system environment via the
 straightforward uniform partition;

 10. Derive a qualitative regression model with m contention states using
 sample query data;
11. Let 2

newR be the coefficient of total determination for the current regression
 model;
12. Let snew be the standard error of estimation of the current regression model;

 13. until)/)(and /)((222
oldoldnewoldoldnew sssRRR −− are sufficiently small

 or m is too large;
 14. m := m − 1;
 15. Let Sj (j = m, m − 1,..., 1) represent the current m contention states in mΓ ;
 16. Let j

ii
j

i BBA += 0 (i = 0, 1, ..., n) be the adjusted coefficient of ith variable Xi
for state Sj in the general model in (3), where X0 1≡ is a dummy variable
for the intercept coefficient;

 17. for k = m down to 2 do
 18. { } /)(max: 1

},...,2,1,0{

k
i

k
i

k
inik AAAE −= −

∈

 19. if Ek is too small then
 20. tag that states Sk and Sk−1 should be merged;
 21. end for
 22. if some states are tagged to be merged then
 23. Derive a qualitative regression model with new merged states using sample

 query data;
 24. goto step 15;
 25. end if;
 26. return the current set mΓ of contention states;
 27. end.

There are two phases in Algorithm 3.1. The first phase is to determine a set of contention states
via the uniform partition. The algorithm iteratively checks each qualitative regression model with
an incremental number of contention states until (1) the model cannot be significantly improved
in terms of the coefficient of total determination7 R2 and the standard error of estimation8 s; or (2)
too many contention states have been generated. Condition (2) is used here to prevent that a
derived cost model becomes too complicated (in terms of the number of variables involved). The

International Journal of Information Technology, Vol. 14, No. 2, 2008

 35

set of contention states obtained from the first phase are based on the uniform partition of the
probing query cost range (see Figure 2). The partition does not consider whether two
neighboring states actually have significantly different effects on the cost model or not. It is
possible that some neighboring states have only slight different effects on the cost model. If so,
the neighboring states should be merged into one to simplify the cost model. Such a merging
adjustment is done during the second phase of the algorithm. If the maximum of relative errors
of the corresponding pairs of adjusted coefficients (i.e., , and , 100 −++ k

ii
k
ii BBBB i = 0,1,…,n)

for two states Sk and Sk−1 is too small, these two states are considered not to have significantly
different effects on the cost model. The subranges in the final adjusted partition of the probing
query cost range may not have an equal size.

Cmin

Im Im-1 Im-2 Im-3

I’k2nd phase:
after

1st phase:
after

I’k-1 I’k-3

uniform partition

adjusted partition

I2 I1

I’1

Cmax

probing
query
cost

Figure 2: Contention States Determination via IUPMA

Determining states via data clustering

Note that, to apply the IUPMA algorithm, a set of sample queries need to be run at sampled
system contention level points (measured by the sampled probing query costs). Typically, the
sampled system contention level points (i.e., the sampled probing query costs) can be chosen
randomly from their range [Cmin, Cmax]. However, in reality, the actual (occurred) system
contention level (points) may not follow the uniform distribution. In other words, the actual
system contention level may fall in some subranges more often than others.

Although we can still use uniformly sampled system contention level points (see Figure 3(a))
to run sample queries, the derived cost model may not be as good as the one derived by using a
sample of system contention level points that follow the actual distribution in the underlying
environment since more frequently occurred system contention level points will receive more
weights. If the sampled system contention level points follow a non-uniform distribution, the
uniform partition used in IUPMA may not be the best although the iterating and adjusting
mechanisms sometimes mitigate the problem. For example, if sampled probing query costs in
subranges Ii+1 and Ii are clustered around their common boundary (see Figure 3(b)), the adjusting
phase of IUPMA typically will merge Ii+1 and Ii into one. However, if sampled probing query
costs are clustered around both boundary ends of each subrange (see Figure 3(c)), the algorithm
usually will not merge the two subranges into one. Unless the length of each subrange is small,
the resulting classification may be poor since two strong opposite behaviors of sampled probing
query costs exist in each subrange (contention state). To overcome the problem, an algorithm for

7 The coefficient of total determination measures the proportion of variability in the response variable explained by
the explanatory variables in a regression model [16]. The higher, the better.
8 The standard error of estimation is an indication of the accuracy of estimation given by the model [16]. The smaller,
the better.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 36

(c)(b)(a)

probability

probing query
cost

probability

probing query
cost

probability

probing query
cost

IiIi+1 Ii+1 Ii Ii+1 Ii

Figure 3: Some Distributions of Probing Query Costs

data clustering is incorporated into the contention states determination procedure as described
below.

Let range [Cmin, Cmax] of the cost CQ p of probing query Qp be divided into N small intervals:
Cmin = x0 < x1 < x2 < ... < xN = Cmax, where |xi − xi−1| = ε > 0 and 1 ≤ i ≤ N. We choose ε to be
sufficiently small so that the difference among probing query costs in each interval (iη = [xi−1, xi)
for 1 ≤ i ≤ N − 1 and Nη = [xN−1, xN]) is negligible. We then use the mean cost µi = (xi+xi−1)/2 to
represent the probing query costs in interval iη . Hence the frame for sampling probing query
costs (i.e., system contention level points) is ∆ = {µ1, µ2, ..., µN}.

Consider the probing query cost Y in the underlying dynamic environment as a random
variable. Let f be the probability density function of Y. The probability of Y falling in interval iη
(1 ≤ i ≤ N) is:

),()()()(1
1

−
−

−== ∫ ii

x

x
i xFxFdyyfp

i

i

η

where F is the cumulative distribution function of Y, In fact, p(iη) can be measured by observing
frequencies in experiments. Based on the probability distribution of iη ’s in the environment, we
draw a sample S of probing query costs (i.e., system contention level points) from ∆ to run
sample queries in the environment.

Typically, the probing query costs in S are clustered. A natural classification of system
contention states is to partition range [Cmin, Cmax] according to the clusters in S so that less
diverse performance behavior would occur in each contention state.

There are many techniques to analyze clusters in a data set [8]. The popular ones include the
k-means method and the agglomerative hierarchical algorithm. Since the k-means method
requires knowing the number of clusters in the set in advance, which cannot be predetermined in
our case, we apply the agglomerative hierarchical algorithm to analyze the clusters in the above S
of probing query costs. The key idea of the algorithm is to place each data object (i.e., sampled
query cost) in its own cluster initially and then gradually merge clusters into larger and larger
clusters until a desired number of clusters have been found. The criterion used to merge two
clusters ω and 'ω is to make their distance minimized. We employ a widely used distance
measure: Dmean(',ωω) = |µ(ω) − µ('ω)|, i.e., the distance between the mean µ(ω) of cluster ω
and the mean µ('ω) of cluster 'ω .

Let K be the allowed maximum number of system contention states. The above clustering
algorithm can be used to obtain clustering mΩ = { mm

m
m
m 1

1 ,...,, ωωω − } (m = K,K−1, ..., 1,

International Journal of Information Technology, Vol. 14, No. 2, 2008

 37

where m
iω ’s are clusters of sampled probing query costs such that µ(m

iω) < µ(m
i 1−ω) for i =

m,m−1, ..., 2).
For each clustering mΩ (with m clusters), we can get m subranges by partitioning range

[Cmin, Cmax] of the cost of probing query Qp as follows. Let max(m
iω) and min(m

i 1−ω) be the
maximum and minimum of sampled probing query costs in clusters m

iω and m
i 1−ω , respectively.

Since the sampled probing query costs are from ∆ consisting of mean costs of the small intervals
for [Cmin, Cmax], min(m

i 1−ω) − max(m
iω) is a multiple of interval length ε ; that is, min(m

i 1−ω) −
max(m

iω) = n*ε . Let

1 min

)max()1min(2

2

)max()1min(

)max()1min(2

22

)max()1min(

1 max

⎪
⎩

⎪
⎨

⎧

=

+=

−−≤≤
+−

−−≤≤+
+−

=

 m i ifC

ofmultiple
oddanism

i
m
iandmiif

m
i

m
i

ofmultiple
evenanism

i
m
iandmiif

m
i

m
i

iifC

m

ia
ε

ωω
ωω

ε
ωωεωω

Then each m
ia is a boundary point of some interval. Let subranges m

iI = [m
i

m
i aa ,1+) and mI1 =

[mm aa 12 ,], where i = m, m − 1, ..., 2. Each)1(miI m
i ≤≤ contains one cluster in clustering mΩ .

Clearly, { mm
m

m
mI 11 I ,...,I , − } defines a set mΓ of the system contention states for the dynamic

environment (see Figure 4); i.e., if probing query cost)1(miIC m
iQP

≤≤∈ , we say that the
environment is in contention state Si. Such a classification of system contention states reflects the
actual probability distribution of system contention level points (i.e., probing query costs) in the
environment. If we use such mΓ in Line 9 in Algorithm 3.1, we get a new algorithm, termed as
the Contention States Determination via Iterative Clustering with Merging Adjustment (ICMA).

Figure 4: Contention States Determination via Clustering

Note that, for a clustering of sampled probing query costs, it is possible that some cluster(s)

may not have a sufficient number of sampled query costs (contention level points) to meet the
minimum sample size requirement for regression analysis. In such a case, we draw additional
sample data points (therefore, executing more sample queries) to make the cluster meet the
minimum requirement rather than simply treat the data points in the cluster as outliers and ignore
them. Although this way may change the distribution of the contention level slightly, no useful
contention level points are ignored in the derived cost model.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 38

Probing costs estimation

To minimize the overhead for determining a system contention state, a query with a small cost is
preferred as a probing query. To further reduce the overhead, an estimated cost (rather than the
observed cost) of probing query PQ can be used to determine the contention state of a dynamic
environment. The idea is to first develop a regression equation between probing query cost

PQY
and some major system contention parameters9 (such as CPU load ld1, I/O utilization io, and size
of used memory space um for a dynamic environment in Table 1), e.g.,

PQY = E0 + E1 * ld1 + E2 * io + E3 * um , (7)

where Ei (i = 0, 1, 2, 3) are regression coefficients. Afterward, every time when we want to
determine the system contention state in which a query is executed, we only need to check which
subrange the estimated cost

PQY of probing query Qp lies in by using (7) without actually
executing the probing query. Since obtaining the parameter values (ld1, io, um) in (7) usually
requires much less overhead than executing a probing query, using the estimated costs of a
probing query to determine system contention states is usually more efficient. However,
estimation errors may introduce certain inaccuracy.

4. Development of Cost Models

As mentioned before, we extend the query sampling method for a static environment in [25] so
as to develop cost models for a dynamic environment via introducing a qualitative variable. Such
extensions include determination of the minimum sample size for query sampling, strategies to
add/remove quantitative and qualitative variables into/from a cost model, and statistical measures
to evaluate developed qualitative cost models, which are to be discussed in this section.

4.1. Query classification and sampling

Similar to the static query sampling method, we group local queries on a local database system
into classes based on their potential access methods to be employed. The previous classification
rules and procedures in [25] can be utilized. For example10,

 G1 1 = { π α (σ R.a=C ∧ F (R)) | R.a is a clustered-indexed column in table R,
 C is a constant in the domain of R.a, F is the remaining qualification
 (in the conjunctive normal form), α is a list of target columns from R } (8)

is a class of unary queries that are most likely performed by using a clustered-index scan access
method in a DBMS. Hence a similar performance behavior is shared among the queries in the
class and can be described by a common cost model. A classification can be further refined if an
improvement of a derived cost model is required. In general, the smaller a query class is, the
better the derived cost model, since queries in the class share more homogeneity.
__
9 A standard statistical procedure can be used to determine the significant parameters for a system environment.
10 π and σ denote project and select operations in relational algebra, respectively.

International Journal of Information Technology, Vol. 14, No. 2, 2008

 39

A set of sample queries are then drawn from each query class in a similar way as before.
More specifically, sample queries are drawn in two steps. The first step is to use the judgment
sampling to select a set of representative queries based on one’s knowledge about the queries.
The second step is to use one or more probability sampling techniques (e.g., simple random
sampling, stratified sampling, and cluster sampling) to draw a sample of queries from the
foregoing set of representative queries. For example, representative queries for G1 1 in (8) are of
the following form:

 π α (σ R.a = C ∧ R.b ω C’ (R)) (9)

where R is a table, R.a is a clustered-indexed column in R, C is a constant in the domain of R.a,
R.b is another column in R, ω ∈ {=, ≠, <, >}, C’ is in the domain of R.b, and α is a list of
columns from R. The first predicate R.a = C in (9) is the key conjunct that determines the major
performance behavior (via the chosen access method) of a query in G1 1, while the second one
R.b ω C’ is an auxiliary conjunct used to capture the secondary performance effect of remaining
qualification F of a query in G1 1. Since there are a large number of such representative queries
due to many possible values for parameters such as C in (9), they cannot all be used as sample
queries. On the other hand, there is a minimum sample size requirement to avoid poor estimates
of cost model coefficients. A commonly-used rule for sampling in statistics is to sample at least
10 observations for every parameter to be estimated [16]. A sampling procedure based on a
mixture of simple random sampling, stratified sampling and cluster sampling is then used to
determine one or more sets of values for parameters R, R.a, C, R.b, ω, C’ and α from their
relevant domains. It has been shown that our sampling procedures can meet the minimum sample
size requirement and in the meantime do not draw too many extra sample queries so that the
overhead of the cost model development is minimized [25].

For a dynamic environment, since the more parameters associated with the relevant indicator
variables are included in a multistate cost model, the more sample queries are required. The
following proposition gives a guideline on the minimum number of sample queries needed for
regression analysis.

PROPOSITION 4.1 For the qualitative regression cost model in (3) with n quantitative explanatory
variables and one qualitative variable with m states, at least 10*(m*(n+1)+1) sampling
observations are needed.

PROOF: Notice that there are (n + 1) groups of regression coefficients in the cost model, one for
each independent quantitative variable plus the intercept term. Each group has m coefficients,
one for each state of the qualitative variable. In addition, the variance of error terms need also to
be estimated. Hence, there are totally m * (n + 1) + 1 parameters to be estimated, and each
requires at least 10 sampling observations.

Sample queries drawn from a query class are performed in a dynamic environment. Their
observed data as well as their associated probing query costs are recorded and used to derive a
multistate cost model for the query class. A load builder, which is part of the MDBS agent for
each local DBS [3], is used to simulate a dynamic application environment (with contention level
points following any given distribution) at a local site in an MDBS during the query sampling
procedure. The MDBS agent may also have an environment monitor which collects system
statistics used for estimating the probing query costs when the estimation approach in Section 3.3
is employed.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 40

4.2. Multistate cost models

A multistate cost model contains a set VQ of quantitative explanatory variables and a set VD of
indicator variables for the qualitative variable indicating system contention states. Similar to the
static query sampling method, we divide a cost model into two parts: basic model + secondary
part. The basic model represents the essential part of the model, while the secondary part is used
to further improve the model. The qualitative variable (i.e., the indicator variables) is included in
both parts of the cost model to capture the dynamic environmental factors. Set VQ is therefore
split into two subsets VB and VS, where VB contains basic (quantitative) explanatory variables in
the basic model, while VS contains secondary (quantitative) explanatory variables in the
secondary part. Table 4 lists potential explanatory variables in each of the subsets for a unary
query class and a join query class. If all variables (including indicator variables) are included, the
full cost model is:

]*)*([]*)*()*[(

 sec

1

1

0

model basic

1

1

1

1

0
0

0
0

44444 344444 21444444444 3444444444 21
partondary

VX

m

j
j

j
XX

m

j VX

m

j
j

j
XXj

j

SB

XZBBXZBBZBBY ∑ ∑∑ ∑ ∑
∈

−

=

−

= ∈

−

=

+++++=

However, usually, not all variables are necessary for a given cost model. Note that this model is
obtained by regrouping the explanatory variables in Formula (3) into the basic and secondary
sets.

Class Basic Explanatory Variables Secondary Explanatory Variables

Unary
Query
Class

NU – size (cardinality) of operand table
TNU – size of intermediate table
RNU – size of result table

LU – tuple length of operand table
RLU – tuple length of result table
NZU – operand table length NU* LU
RZU – result table length RNU * RLU

Join
Query
Class

NJ1 – size of 1st operand table
NJ2 – size of 2nd operand table
TNJ1 – size of 1st intermediate table
TNJ2 – size of 2nd intermediate table
RNJ – size of result table
TNJ12 – size of Cartesian product of
 intermediate tables

LJ1 – tuple length of 1st operand table
LJ2 – tuple length of 2nd operand table
RLJ – tuple length of result table
NZJ1 – 1st operand table length NJ1 * LJ1
NZJ2 – 2nd operand table length NJ2 * LJ2
RZJ – result table length RNJ * RLJ

Table 4: Potential Explanatory Variables for Cost Models

To determine the variables to be included in the cost model for a query class, a mixed

backward and forward procedure described below is adopted. We start with the full basic model
which includes all variables in VB and use a backward procedure to eliminate insignificant basic
explanatory variables one by one. Note that, in our algorithm, if an explanatory variable X is
removed from the model, its coefficients (∑ −

=
+

1

1
0 *m

j j
j

xx ZBB) for all contention states

(determined by indicator variables Zj’s) are removed. We then use a forward selection procedure
to add more significant secondary explanatory variables from VS into the cost model. This
procedure tries to further improve the cost model. Similar to the backward procedure, if a

International Journal of Information Technology, Vol. 14, No. 2, 2008

 41

secondary variable X is added into the model, its coefficients (∑ −

=
+

1

1
0 *m

j j
j

xx ZBB) for all

contention states are included. Since it is expected that most basic variables are important to a
cost model and only a few secondary explanatory variables are important, both the backward
elimination and the forward selection procedures most likely terminate soon after they start. The
above process is therefore quite efficient.

Assume that we have nj sampling observations in contention state Sj (1 ≤ j ≤ m), with

∑ =

m

j jn
1

 observations in total. Consider the simple correction coefficient [16] between variables

X and Y in contention state Sj:

)/)(()/)((]/)([2

11

22

11

2

1 1 1
. j

n

i
ij

n

i
ijj

n

i
ij

n

i
ij

n

i

n

i
j

n

i
ijijijij

j
YX nYYnXXnYXYXr

jjjjj j j

∑∑∑∑∑ ∑ ∑
===== = =

−−−=

where Xij, Yij are the values from the ith sampling observation (1 ≤ i ≤ nj) in state Sj. For any
explanatory variable X, if its maximum simple correlation coefficient }{ .

max
1

j
YXmj r≤≤ with response

variable Y is too small, it has little linear relationship with Y in any state. Such explanatory
variables should be removed from consideration.

In the backward elimination procedure, the next variable X to be removed from the current
model is the one which satisfies two conditions (a) its average simple correlation coefficient

mrr m

j
j

YXYX /)(
1 .. ∑ =

= with response variable Y for all contention states is the smallest among all

explanatory variables in the current model; (b) it makes s’ ≤ s or |(s − s’)/s| < ε, where s’ is the
standard error of estimation [16] for the reduced model (i.e., with X removed) given by:

])1(*/[])'ˆ(['
11 1

2 ∑∑ ∑
== =

+−−=
m

j
j

m

j

n

i
ijij kmnYYs

j

 (10)

where Yij , '
îjY , k denote the observed query cost, estimated query cost given by the reduced

model, and number of explanatory variables in the model, respectively; s is the standard error of
estimation for the original model given by a formula similar to (10); ε is a given small positive
constant. Since the average simple correlation coefficient YXr . indicates the degree of linear
relationship between X and Y on average in all states, foregoing condition (a) selects an
explanatory variable X that contributes the least (on average in all states) in explaining the
response variable Y. Since the standard error of estimation is an indication of estimation accuracy,
foregoing condition (b) ensures that removing variable X from the model improves the
estimation accuracy or affects the model very little. Removing a variable that has a little effect
on the model can reduce the complexity and maintenance overhead of the model.

In the forward selection procedure, the next variable X from VS to be added into the current
model is the one satisfies (a) its average simple correlation coefficient mrr m

j
j

YXYX SS
/)(

1 .. ∑ =
=

with the residuals Ys of the current model for all states is the largest among all explanatory
variables in the model; i.e., it can explain the most (on average for all states) about the variations
that the current model cannot explain; and (b) it significantly improves the estimation accuracy,
i.e., s’ < s and |(s − s’)/s| > ε , where s’, s denote the standard errors of estimation for the
augmented model (i.e., with X included) and the original model, respectively; and ε is a given
small positive constant.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 42

Note that the exact number of explanatory variables in a cost model is determined after the
above mixed backward and forward procedure is done. However, we need such information to
determine the query sample size from Proposition 4.1 at the beginning of the cost model
development. Since it is expected that most basic explanatory variables in VB are selected and
only a few secondary explanatory variables in VS are used for a cost model, we expect the
number of explanatory variables in a cost model usually not exceed ⎡ ⎤/2|| || SB VV + . Based on
experiments, the maximum number M of contention states for a dynamic environment in practice
can also be estimated. Hence, a reasonable query sample size is:

 ⎡ ⎤)1)12/|||(|*(*10 +++ SB VVM (11)

from Proposition 4.1.

4.3. Statistical measures for developing useful models

Multicollinearity occurs when explanatory variables are highly correlated among themselves. In
such a case, the estimated regression coefficients tend to have large sampling variability. It is
better to avoid multicollinearity.

The presence of multicollinearity is detected by means of the variance inflation factor (VIF)
[13]. When an explanatory variable has a strong linear relationship with the other explanatory
variables, its VIF is large. In a dynamic environment with multiple contention states, let VIFj (1
≤ j ≤ m) be the variance inflation factor of explanatory variable X in state Sj. If { } min

1 jmj VIF≤≤ is
large, X is not included in a cost model to avoid multicollinearity.

In addition, F-test, the standard error of estimation s, the coefficient of multiple
determination R2, as well as the percentage of good cost estimates for some test queries are used
to validate the significance of a developed regression cost model.

4.4. Query optimization using multistate cost models

In the previous sections, we have developed multistate cost models to estimate query costs in a
dynamic multidatabase environment. Although estimating query costs is essential to query
optimization, it is not the ultimate goal. The ultimate goal of query optimization is to choose a
good execution plan for a query on the basis of the cost estimates by the cost models.

In general, there are two approaches to processing a query in a database system. The first one
is called the interpretation approach. In this approach, simple query optimization is performed on
the fly while a query is being executed. This approach is suitable for ad hoc/interactive queries,
which are usually executed only once. The second one is called the compilation approach. In this
approach, comprehensive query optimization is performed for a given query at compile time,
resulting in an execution plan. The execution plan can be then executed repeatedly at run time.
This approach is more suitable for stored and embedded queries, which are usually executed
repeatedly. In an MDBS environment, both stored/embedded queries and ad hoc/interactive
queries are expected. Another mixed compilation and interpretation approach was proposed for
processing queries in an MDBS environment [28].

The multistate cost models can be easily applied to perform query optimization in the
interpretation approach for a dynamic environment. The current system contention state at a local
site can be detected by either running a small probing query or analyzing environmental statistics
that can be used to estimate probing costs as in Section 3.3. Note that the overhead for detecting

International Journal of Information Technology, Vol. 14, No. 2, 2008

 43

the current system contention states is usually negligible, compared with the significant cost
saving (e.g., hours or days) from a good execution strategy in a distributed multidatabase
environment. The local costs of (component) queries in the current contention states at local sites
can be estimated by the relevant multistate cost models. Based on the estimated local costs11, the
global query optimizer can determine a good execution strategy to run the given global query.
Since the multistate cost models estimate query costs based on the current system states at local
sites, they usually yield more accurate cost estimates comparing to the cost estimates given by
the traditional static cost models, which in turn leads to more efficient query processing in the
dynamic multidatabase environment.

It is not easy to perform query optimization in the compilation approach for a dynamic
environment. This is because it difficult to predict the run-time system environment when a
query is optimized at compile time. A traditional approach to improving performance for the
execution plan chosen at the compile time in a dynamic environment is to dynamically modify
the plan based on dynamic information observed at run time, which is called so-called
dynamic/adaptive query optimization [2, 4, 14, 19]. Unfortunately, this approach may
dramatically increase the query response time, which should be avoided for the embedded
queries that need to be executed repeatedly.

To perform query optimization at compile time as much as possible and reduce query
processing time at run time, we can employ the multistate cost models in the following way. We
generate multiple versions (rather than one) of an execution plan for a query during query
optimization at compile time. The idea is to use different versions to optimize the query for
various system contention states. The query will be executed by invoking an appropriate version
of the execution plan based on the detected system contention states at run time. Although the
query optimizer takes more time to generate multiple versions of an execution plan for a query at
compile time, which in fact does not affect the query response time, the cost saving at run time is
usually very significant so that the overhead is well paid off. The other possible ways to apply
the multistate cost models for query optimization include the optimistic approach, the
environment predicting approach, and the lazy approach. Since the focus of this paper is to
develop cost models for a dynamic multidatabase environment rather than to study query
optimization strategies, we discuss the details of relevant query optimization techniques in
separate papers [22, 29].

4.5. Estimating query costs for more complex cases using multistate cost models

Using the multistate cost models, we can directly estimate the cost of a query run in any
contention state in a dynamic environment. However, there are two cases in which a query may
experience multiple contention states during its execution: (1) the query is too large to be
completed in one contention state although the environment changes gradually; and (2) the
environment changes its contention states rapidly although the query may not be large.

To estimate the cost of a query experiencing multiple contention states in the first case, we
employ a fractional analysis technique. The key idea is to analyze a query cost by fractionalizing
it according to the contention states to be experienced. Notice that the system load in a particular
application environment often demonstrates a certain pattern. For example, in a company, its
system load is minimum off working hours, starts to grow in the morning when the working

11 The query optimizer may also take some other factors such as network status into consideration during query
optimization in an MDBS. These factors are not the topics to be discussed in this paper.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 44

hours begin, and declines when the working hours are close to the end of the day. This load
pattern repeats every working day in the company. Based on the pattern, the sequence of
contention states in the system environment for each day can be determined. Let ∆ = { S1, S2, ...,
SM } be the set of all possible contention states in a given application environment; { S(i), i = 1,
2, ... } be the sequence of contention states occurring in the environment where S(i) ∆∈ ; and t(i−1)
and t(i) be the starting and ending time instants for state S(i) (i = 1, 2, ...). Consider query Q
starting its execution at time instant s

Qt)()1(ks
Q

k ttt ≤≤− in state S(k). Let C(Q) be the cost of
query Q, which may experience multiple states. Let C(Q, S(i)) (i = k, k+1, ...) be the cost of query
Q if the query is executed entirely in state S(i), which can be estimated by a multistate cost model
introduced in the previous sections. Let T(k) = min{ C(Q, S(k)), (t(k)− s

Qt)} and T(i) = (t(i)−t(i−1)) for i

≥ k+1. If C(Q, S(k)) ≤ (t(k)− s
Qt), query Q is to experience only one contention state S(k). Hence

C(Q, S(k)) is the cost for query Q, i.e., C(Q) = C(Q, S(k)). If C(Q, S(k)) > (t(k) − s
Qt), query Q is to

experience more than one contention state. Then T(k)/C(Q, S(k)) (clearly, < 1 in this case) is the
fraction of work done for Q in state S(k). The remaining fraction [1 − T(k)/C(Q, S(k))] of work for
Q is to be done in the subsequent contention states. If [1−T(k)/C(Q, S(k))]*C(Q, S(k+1)) ≤
(t(k+1)−t(k)), all remaining work of Q can be done in state S(k+1). Thus the cost of Q is: C(Q) = T(k)
+[1−T(k)/C(Q, S(k))] * C(Q, S(k+1)). Following this fractional analysis procedure, similar cost
estimates can be obtained if the last state that query Q experiences is S(k+2), S(k+3)

To estimate the cost of a query experiencing multiple contention states in the second case,
we employ a probabilistic technique. The idea is to make use of the theory of Markov chains to
derive a cost formula to estimate the query costs in such an environment. More specifically, the
cost estimation formula for query Q in such a dynamic environment can be given as follows:

]
),(

/[1)(
1

∑
=

=
M

i i

i

SQC
QC π , (12)

where πi is the limit probability of state Si, which can be determined by solving a system of linear
equations based on the transition probabilities for one state changing to another state in the
Markov chain [15].

Clearly, the above two techniques make use of the cost estimates C(Q, Si)’s obtained from
the multistate cost models to estimate the query cost for more complex cases. The detailed
discussion of these techniques can be found in [21]. The multistate cost models provide a base to
analyze query costs in more complex dynamic environments. Hence the multistate query
sampling method together with the fractional analysis and the probabilistic techniques comprise
a suite of techniques to estimate the query costs for various dynamic multidatabase environments.

5. Experimental Results

To verify the feasibility of our multistate query sampling method for developing cost models in a
dynamic environment, experiments were conducted in a multidatabase environment using a
research prototype named CORDS-MDBS [3]. Two commercial DBMSs, i.e., Oracle 8.0 and
DB2 5.0, were used as local database systems running under Solaris 5.1 on two SUN UltraSparc
2 workstations. Figure 5 shows the experimental environment. Local queries are submitted to a
local DBS via an MDBS agent. The MDBS agent provides a uniform relational ODBC interface

International Journal of Information Technology, Vol. 14, No. 2, 2008

 45

for the global server. It also contains a load builder which generates dynamic loads to simulate
dynamic application environments.

CORDS-MDBS Server

(.)(DB2 5.0)(Oracle 8.0)

local queries

Local DBS 1

Local

Local

Local

Local Local

Local

Local DBS 2 Local DBS n

DBMSDBMSDBMS

MDBS AgentMDBS AgentMDBS Agent

DBDBDB

Figure 5: Experimental Environment

A synthetic experimental database was created for each local DBS in the experiments. Each
experimental database contains 12 tables as shown in Table 5. Data in the tables are generated

Table Indexed Clustered-
indexed

Cardinality

R1(a1, a2, a3) a2, a3 250,000
R2(a1, a2, a3, a4, a5) a2, a4 a3 200,000
R3(a1, a2, a3, a4, a5) a3, a4 17,000
R4(a1, a2, a3, a4, a5, a6, a7) a2, a6 3,000
R5(a1, a2, a3, a4, a5, a6, a7) a2, a4 a1 30,000
R6(a1, a2, a3, a4, a5, a6, a7) a4, a7 a1 10,000
R7(a1, a2, a3, a4, a5, a6, a7, a8, a9) a1, a4, a7 a2 50,000
R8(a1, a2, a3, a4, a5, a6, a7, a8, a9) a2, a6, a9 a3 150,000
R9(a1, a2, a3, a4, a5, a6, a7, a8, a9) a1, a3, a5, a8 40,000
R10(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) a2, a4, a10 a1 100,000
R11(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) a2, a7 a1 7,000
R12(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) a2, a5, a11, a13 80,000

Table 5: Tables in Experimental Databases

as follows. The values for the nth column of a table are randomly generated from the domain [1,
100*n2]. Hence a predicate on different columns in a table has different selectivities. For an
equality predicate, for example, the lower the column number is, the higher the relevant
selectivity (closer to 1). The characteristics of such an experimental database include: (1) the
number of columns in a table ranges from 3 to 13, with more tables having medium numbers of
columns; (2) the cardinality of a table ranges from 3000 to 250,000; (3) different selectivities are
provided in a table for different columns; and (4) various types of columns including indexed,
clustered-indexed and sequential ones are considered. This experimental database allows us to
test the feasibility of our technique to build cost models for capturing a variety of factors in a
database environment. Note that, typically, not all factors have a large changing range in a real

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 46

database. The flat factors will not be considered in a cost model for a specific environment,
which would lead to a simpler and more accurate cost model.

In the experiments, queries on each local DBS were first classified according to Section 4.1.
A sample of queries with the size meeting condition (11) were then drawn from each query class
and performed in the dynamic environments at the local sites. Their observed costs together with
the associated probing query costs are used to derive a cost model with a qualitative variable for
each query class using the techniques introduced in the previous sections. Some randomly-
generated test queries in the relevant query classes were also performed in the dynamic
environment, and their observed costs were compared with the estimated costs given by the
derived cost models. The unary test queries are of the following form:

))((RFσπα

where α is a list of columns from table R, qualification

]) [(:: 321211
RRRRRR PPPPPPF ∨∧∧= ,

i
RP (i = 1, 2, 3) are valid predicates on table R for the relevant query classes. The join test queries

are of the following form:

) (2 1 RR F
><

απ

where α is a list of columns from tables R1 and R2, qualification

)] | ([)] | [(:: 211
),(

211
22221111 RRRRRRRR P PPPPPPF ∨∧∧∨= ,

i
R j

P (j = 1, 2; i = 1, 2, 3) are valid predicates on table Rj for the relevant query classes, and),(21 RRP
is a valid join predicate on tables R1 and R2 for the relevant query classes. These test queries
cover typical forms of unary and join queries.

Note that, unlike scientific computation in engineering, the accuracy of cost estimation in
query optimization is not required to be very high. The estimated costs with relative errors within
30% are considered to be very good, and the estimated costs that are within the range of one-time
larger or smaller than the corresponding observed costs (e.g., 2 minutes vs. 4 minutes) are
considered to be good. Only those estimated costs which are not of the same order of magnitude
with the observed costs (e.g., 2 minutes vs. 3 hours) are not acceptable.

Table 6 shows the cost models derived by applying the multistate query sampling method
suggested in this paper for three representative query classes for each local DBS, namely, a
unary query class G1 without usable indexes, a unary query class G2 with usable non-clustered
indexes for ranges, and a join query class G3 without usable indexes12. Let us use the derived
cost model for query class G3/DB2 in Table 6 as an example to explain why such a multistate cost
model can usually give better cost estimates in a dynamic environment, compared to a static cost
model. From the table, we can see that this cost model includes two indicator variables: Z1 and Z2,
implying that three contention states are needed to capture the query performance behavior for
query class G3 in this DB2 local database environment. Let the three contention states be: S3 (i.e.,
Z2 = Z1 = 0), S2 (i.e., Z2 = 1 & Z1 = 0) and S1 (i.e., Z2 = 0 & Z1 = 1), where S3 is the lowest
contention state and S1 is the highest contention state. The coefficients of indicator variables Z2

12 The three query classes correspond to G1 4, G1 5, and G2 4 in [25].

International Journal of Information Technology, Vol. 14, No. 2, 2008

 47

Query
Class

Cost Estimation Model with Qualitative Variable (i.e., Multistate Cost Models)

G1/DB2 (−0.1522e+1−0.5784e+0∗Z2 + 0.1760e+1∗Z1) + (−0.1333e-4−0.2149e-3∗Z2
+0.4738e-4∗Z1)∗ TNU + (0.5467e-5+0.8293e-4∗Z2 + 0.5145e-4∗Z1) ∗ NU
+ (0.1378e-2 + 0.1469e-2∗Z2 + 0.3310e-2∗Z1) ∗ RNU + (0.2912e-7+0.1636e-4∗Z2
+0.8896e-5∗Z1) ∗ NZU

G2/DB2 (0.6758e+1−0.4563e+1∗Z5− 0.1311e+2∗Z4 − 0.3462e+1∗Z3 − 0.1198e+2∗Z2
+0.3981e+1∗Z1) + (0.6701e-4−0.3545e-4∗Z5 + 0.6882e-4∗Z4 + 0.1225e-3∗Z3
−0.1153e-3∗Z2 + 0.1855e-3∗Z1) ∗ NU + (0.6153e-3+0.7202e-3∗Z5+ 0.1472e-2∗Z4
+0.2740e-2∗Z3 + 0.3729e-2∗Z2 + 0.4015e-2∗Z1) ∗ RNU + (0.5499e-1+0.8548e+0∗Z5
+0.8651e+0∗Z4 + 0.1126e+1∗Z3 + 0.2258e+1∗Z2 + 0.2269e+1∗Z1) * RLU + (−0.1155e+1
+0.7266e+0∗Z5 + 0.1288e+1∗Z4 − 0.3080e+0∗Z3 + 0.1167e+1∗Z2 − 0.1680e+1∗Z1) ∗ LU

G3/DB2 (0.1232e+2+0.6065e+2∗Z2− 0.3505e+2∗Z1) + (0.5634e-7+0.6310e-8∗Z2
+0.3707e-6∗Z1) ∗ TNJ12 + (0.8489e-3+0.1586e-2∗Z2 + 0.3656e-2∗Z1) ∗ RNJ

G1/Oracle (0.1648e-1−0.5209e+0∗Z2+ 0.2931e+1∗Z1) + (−0.3030e-3+0.1586e-3∗Z2
+0.3281e-3∗Z1) ∗ TNU + (−0.1549e-4+0.4146e-4∗Z2 + 0.6483e-4∗Z1) ∗ NU
+ (0.2691e-2 + 0.1986e-2∗Z2 + 0.3791e-2∗Z1) ∗ RNU + (−0.5699e-4−0.1221e-4∗Z2
+0.8089e-4∗Z1) ∗ RZU + (0.8557e−5+ 0.3322e-5∗Z2 + 0.1894e-6∗Z1) ∗ NZU

G2/Oracle (0.5262e+1−0.7762e+1∗Z5− 0.3278e+1∗Z4 − 0.7294e+1∗Z3 − 0.7848e+1∗Z2
−0.2817e+1∗Z1) + (−0.1034e-3+0.1738e-3∗Z5+ 0.1651e-3∗Z4 + 0.2833e-3∗Z3
+0.2526e-3∗Z2 + 0.2542e-3∗Z1) ∗ NU + (0.5224e-3+0.2012e-2∗Z5 + 0.2955e-2∗Z4
+0.4490e-2∗Z3 + 0.6067e-2∗Z2 + 0.6541e-2∗Z1) ∗ RNU

G3/Oracle (−0.1457e+2− 0.4381e+2∗Z3 + 0.7830e+2∗Z2 − 0.7726e+2∗Z1) + (−0.9777e-7
+0.1322e-6∗Z3 + 0.2320e-6∗Z2 + 0.1373e-6∗Z1) ∗ TNJ12 + (0.1257e-2+0.1737e-2∗Z3
+0.3801e-2∗Z2 + 0.5704e-2∗Z1) ∗ RNJ + (0.7793e-3−0.4290e-3∗Z3− 0.8994e-3∗Z2
−0.1771e-6∗Z1) ∗ TNJ1 + (−0.1887e+1 +0.4723e+1∗Z3 + 0.8677e+1∗Z2 + 0.9416e+1∗Z1)
∗RLJ + (0.6537e+1+0.2638e-1∗Z3 − 0.2248e+2∗Z2 + 0.3179e+1∗Z1) ∗ LJ1

Table 6: Multistate Cost Models for DB2 and Oracle

and Z1 in the cost model represent the coefficient adjustments for the corresponding explanatory
variables in contention states S2 and S1, respectively. For example, the (integrated) coefficient of
explanatory variable RNJ (i.e., the result table size, which is usually the most significant
explanatory variable) for all contention states in the cost model is: (0.8489e−3 + 0.1586e−2 ∗ Z2
+ 0.3656e−2 ∗ Z1). When contention state is S3, S2, or S1, the coefficient is adjusted to:
0.8489e−3 (Z2 = Z1 = 0), 0.2435e−2 (Z2 = 1 & Z1 = 0), or 0.4505e−2 (Z2 = 0 & Z1 = 1),
respectively. Clearly, for a higher contention state such as S1, its adjusted coefficient is larger;
which implies that a larger overhead is needed to process a result tuple in a higher contention
state. Note that the number of contention states needed and the adjustments of coefficients of
explanatory variables for each state are determined automatically for a given environment by the
statistical procedure presented in the previous sections. In this way, the technique can build cost
model capturing the dynamic behavior of a multidatabase environment.

Table 7 shows some statistical measures for the derived cost models13. For the comparison
purpose, two static experimental cases were considered. In the first case, cost models were
derived by applying the static query sampling method to sampling data obtained from a static
environment (Static Approach I). In the second static case, cost models were derived by applying
the static query sampling method to sampling data obtained from a dynamic environment (Static

13 The number in parentheses beside ‘multistates’ in Table 7 indicates the number of contention states used for the
relevant cost model.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 48

Approach II). This, in fact, is to restrict the multistate query sampling method to consider only
one contention state.

Query
class

Cost model
type R2 s Average

cost
Very good
estimates

Good
estimates

Multistates (3) 0.972 0.157e+2 0.528e+2 55% 78%
One-state 0.798 0.363e+2 0.511e+2 30% 58%

G1 for
DB2

Static 0.972 0.672e+0 0.290e+1 3% 5%
Multistates (6) 0.994 0.997e+1 0.620e+2 60% 76%

One-state 0.779 0.620e+2 0.690e+2 24% 48%
G2 for
DB2

Static 0.986 0.733e+0 0.359e+1 7% 14%
Multistates (3) 0.996 0.230e+3 0.735e+3 37% 62%

One-state 0.910 0.254e+3 0.431e+3 27% 45%
G3 for
DB2

Static 0.992 0.116e+2 0.381e+2 9% 13%
Multistates (3) 0.982 0.160e+2 0.680e+2 69% 81%

One-state 0.876 0.576e+2 0.865e+2 35% 60%
G1 for
Oracle

Static 0.999 0.917e-1 0.402e+1 3% 6%
Multistates (6) 0.993 0.143e+2 0.873e+2 63% 74%

One-state 0.901 0.672e+2 0.108e+3 35% 62%
G2 for
Oracle

Static 0.999 0.301e+0 0.493e+1 4% 8%
Multistates (4) 0.999 0.148e+3 0.998e+3 51% 67%

One-state 0.951 0.507e+3 0.882e+3 22% 44%
G3 for
Oracle

Static 0.999 0.503e+1 0.492e+2 0% 1%

Table 7: Statistics for Cost Models

From the experimental results, we have the following observations:

• The multistate query sampling method presented in this paper can derive good cost
models in a dynamic environment. The coefficients of total determination in Table 7
indicate that all derived models can capture 98.9% variations in query cost on average.
The standard errors of estimation are acceptable, compared with the magnitude of the
average cost of relevant sample queries (only 22% of average costs on average). The
statistical F-tests at significance level α = 0.01 were also conducted, which showed that
all cost models are useful for estimating query costs in a dynamic environment. In fact,
the more dynamic an environment is, the more a multistate cost model outperforms a
one-state cost model.

• The (static) cost models derived by the static query sampling method for a static
environment (i.e., Static Approach I) are not suitable for estimating query costs in a
dynamic environment. Although such cost models may have good coefficients of total
determination (99.1% on average in Table 7) for the sampling data in a static
environment, they can hardly give good cost estimates in a dynamic environment (gave
only 7.8% good cost estimates on average in Table 7 for the test queries in our
experiments).

• The (multistate) cost models derived by using the multistate query sampling method for a
dynamic environment significantly improve the (one-state) cost models derived by
applying the static query sampling method for the dynamic environment (i.e., Static
Approach II). In fact, compared with the one-state cost models, the multistate cost models

International Journal of Information Technology, Vol. 14, No. 2, 2008

 49

increase the number of very good cost estimates (i.e., with relative errors ≤ 0.3) and the
number of good cost estimates (i.e., within one time range) by 27.0% and 20.2% (on
average), respectively, for the test queries. Figures 6 ~ 11 show comparisons among the
observed costs, estimated costs by the multistate cost models, and estimated costs by the
one-state cost models for the test queries in a dynamic environment.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-100

0

100

200

300

400

500

600

700

800

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 6: Costs for Test Queries in G1 on DB2 5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-200

0

200

400

600

800

1000

1200

1400

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 7: Costs for Test Queries in G1 on Oracle 8.0

0 0.5 1 1.5 2 2.5

x 10
5

-200

0

200

400

600

800

1000

1200

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 8: Costs for Test Queries in G2 on DB2 5.0

0 0.5 1 1.5 2 2.5

x 10
5

-200

0

200

400

600

800

1000

1200

1400

1600

1800

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 9: Costs for Test Queries in G2 on Oracle 8.0

• The more contention states are considered, the better the derived cost model usually is.
For example, the coefficients of total determination for the cost models for query class
G2/Oracle with 1 to 6 contention states are 0.901404, 0.974606, 0.978702, 0.990002,
0.990005, 0.993221, respectively. However, the improvement is very small after the
number of contention states reaches certain point. Table 7 shows that usually considering

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 50

3 to 6 contention states for a dynamic environment is sufficient to obtain a good cost
model.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

-1000

0

1000

2000

3000

4000

5000

6000

No. of Result Tuples

Q
ue

ry
 C

os
t

 (
E

la
ps

e
T

im
e

in
 S

ec
.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 10: Costs for Test Queries in G3 on DB2 5.0

0 1 2 3 4 5 6 7 8 9 10

x 10
5

-1000

0

1000

2000

3000

4000

5000

6000

7000

No. of Result Tuples
Q

ue
ry

 C
os

t
 (

E
la

ps
e

T
im

e
in

 S
ec

.)

solid line --- observed cost
dashed line (o) --- estimated cost by qualitative approach (multi-states)
dotted line (+) --- estimated cost by static approach (one-state)

Figure 11: Costs for Test Queries in G3 on Oracle 8.0

• Like static techniques [5, 25], it is also true for the multistate query sampling method that
small-cost queries usually have worse cost estimates than large-cost queries. The main
reason for this is that even a small momentary change in the system environment may
have a significant impact on the cost of a small-cost query. It is not easy to capture all
such small environmental changes in a cost model. Fortunately, estimating the costs of
small-cost queries is not as important as estimating the costs of large-cost queries because
it is more important to identify large-cost queries so that inefficient execution plans can
be avoided.

• Contention states determination algorithm IUPMA works well for both uniformly-
distributed and non-uniformly-distributed (clustered) probing query costs, while
algorithm ICMA can determine an even better set of system contention states for the
clustered cases. Note that the sampled probing query costs were drawn by following the
distribution of the contention level in a dynamic environment. In fact, the experimental
results shown in Tables 6 ~ 7 and Figures 6 ~ 11 were obtained for the uniform case.
Extensive experiments were also conducted for clustered cases. The experimental results
showed that, for a given query class, the cost model derived in the clustered cases is
usually better than the one derived for the uniform case even if IUPMA is used. This is
because the cost models for the clustered cases only need to capture performance
behavior of queries in more focused and narrower subrange(s) of the contention level.
Table 8 shows some typical experimental results for a query class in a dynamic
environment with clustered contention level points (see Figure 12 for the corresponding
frequency distribution of the contention level).

To check the effect of multistate cost models on query optimization, we also conducted some
experiments. In the experiments, for simplicity, we considered only two dynamic sites A and B
in the multidatabase environment. Site A ran Oracle 8.0, and Site B ran DB2 5.0. Each site can
have a contention level point from 1 (least) to 96 (highest). Global test queries were randomly

International Journal of Information Technology, Vol. 14, No. 2, 2008

 51

generated and executed to retrieve information from local databases at the two sites. The
following two execution plans were considered:

• Plan P1: execute a local query at Site A, transfer the result to Site B, and perform the final
integration (join) at Site B.

• Plan P2: execute a local query at Site B, transfer the result to Site A, and perform the final
integration (join) at Site A.

Query
class

States
determination

of
states

R2 s Average
cost

very good
estimates

Good
estimates

IUPMA 3 0.978 0.128e+2 0.488e+2 58% 82% G1 for
DB2 ICMA 3 0.991 0.740e+1 0.465e+2 82% 95%

Table 8: Statistics for Cost Models in a Clustered Case

0 10 20 30 40 50 60
0

5

10

15

20

25

System Contention Level (Probing Query Cost in Sec.).

F
re

qu
en

cy

Figure 12: Histogram of Contention Level Points in a Clustered Case

A global query optimizer should choose a better plan between P1 and P2. Assume that data
transferring cost is negligible in our fast local area network. Let C(Pi), M(Pi), S1(Pi), and S2(Pi)
be the costs of plan Pi (i = 1, 2) based on observations, multistate cost models, one-state cost
models (Static Approach II), and static cost models (Static Approach I), respectively. Notice that,
as long as the observed cost difference C(P1)−C(P2) and the estimated cost difference (e.g., M(P1)
− M(P2)) have the same sign (i.e., ”+” or ”−”), the corresponding cost models can help the query
optimizer determine a correct plan. To include various dynamic environments in the experiments,
we considered different ratios of contention level points between Site A and Site B as follows:
96:1, 84:1, 72:1, ..., 12:1, 1:1, 1:12, ..., 1:84, 1:96. Table 9 shows some typical experimental data.
We use C, M, S1, and S2 to denote the observing, multistates, one-state, and static approaches in
the table. Qi (1 ≤ i ≤ 8) denote test queries. From the experimental data, we can see that:

• The static cost models can only determine a correct plan (i.e., the better one) for 49.3%
cases.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 52

• The multistate cost models can determine a correct plan for 87.5% cases, which
represents a significant improvement of 38.2% over the static models.

• Only for those cases in which the costs of two alternate plans are quite close to each other,
the multistate cost models may fail to determine a better plan. Fortunately, choosing
either plan does not make much difference in such cases.

These experimental results demonstrate that the multistate cost models are very promising in
determining an efficient plan during query optimization.

Ratio of contention level points at Sites A and B

 96:1 84:1 72:1 60:1 48:1 36:1 24:1 12:1 1:1 1:12 1:24 1:36 1:48 1:60 1:72 1:84 1:96
C + + + + + + + + - - - - - - - - -
M + + + + + + + - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q1

S2 - - - - - - - - - - - - - - - - -
C + + + + + + + + + - - - - - - - -
M + + + + + + + - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q2

S2 - - - - - - - - - - - - - - - - -
C + + + + + + + + + - - - - - - - -
M + + + + + + - - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q3

S2 - - - - - - - - - - - - - - - - -
C - - - - - - - + + + + + + + + + +
M - - - - - + + + + + + + + + + + +
S1 + + + + + + + + + + + + + + + + +

Q4

S2 + + + + + + + + + + + + + + + + +
C + + + + + + + + + - - - - - - - -
M + + + + + + + - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q5

S2 - - - - - - - - - - - - - - - - -
C + + + + + + + + + - - - - - - - -
M + + + + + + + - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q6

S2 - - - - - - - - - - - - - - - - -
C + + + + + + + + + - - - - - - - -
M + + + + + + - - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q7

S2 - - - - - - - - - - - - - - - - -
C + + + + + + + + + - - - - - - - -
M + + + + + + + - - - - - - - - - -
S1 - - - - - - - - - - - - - - - - -

Q8

S2 - - - - - - - - - - - - - - - - -
”+” — cost difference is positive, i.e., P2 is better than P1
”-” — cost difference is negative, i.e., P1 is better than P2

Table 9: Determining Efficient Query Execution Plan Based on Multistate and Static Cost Models

International Journal of Information Technology, Vol. 14, No. 2, 2008

 53

6. Conclusions

Local query cost estimation is essential to global query optimization in an MDBS. The
techniques proposed so far in the literature to develop local cost models in an MDBS are only
suitable for a static environment. A query cost can be dramatically affected by dynamic factors in
a multidatabase environment.

The main contribution of this paper is that we have proposed a novel qualitative approach
(also called the multistate query sampling method) to building a cost model for a dynamic
multidatabase environment, which includes: (1) a technique to incorporate a qualitative variable
indicating the system contention states in the cost model; (2) a strategy to utilize the system
contention level reflecting the combined net effect of dynamic factors on a query cost for the cost
model development; (3) two algorithms to determine a good set of system contention states for
dynamic environments with their system contention level following uniform and non-uniform
distributions, respectively; (4) extensions of our previous static query sampling method including
the determination of the minimum sample size for query sampling, the strategies and criteria to
add/remove quantitative and qualitative variables, and the revised statistical measures to evaluate
a multistate cost model; and (5) empirical studies on the accuracy of multistate cost models and
the effectiveness of query optimization based on the models in dynamic environments.

A multistate cost model developed by the above qualitative approach is used to estimate the
cost of a query run in any contention state in a dynamic environment. To estimate the cost of a
query experiencing multiple contention states in a slowly-changing environment, a fractional
analysis technique can be applied. To estimate the cost of a query experiencing multiple
contention states in a frequently-changing environment, a probabilistic approach based on
Markov chains can be adopted. The qualitative approach provides a base for the latter two
techniques. These three techniques together comprise a complete suite of techniques to estimate
the query costs for various dynamic multidatabase environments.

Although dynamic environmental factors have a significant effect on query cost, they were
ignored in most existing cost model development techniques for MDBSs due to lack of
appropriate techniques. This paper introduces some promising techniques to tackle the problem.
However, our work is just the beginning of further research that needs to be done in order to
fully solve all relevant issues for global query optimization in dynamic multidatabase
environments.

Acknowledgments

The authors would like to thank Per-Åke Larson, Guy M. Lohman, and Frank Olken for their
insightful suggestions for the work reported in this paper. Our grateful thanks are due to
anonymous reviewers for their valuable comments and constructive suggestions for improving
the paper. The preliminary work of this paper was presented at the 16th IEEE International
Conference on Data Engineering [23].

References

[1] S. Adali, K.S. Candan, Y. Papkonstantinou and V.S. Subrahmanian. Query caching and

optimization in distributed mediator systems. In Proc. of SIGMOD, pp 137–48, 1996.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 54

[2] L. Amsaleg, M.J. Franklin, A. Tomasic and T. Urhan. Scrambling query plans to cope with
unexpected delays. In Proc. of PDIS, pp 208–19, 1996.

[3] G. K. Attaluri, D.P. Bradshaw, N. Coburn, P.-A. Larson, P. Martin, A. Silberschatz, J.
Slonim and Q.Zhu. The CORDS multidatabase project. IBM Systems Journal, 34(1):39–62,
1995.

[4] L. Bouganim, F. Fabret, C. Mohan and P. Valduriez. Dynamic query scheduling in data
integration systems. In Proc. of ICDE, pp 425–34, 2000.

[5] W. Du, R. Krishnamurthy and M.-C. Shan. Query optimization in heterogeneous DBMS. In
Proc. of VLDB, pp 277–91, 1992.

[6] W. Du, M. C. Shan, and U. Dayal. Reducing multidatabase query response time by tree
balancing. In Proc. of SIGMOD, pp 293 – 303, 1995.

[7] G. Gardarin, F. Sha and Z.-H. Tang. Calibrating the query optimizer cost model of IRO-DB,
an object-oriented federated database system. In Proc. of VLDB, pp 378–89, 1996.

[8] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic Press, 2001.
[9] C. Lee and C.-J. Chen. Query optimization in multidatabase systems considering schema

conflicts. IEEE Trans. on Knowledge and Data Eng., 9(6):941–55, 1997.
[10] W. Litwin, L. Mark and N. Roussopoulos. Interoperability of multiple autonomous

databases. ACM Comp. Surveys, 22(3):267–293, 1990.
[11] H. Lu and M.-C. Shan. On global query optimization in multidatabase systems. In 2nd Int’l

workshop on Research Issues on Data Eng., pp 217, Tempe, Arizona, USA, 1992.
[12] H. Naacke, G. Gardarin and A. Tomasic. Leveraging mediator cost models with

heterogeneous data sources. In Proc. of 14th Int’l Conf. on Data Eng., pp 351–60, 1998.
[13] J. Neter, W. Wasserman and M.H. Kutner. Applied Linear Statistical Models, 3rd Ed.

Richard D. Irwin, Inc., 1990.
[14] K. W. Ng, Z. Wang, R.R. Muntz and S. Nittel. Dynamic query re-optimization. In Proc. of

11th Int’l Conf. on Sci. and Stat. DB Manag., pp 264–273, 1999.
[15] E. Parzen. Stochastic Processes. Holden-Day, Inc., 1962.
[16] R.C. Pfaffenberger and J.H. Patterson. Statistical Methods for Business and Economics.

Richard D. Irwin, Inc., 1987.
[17] M. T. Roth, F. Ozcan and L. M. Haas. Cost models DO matter: providing cost information

for diverse data sources in a federated system. In Proc. of VLDB, pp 599–610, 1999.
[18] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183–236, Sept.
1990.

[19] Urhan, T., M. J. Franklin and L. Amsaleg. Cost-based Query Scrambling for Initial Delays.
In Proc. of SIGMOD, pp 130–141, 1998.

[20] T. Urhan, M.J. Franklin and L. Amsaleg. Cost-based query scrambling for initial delays. In
Proc. of SIGMOD, pp 130–41, 1998.

[21] Q. Zhu, S. Motheramgari and Y. Sun. Cost Estimation for Queries Experiencing Multiple
Contention States in Dynamic Multidatabase Environments. In Knowledge and Infor. Syst.,
5 (1): 26–49, 2003.

[22] Q. Zhu, J. Haridas and W. Hou. Global query optimization based on multistate cost models
for a dynamic multidatabase system. In Proc. of Int’l Conf. on Enterprise Infor. Syst.
(ICEIS’03), Vol.1, pp 144–155, 2003. Also in Enterprise Information Systems V (Selected
Best Papers of ICEIS’03), pp. 117-128, Kluwer Publishers, 2004.

International Journal of Information Technology, Vol. 14, No. 2, 2008

 55

[23] Q. Zhu, Y. Sun and S. Motheramgari. Developing cost models with qualitative variables for
dynamic multidatabase environments. In Proc. of ICDE, pp 413-424, 2000.

[24] Q. Zhu and P.-A. Larson. A fuzzy query optimization approach for multidatabase systems.
Int’l J. of Uncertainty, Fuzziness and Knowledge-Based Sys., 5(6):701 – 22, 1997.

[25] Q. Zhu and P.-A. Larson. Solving local cost estimation problem for global query
optimization in multidatabase systems. Distributed and Parallel Databases, 6(4): 373 – 420,
1998.

[26] Q. Zhu and P.-A. Larson. Building regression cost models for multidatabase systems. In
Proc. of 4th IEEE Int’l Conf. on Paral. and Distr. Inf. Syst., pp 220–31, Dec. 1996.

[27] Q. Zhu and P.-°A. Larson. A query sampling method for estimating local cost parameters in
a multi database system. In Proc. of 10th IEEE Int’l Conf. on Data Eng., pp 144–53, Feb.
1994.

[28] Q. Zhu. Query optimization in multidatabase systems. In Proc. of the 1992 IBM CAS
Conference, Vol. II, pp 111–27, Toronto, Canada, Nov. 1992.

[29] Q. Zhu, J. Haridas and W. Hou. Query optimization via contention space partitioning and
cost error controlling for dynamic multidatabase systems. Distributed and Parallel
Databases, 23(2): 151-188, 2008.

Qiang Zhu received his Ph.D. degree in computer science from
University of Waterloo, Canada, in 1995. He also holds an M.Sc. degree
from McMaster University, Canada, and an M.Eng. degree from
Southeast University, China. He is presently a professor in computer and
information science at The University of Michigan, Dearborn, USA. He
is also an IBM CAS Faculty Fellow. His current research interests
include query optimization, multidatabase systems, multidimensional
indexing, self-managing databases, data streams, and Web information
systems.

Yu Sun received an M.Eng. degree in computer science and a B.Sc.
degree in mathematics from the Southeast University, China, in 1988 and
1982, respectively. He was a research associate in the department of
computer and information science at The University of Michigan,
Dearborn, USA. He was also a faculty member in computer science at
Southeast University, China. His current research interests include query
processing and optimization, multidatabase systems, and database
statistical techniques.

Satyanarayana Motheramgari received an M.Sc. degree in computer
and information science from The University of Michigan, Dearborn,
USA, in 2002, another Master degree from Indian Institute of
Technology, Kanpur, India in 1985, and a Bachelor degree with
distinction from Osmania University, India, in 1983. He is presently a
senior software engineer at Terumo CardioVascular Systems Corporation,
USA. His current research interests include stochastic analysis of
complex systems, database query cost modeling, and multidatabase
systems.

Q. Zhu, Y. Sun, S. Motheramgari, W.-C. Hou, and S. Chen
Building Multistate Cost Models for Dynamic Multidatabase Environments

 56

Wen-Chi Hou received his M.Sc. and Ph.D. degrees in computer science
and engineering from Case Western Reserve University, Cleveland, USA,
in 1985 and 1989, respectively. He is presently an associated professor in
computer science at the Southern Illinois University at Carbondale, USA.
His current research interests include statistical databases, mobile
databases, XML databases, and data streams.

Suyun Chen received her Ph.D. degree in applied mathematics from
McMaster University, Canada, in 1995. She is presently a database
specialist in Information Management at the BMO Financial Group,
Canada. She was a database development analyst at the IBM Toronto
Laboratory, Canada, and a faculty member at Jiangxi Normal Univeristy,
China. Her current research interests include query optimization, data
warehousing and mining, indexing methods, self-managing databases,
and database performance.

