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Abstract

In this paper, we, show, for the first time, how the Direct Method of Lyapunov
could be used to construct a Lyapunov function that controls the motion of a mobile
manipulator system by guiding it to its goal whilst avoiding obstacles in a prior:
known workspace. The mobile manipulator, modelled via its kinematic constraints,
consists of a coupling of a holonomic manipulator with a nonholonomic mobile base. It
is guided to its target by an attraction function that is part of the Lyapunov function.
It avoids fixed and artificial obstacles, which are created from the singularities and the
kinematic and dynamic constraints in the system, via obstacle avoidance functions
that also make up the Lyapunov function. Computer simulations are used to illustrate
the effectiveness of the proposed Lyapunov-based method.

Keywords: Nonholonomic vehicles, Direct Method of Lyapunov, kinodynamic constraints,
mobile manipulator.
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1 Introduction

Mobile manipulators systems are manipulators mounted on wheeled platforms — a coupling
of holonomic manipulators with nonholonomic bases. The sustained high level of interest
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over the last two decades in the motion control, obstacle avoidance control and coordination
control of mobile manipulator systems is a reflection of the importance of such systems in
many engineering projects including explorations, surveillance, mining and construction.

The work of Seraji in the early 1990s culminates in a 1998 publication [19], which is
now considered a landmark in the literature of motion control of mobile manipulators
comprising an arm mounted on a mobile base. By combining the nonholonomic base
constraints, the desired end-effector motion, and the user-specified redundancy resolution
goals, Seraji obtained a set of augmented differential kinematic equations, which he then
solved to obtain the required rover and manipulator motions. In the same and succeeding
years, several researchers proposed other novel techniques for the control of both holonomic
and nonholonomic mobile robots. The work of following researchers are noteworthy: in
1998 by Perriera et al. [17|, Huang et al. 9] and Foulon et al. |5],|6]; in 1999 by Foulon et
al. [7]; in 2000 by Papadopoulos and Poulakakis [15]; in 2002 by Sugar and Kumar |23[; in
2003, Matsikis et al. [12], and in 2005, Xu et al. [28].

The presence of fixed and moving obstacles adds another difficult dimension to the motion
control problem of mobile manipulators. Yamamoto and Yun, also in the early 1990s,
tackled the problem of coordinating manipulators in the presence of obstacles, and solved
it using an artificial potential fields approach [29]. In 2002, Papadopoulos et al. [14]
formulated a solution to the obstacle avoidance problem of mobile manipulators using a
polynomial-based approach, which they further improved in 2005 [13]. Another noteworthy
contribution in this area is that of the work of Tanner et al. [24], who in 2003 introduced
the concept of Dipolar Inverse Lyapunov Functions (DILFs) as sources of artificial potential
fields for obstacle avoidance and the coordination of manipulators. Indeed, the work of
Tanner et al. [24] firmly establishes the role of the Direct Method of Lyapunov as that
of an artificial potential fields methodology that offers the greatest ease and flexibility in
the synthesis of control laws for mobile manipulators. He showed that Lyapunov method
could be easily used to construct DILFs from which discontinuous kinematic feedback
control laws could be establish to guarantee global asymptotic stability for close loop
mobile manipulator systems. In 2006 and 2007, Sharma et al. [21], [22] and Sharma [20],
also used the Lyapunov method to construct Lyapunov functions that treat singularities
and constraints in nonholonomic systems as artificial obstacles. It is appropriate to mention
here that the concept of artificial potential fields itself was developed in the late 1980s and
early 1990s, as can be seen in the pioneering work of Khatib [10] in 1986, Connolly et al. |3]
in 1990, and Tarassenko and Blake [25|, Kim and Khosla [11]| in 1991, and Rimon and
Koditschek [18] in 1992.

In this paper, the path planning and obstacle avoidance schemes developed earlier in Vanu-
alailai et al.|26], [27]| for manipulators with a fixed base are extended to the mobile manip-
ulators. In doing so, we show, for the first time, how the Direct Method of Lyapunov could
be used to construct a Lyapunov function that controls the motion of a mobile manipulator
system by guiding it to its goal whilst treating constraints and singularities as artificial
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obstacles that, together with real fixed obstacles, need to be avoided in a priori known
workspace. The main advantage of this Lyapunov-based approach is the ease in which
it can be used to solve the path-find problem and take into account system constraints.
Moreover, it is easily applied to robotic systems.

The rest of the paper is organized as follows. In Section 2, the kinematic model of a planar
mobile manipulator consisting of a car-like mobile platform and a mounted 2-link robotic
arm. In Section 3, the control objective is described, and the targets and obstacles are
defined. In Section 4, a Lyapunov function for the system is constructed and control laws
are derived. Finally computer simulations are provided in Section 5.

2 Vehicle Model

The mobile manipulator consists of a rear wheel car-like (Reeds and Shepp’s model) mobile

platform with a 2-link planar arm mounted on the mid-front axle of the platform (see
Fig. 1).
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Fig. 1: Schematic representation of a 2-link mobile manipulator

With reference to Figure 1, point (z1,y;) locates the center of the platform, 6; is the
orientation of the platform with respect to the zj-axis, 6 is the orientation of the first
link, Link 1, with respect to the platform, while 63 gives the orientation of the second link,
Link 2, with respect to Link 1. Also ¢ gives the platforms steering angle with respect to
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the its longitudinal axis, while ¢, and by are, respectively, the length and the width of the
platform. Furthermore, ¢; and /5 are the lengths of Link 1 and Link 2, respectively.

We shall now consider the governing equations of the mobile platform and the 2-link arm
separately and then combine them effectively to obtain the governing ODEs of the entire
mobile manipulator.

Firstly, from Pappas and Kyriakopoulos [16], we have that the kinematic model of the
car-like platform with respect to its reference point (x1,y;) is

. by .
T = wvcosl; — Ewl sin 01,
lo
7 = wvsinb + Ewl cos Oy,
01 = W, fl.}:ula wl = U2,

where v and w; are its instantaneous translational and rotational velocities, respectively,
and u; and us are, the instantaneous translational and rotational accelerations, respectively.

Secondly, we consider the 2-link arm separately. Suppose that Link 1 is anchored at (0, 0).
Then the position (z.,y.) of the end-effector can be given by the kinematic equations

Te = 61 COS 92 + gz COS(@Q + ‘93) ) Ye = 61 sin 92 + £2 Sin<92 + 93)
Using these, we have the kinematic model of the 2-link arm as

i’e = —€1w2 sin 92 — fg(u)g + W3) SiH(QQ + 03),
Yo = l1wo cos Oy + lo(wo + w3) cos(fy + 03),
92 = Wa, 93 = Ws,

Wo = U3, W3 = Uy,

where wy and w3 are the instantaneous angular velocities, and us and w4 are the instanta-
neous angular accelerations, respectively, of Link 1 and Link 2.

Finally, we consider the car-like mobile platform and the 2-link arm together as a mobile
manipulator, where the arm is mounted on the mid-front axle of the mobile platform.
Accordingly, the position (x,y) of its end-effector, now relative to (x1, %), can be rewritten
as

14
T = 11+ 50 cos 01 + €1 cos(0 + ) + £y cos(br + 05 + 03),

14
Yy = U + 50 sin 91 + 51 sin(91 + 02) —+ 62 sin(@l + 92 + 93)
Then letting 07 = (01 + 05 + 03) and wy = (w; + wy + wj3), it is straightforward to show
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that a kinematic model of the mobile manipulator is

T =wvcosf; — lowy sin Oy — {1 (wy + we) sin(0y + ) — lowr sin Or,
y = vsinby + lywy cos by + 1 (w1 + ws) cos(0y + 03) + Lawr cos Or,
91 = w1, 92 = w2, 93 = Ws,

’I.J:Ul, d)l = U9, d)g = Us, (,2)3 = Uy4.

(1)

We shall use the vector notation x = (x,y, 60,0, 03,v,w1,ws, w3) € R? to refer to the
position and the velocity components of the mobile manipulator. A system trajectory will
be traced on the z;zo-plane by the point (z,y) = (z(t),y(t)) at every time ¢ > 0.

We note that we can express the positions of the mobile platform, Link 1 and Link 2
completely in terms of the state variables x, y, 61, 65, and #3. For the mobile platform, we
have
bo
ry = x—lycos(by + 0y +03) — {4 cos(by + ) — - Cos 01,

(2)

14
= y—Llysin(by + 05+ 03) — {1 sin(01 + 02) — 50 sin 6.

For Link 1, we have

/
xe = x —lycos(bh + 0y +03) — 2 cos(0; + 605),
yo = y—Llosin(fy + 0y +63) — 51 sin(fy + 0).

For Link 2, we have

r3 = T — b cos(6y + 02 + 63),
(4)

ys = y—gsm(elwﬁeg).

These position constraints are known as the holonomic constraints of the mobile manipu-
lator system.

3 Control Objective, Target and Obstacles

To ensure that the entire body of the mobile manipulator safely steers pass an obstacle, we
enclose the planar robot by the smallest circle possible. Given the clearance parameters €;
and €, we can enclose the platform by a circular protective region centered at (x,y;) with
radius r; = %\/(fo + 2¢1)% 4 (by + 2€2)2. For Link 1 and Link 2, we use circular protective
regions centered at (xq,y2) and (x3,y3), with radius ro = ¢1/2 and r3 = l5/2 + €3 (where
€3 is the clearance parameter needed to protect the gripper), respectively.

Our control objective is to control the motion of the mobile manipulator to its designated
target while ensuring that it avoids all fixed obstacles within a prior: known workspace.
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Specifically, utilizing the Direct Method of Lyapunov, we want to design the acceleration
controllers, uy, us, ug and uy such that the mobile manipulator, represented by system (1),
will navigate safely in a dynamic environment, reach a neighborhood of its target and
be aligned to a pre-determined final posture. To obtain a feasible solution of this multi-
task problem, we will use a Lyapunov function to generate artificial potential fields. The
governing idea behind the an potential field approach, pioneered in 1986 by Khatib [10],
is to attach attractive field to the target and a repulsive field to each of the obstacles. The
whole workspace is then inundated with positive and negative fields, with the direction of
motion facilitated via the notion of steepest descent.

We begin by describing precisely the target, the workspace, the parking bay, and all the
obstacles that could potentially be encountered by the mobile manipulator.

3.1 Target

For the end-effector of the mobile manipulator, we have a designated target with center
(a1, az) and radius rr and we define this target as

T ={(z1,22) ER*: (z1 — 1) + (22 — a2)* < 17}

For attraction to this target, we define the function

V(x) = % [(z—a1)* 4+ (y — a2)® + v* + i + wj +wj|,

which is a measure of the distance between the end-effector and its target, and the rate of
approach of the end-effector to its target. If as, as and as are the final orientations of the
platform, Link 1 and Link 2, respectively, when the end-effector is at the target 7T, then
we can see that at x = x, := (ay, a9, a3, ay4,as5,0,0,0,0), we have V = 0. Hence if V is a
part of a Lyapunov function for the system, then its role to ensure that system trajectories
start and remain close to x., so that x. could be considered as a stable equilibrium point
of system (1).

3.2 Fixed Obstacles from the Boundaries of the Workspace

Our workspace is a fixed, closed and bounded rectangular region, defined, for some n; >
2(ry+ry+1r3) and gy > 2 (ry + 12 +13), as

WS ={(z21,29) ER*:0 < 2z, <1m1,0 < 2z <}

We require the mobile manipulator to stay within the rectangular region at all time ¢ > 0.
The boundaries of the region are defined as follows:
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(a) Left Boundary: By = {(21,22) € R?: 2 = 0};

(b) Lower Boundary: By = {(21,22) € R?: 2, = 0};

(¢) Right Boundary: Bz = {(z1,22) € R?*: 2y =i };
)

(d) Upper Boundary: By = {(21,22) € R?: 25 = 1y},

These boundaries are considered as fixed obstacles, and they have to be avoided by the
mobile manipulator. Now, since the two ends of Link 1 are protected by the protective
circular regions of the mobile platform and of Link 2, respectively, it is sufficient to consider
avoidance functions only for the mobile platform and Link 2. These functions are given in
Table 1.

Table 1: Functions for the avoidance of the boundaries of the workspace.

Boundary Avoidance Avoidance

by platform by Link 2
Left, Bl Wl(X) =1 — T W5(X) = T3 — T3
Lower, By Wa(x) =y1 — We(x) =ys — 3
Right, By | Wa(x) =m —ri — a1 | We(x) =m —r3 — a3
Upper, By | Wy(x) =me —r1 —y1 | Wa(x) =m0 — 713 — 13

Now, since 177 > 2(ry +ro + r3) and 79 > 2 (r; 4+ ro + r3), each of the functions is positive
in WS. That is, Wy, W3 > 0 for all zy € (ry,m — 1), Wa, Wy > 0 for all y; € (r1,m2 — 1),
W5, Wz > 0 for all z3 € (r3,m — r3), and Wy, Wg > 0 for all y3 € (13,72 — 73), recalling
that the components of (x1,y;) and (x3,ys) are given in (2) and (4), respectively.

Following [20] and [21], each of these functions will be added as a ratio to a Lyapunov
function of the system. Indeed, consider the effect of the ratios «;/W; for some constant
a; > 0and 7 = 1,...,8 When the mobile manipulator approaches a boundary of the
workspace, one of the ratios will increase. Because the Lyapunov function is a nonincreasing
function, this increase in the value of a ratio will result only in an increase in the absolute
value of the time-derivative of the Lyapunov function. This, in turn, instigates an increase
in the activity of the system. This increased activity could only be directed towards an
equilibrium point of the system, away from the border. In other words, we cannot have a
situation where W; = 0,7 =1,...,8. Hence, if the ratios form parts of a Lyapunov function
for system (1), intuitively the ratios will act as obstacle avoidance functions, which will
restrict the articulated vehicle to operate within its rectangular workspace.

The essence of obstacle avoidance capability in our method lies, therefore, in the creation of
obstacle avoidance functions that will induce an increase or decrease in the instantaneous
rate of change of the Lyapunov function.
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Henceforth, for each obstacle, we will construct an appropriate function that will appear
in the denominator of an obstacle avoidance function.

3.3 Fixed Obstacles from the Boundaries of the Parking Bay

We consider a row-structured parking bay, with two parallel boundary lines, within which
the mobile manipulator has to be parked. The two parallel boundary lines are obstacles
to be avoided.

A boundary line is avoided by identifying and avoiding three points on the line: (i) that
which is closest to the center of the mobile platform, (ii) that which is closest to the center
of Link 1 and (iii) that which is closest to the center of Link 2. The avoidance of the closest
point on the line at any time ¢ > 0 essentially results in the avoidance of the entire line.

Specifically, consider the k™ line segment in the z; zo-plane with initial coordinates (a1, by1)
and final coordinate (akg, bx2). The parametric representation of the k" line segment can
be written as

Cmk = @1 + M@y Um) (k2 — ag1), Aok = bt + M (T, Y ) (k2 — bi1)-

Minimizing the Euclidian distance between the point (x,,, y,,) and the line segment (¢, dng),
we get Ap(Zm, Ym) = (Tm — ar1)qk + (Ym — br1)7, where
(ar2 — ag1) Gho = (bro — br1)
) 2 — .
ak2 — ax1)? + (br2 — by )? (are — ar1)? + (br2 — bi1)?
where A\g(Zm, Ym) € [0,1]. I Ag(@m, ym) > 1, then we let Ag(2,, ym) = 1, in which case

(Cmky k) = (ag2, bro) and if A\g(2, Ym) < 0, then we let A\g(2y,, Ym) = 0, in which case
(Cmks dmk) = (ag1,br1). Otherwise we accept the value of A\g(x,, ¥ ) between 0 and 1.

gk1 =
(

To avoid the closest point on the k** line of the parking bay, we shall use the function

1

LSmk(X) = 5 [(zm - cmk)2 + (ym - dmk)2 - T?n] )

for m = 1,2, 3, which represent the three points, and k = 1,2, which represent the two
parallel boundaries of the parking bay.

3.4 Other Fixed obstacles

Let us fix ¢ > 0 obstacles within the boundaries of the workspace. We assume that the !

obstacle is circular with center given as (p;1, p2) and radius rad;. We define the Ith obstacle
as
O ={(21,22) € R*: (21 — pn)* + (22 — pr2)* < radj} ,
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for l =1,2,...,q. For its avoidance we will need to have separate potential functions for
platform and the two links. Thus we consider

FOum(x) = = [(xm — pr)* + (Ym — pi2)* = (1 + rady)’]

DO | —

for m = 1,2,3 and | = 1,2,...,q. The functions FOy(x), FOq(x) and FO3(x) are
measures of distances between the [** obstacle and the platform, the [** obstacle and
Link 1, and the {** obstacle and Link 2, respectively.

3.5 Artificial Obstacles from Dynamic Constraints

The instantaneous velocities of the mobile platforms and the links are restricted due to
safety considerations, and the rotation angles of Link 1 and Link 2, are restricted due
to mechanical singularities. Based on these dynamic constraints, we construct artificial
obstacles to be avoided.

3.5.1 Modulus Bound on Velocities

Modulus bounds on the velocities are treated as dynamics constraints. If vy, > 0 is the
maximum speed of the mobile platform, and ¢, is the maximum steering angle satisfying
0 < ¢max < 7/2, then, as shown in [16|, the constraints imposed on the translational
velocity, v, and the rotational velocity, w, are

[v] < Vpax and v > pilinw% ; Pmin = L/ tan Qpay - (5)

From (5), we easily have
’C‘Jl’ < |U|/|pmin| < Umax/|pmin| . (6)

For Link 1 and Link 2, we bound the instantaneous rotational velocities wo and ws by
Wamax aNd W3 may, respectively. That is, |ws| < womax and |ws] < w3 max-

Based on each of these constraints, we construct the following artificial obstacles:

AOl = {’U ceR:v< —Umax O U > Umax};

AOy = {wl ER:w < _UmaX/|pmin| or wy = Umax/|pmin|};
AO3 = {WQ €R:wys < —wWypmax O Wy > W2max};
<

AO4 = {WS eR: w3 —W3max O W3 = u)BmaX}-
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For the avoidance of these artificial obstacles, we adopt the following functions, respectively,

—_

UI(X) = _( max U)(Umax + U)7

1 Umax Umax
Valx) =3 <|p N “”1) <|p N “’1)’
1

[\

U3(X) - §<w2max - WZ)(w2max + w2)7
1
U4(X) = §(W3max - w3)(w3max + UJ3),

each of which will appear in the denominator of an obstacle avoidance function.

3.5.2 Mechanical singularities

A singular configuration arises when 63 = 0, 3 = 7w or #3 = —m. Consequently, the
condition placed on 03 is 0 < |f3| < 7, which means that the links can neither be fully
stretched nor folded onto each other. For the avoidance of these singular configurations,
we will use the following functions

Sl(X) = |03| and SQ(X) =TT — |93|,

for 03 € (—m,0) U (0, 7). Each function will be used to avoid the artificial obstacle defined
as
AO5:{93ER:93:O,93:7ror93:—7r}.

We also note that the angle between Link 1 and the mobile platform is bounded, that is,
—m/2 < 03 < w/2. In other words, Link 1 can freely rotate within (—7/2,7/2). To ensure
that Link 1 stays within this interval, we will use

=4 (5-0) (5 +0)

for the avoidance of the artificial obstacle defined as

AO(;:{HQER:GQS—goré’ng}.
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3.6 Auxiliary Function

To ensure that our Lyapunov function vanishes at the target T" defined earlier, we shall use
the auziliary function

F<X) = (ZL’ - CL1> - a2 + Z <z i az+2 )

N | —

where ag, a4 and a5 are the desired final orientations of the platform and the two links,
noting that at the point x = x. = (a1, as, as, a4, as, 0,0,0,0), we have F' = 0. The constant
(; is a binary constant which we shall call the angle-gain parameter for 6;,i = 1,2,3.
An angle-gain parameter will take a value of one only if a final pre-defined orientation is
warranted, else it takes the default value of zero.

In the next section, we define a Lyapunov function for the system (1) such that the point
X, = (a1, as, ag, a4, as,0,0,0,0) becomes a stable equilibrium point of the system.

4 Lyapunov Function

Introducing control parameters as > 0, Ypy > 0, Vi > 0, §, > 0, and B, > 0, we define a
Lyapunov function candidate for system (1) as

8

Qg i I @me
2 i (Z Foum) Z 5 )

L(x) = V(x)+ F(x)

s=1 m=1 =1
3 4
&p By
, 7
PR i "

which is defined, continuous and positive over the domain

D(L) = {XERQZWS(X) >0,s=1,...,8 Sp(x) >0,p=1,2,3;
FOn(x)>0m=1,23,1=1,...,¢; Us(x) >0,r=1,...,4;
LSm(x) > 0,m=1,2,3,k =1,2}.

We note that the point x = x, = (a1, as, as, aq, a5,0,0,0,0) is in D(L), and that L(x.) = 0.
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4.1 Controller Design and Stability Analysis

Recalling that 07 = 6, + 02 + 05, and defining g = 61 + 05, the time-derivative of L along
a trajectory of system system (1) is

Layx) = [(fi+ s+ fs+ fr)cosO+ (fa+ fa+ fo + fs)sinby + hyug] v
+ [— (f1 +%f3+f5-|—f7) lysin ) + (f2+%f4+f6+fg> {y cos b,

1 1
- (fl + §f5 + f?) lysinfg + <f2 + §f6 + fs) ¢y costlg
1 . 1
- (fl + §f7) lysin O + (fz + §f8) lycosOr + g1 + h2u2] w1

|- (A gt 2) trsindg b (fat 3t fo) rcost

2
1 . 1
- (fl + §f7> lysinOp + (fz + §f8> lycosOp + g2 + hsu3] Wo

1 1
+ [— (f1 + §f7> Uy sin O + <f2 + §fg) 0y cos O + gs + h4u4:| ws,

where the functions f; to fs, g1 to g3 and hy to hy are defined below:

8 3 q 3 4 1
g Ymi wmk fp ﬂr
1 Sp [l _
f +;Ws+mz_l<l_ . z )+;sp+;m o)
o (& Y g G
1 = ml mk sp 2y —
: +zw+mz< FOml+Z )*;sﬁ;m )
OégF 061F g ")/uF
/3 - - pu)
I 2 7oz,
F
- Z ¢1k2 (ar2 — ar1)qr) (21 — c1x) — (br2 — ba)grr (y1 — dux)]
O[4F OZQF /yllF
fa — Pi2)
T Z Foy, W
= (I

(1 = (br2 — bra)aqw2) (v —

68
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_ Z ’Y2lF o)
FO%,
F
- Z %;2 (ar2 — ar1)qrr) (T2 — c2x) —
q
Yo I
fe = — (y2 — pi2)
2
F
- Z %;2 [(1 = (br2 — br1 ) qw2) (y2 — da) —
Oé7F Oé5F ’YSZF
fr = =5 —pn)
s Z rog
¢3kF
sz - ak1)Qk1) (363 - C3k> -

. OégF OéGF ’73[F
= Wz ZFogl ~ Pe)

- Va1 (ks — b )gko) (s — dise) —

(bk2 — br1)qr1 (Y2 — dak)]

(%2 - akl)QkQ ($2 - CQk)] )

(ka - bkl)le (y3 - dBk)] )

(%2 - akl)Qk2 (513'3 - CBk)] )

k=1 Lsgk
- . , 3
— Qg Vi wmk é & )
a = ; W, + mzzl (Z—l FO,, Z ) + pz; Sp Z §1(91 ag,)7
[ B 3 3 4 1
Qs Ymi ¢mk gp ﬁr
pu— Sp. br 6 B
9 2 W, +m:1 ( FO,, Z ) + p:zl ot ; 0 o0y — ay)
§F
+S_§92’
gz = i&s_i_i d Ymi +i Vi _1_2&4_2& G305 — as)
UE FOp LSk g :
=1 =1 \I=1 k=1 —1 °p —
’ " - - p r
N (2_F fl_F) (@
S35t 5 )
B F Go F By F B,F
hl - 1+_’ h:1+ ; h3_1 T79 h4_1+—
Ut ? U3 U2 02

Now, if we are given parameters o; > 0 for j = 1,...,
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then we can define the translational and rotational velocities as

v = (fi+fs+fs+ fr)cosbr+ (fo+ fa+ fo + f8) sin 0y + hyuy,
s = = (fi gt St g ) tosingy+ (ot 34 St ) facosts
1 1
(f + 2f5 + f7> {1 sinfg + <f2 + §f6 + fs) ¢y cos g
1
(f1 + = ) (o sin O + (f2 + §f8) 0y cos 01 + g1 + haua,
1 1
—03Ws (f1+ f5+f7> {1 sinfg + (f2+§f6+f8) ¢y costg
1
(f + f7> o sin O + (fz + §f8) Uy cos O + go + haus,
1
—(54&.13 = — (f1 + §f7> fg sin 9T + (fQ + Efg) 62 COS 9T + gs + h4U4.

Hence, along a trajectory of system (1) in D(L), we have

L(l)(x) = —610° — Spw} — daw; — Sw3 <0,
provided our feedback nonlinear controllers are of the form
uy =—[0w+ (fi+ fs+ f5+ fr)cosby + (fo+ fa+ fo + fs)sinbq] /h,

— [5gw1 — (f1+1f3+f5+f7) losin 0 + <f2+ %f4+f6+f8) lo cos 0,
(fl + f5 +f7) {1 sinfg + (f2+ %fﬁ +f8> ¢y cos O
(f1 1 )eg sinfy + (f2 n %fg) 0, COS@T+91} Jha.
uz = — [éng — (f1+%f5+f7> {1 sinfg + (f2+ %f6+f8) ¢y cos Og
(f1+ )€2s1n9T—i—(fz%—%fg;)fgcosQT—l—gQ}/hg,

1 . 1
Uy = — |:54W3 — (fl + §f7> 62 SIHQT + <f2 + §f8) gQ COS@T + g3:| /h4

Vs

We note that the controllers uy,us, us and u4 are continuous on D(L), and that x, =
(a1, a9, as,a4,as,0,0,0,0) is an equilibrium point of system (1) given the above choices of

the controllers.
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The following theorem ends our discussions thus far:

Theorem 1 The equilibrium point x. of system (1) is stable provided the controllers, uy,
ug, ug, and ug, are as defined in (8).

In this paper, we attempt to show that we can have, at least, a Lyapunov stable system
with continuous feedback laws for navigation, steering, and point and posture stabilities.
Then, because of the inherent property of the Lyapunov stability, there could be initial
conditions that give asymptotic stability. For now, we are satisfied with searching for these
initial conditions numerically via the computer. This is, admittedly, still a long way from
proving asymptotic stability, but we have now a starting point for using continuous con-
trol laws that guarantee, for some initial conditions, point and posture stabilities. Indeed,
extensive simulations using the proposed control laws hint to the existence of initial con-
ditions guaranteeing asymptotic stability. A challenging future problem is to attempt to
identify, possibly via the LaSalle Invariant Principle, a set of these initial conditions. This
problem may not be unsolvable given that the approach of proving Lyapunov stability and
then using the control laws to make the system asymptotically stable via a Lasalle invari-
ance principle argument, has been shown to be effective in stabilizing related nonlinear
control systems such as the Lagrangian and Hamiltonian systems. This is the direction
taken in the recent works of Bloch et al. ([1], [2]) and Chang et al. [4]. Indeed, using
LaSalle’s method, it is now possible to ensure asymptotically stability in point-mass based
obstacle avoidance systems, as shown in the work of Ha and Shim in 2001 [8].

4.2 Parameters

An indispensable feature of our Lyapunov function is its control and convergence parame-
ters. The control parameters, as, &, Br, Ymi and ¥, increase the freedom of maneuver-
ability of the mobile manipulator to better account for the fixed obstacles, which include
the limitations on velocity and the steering angle of the platform as well. For example,
increasing the value of 3 will make link 2 avoid the fixed circular obstacle from a greater
distance. The convergence parameters, ¢;, for j = 1,...,4, affect the rate of convergence
of the manipulator to its desired configuration. The authors have also used the safety
parameters and the angle-gain parameters efficiently to get the desired outcomes.

5 Simulations

In this section, we demonstrate the simulation results for our mobile manipulator navigat-
ing in a constrained workspace cluttered with fixed obstacles. We verify numerically the
stability results obtained from the Lyapunov function.
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5.1 Scenario 1

In this example, we consider a simple setup where the mobile manipulator maneuvers
from an initial to a final configuration, whilst avoiding a fixed obstacle in its path, with
no attempt made to fix its final orientation. Assuming the use of appropriate units, the
corresponding initial conditions, workspace boundary restrictions and velocity constraints
are listed below:

1. Robot parameters: /o =2, by =1 and /1 = {5 = 1.2.

2. Initial configuration:
Rectangular Position: (z(0),y(0)) = (5,5).
Angular Positions: 6,(0) = 7/4, 62(0) = /3 and 03(0) = —27/3.
Velocities: v(0) =5 ; wi(0) = we(0) = w3(0) = 7/360.

3. Target: Center: (ay,as) = (25,25), Radius: 7 = 0.5.
4. Fixed obstacle: Center: (pi1,p12) = (15,15), Radius: rad; = 3.

5. Physical Limitations: Maximum translational velocity: vy, = 10. Maximum steer-
ing angle ¢max = 70°. The maximum rotational velocities of link 1 and link 2 are
fixed at wimax = Womax = 1.

6. Clearance and safety parameters: ¢; = ¢y = 0.1, €3 = 0.3.

7. Control parameters: o, = 0.01 for s =1,2,...,8; ¢, =0.1forp=1,2,3; 5, =1 for
r=1,...,4; Y1 =05, for m=1,2,3; ¥ =0, form=1,2,3 and k =1, 2.

8. Angle-gain parameters: (; = (, = (3 =0.
9. Convergence parameters: ; =50, for j =1,...,4.

10. Workspace Boundaries: 7, = 17, = 28.

The nonlinear controllers uy, us, uz and uy were simulated to generate a feasible robot
trajectory as seen in Figure 2. With the initial conditions described above, the control laws
ensured a nice convergence of the system state to the equilibrium state, whilst satisfying
all the underlying constraints. For the numerical integration of system (1), a fourth order
Runge-Kutta method was utilized.

Figure 3 shows the Lyapunov function and its time derivative along the system trajectory.
Not only does the figure show that the conditions of Theorem 1 have been satisfied but it
also gives us the information where the mobile manipulator has accelerated or decelerated.
An increase in L(x) indicates that the manipulator is decelerating, where as a decrease
in L(X) indicates that the manipulator is accelerating. Figure 4 to 7 show explicitly the
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Fig. 2: Scenario 1. Trajectory of the 2-link Fig. 3: Scenario 1. Behavior of the Lya-
mobile manipulator in a constrained punov function L(x) and its time
workspace. derivative L(x)

time evolution of the relevant state-space variables along the trajectory of the mobile
manipulator. One can clearly notice the asymptotic convergence of the accelerations at
the final configuration implying the effectiveness of the new controllers.

5.2 Scenario 2

In this second example, not only do we require that the mobile manipulator stays within
the workspace and avoids multiple fixed obstacles, but also we require it to be parked
correctly inside a row-structured parking bay. We have used the same parameters as those
in Scenario 1, and those that differ are listed below. The desired final configuration is also
listed.

1. Initial configuration:
Rectangular Position: (z(0),y(0)) = (5,5).
Angular Positions: ¢, = 7/4, 6, = /3 and 03 = —27/3.
Velocities: v = 4;w; = wy = w3 = 7/360.

2. Target: Center: (a1, a2) = (27, 23).

3. Desired Final Orientations: (as,ay,as) = (0°,45°, —90°).

73



Bibhya Sharma, Jito Vanualailai and Avinesh Prasad
A Lyapunov-based Path Planning and Obstacle Avoidance for a Two-link Manipulator on a
Wheeled Platform

6 4
3
2
0 f‘
9 Y I
- - f
8 R ST AAVEN
© 3 [
> 5 \
St |
-2
-3
5 10 15 20 25 30
time 5 10 15 20 25 30
time
Fig. 4: Scenario 1. The translational v (solid
line) and rotational w; velocities of Fig. 5: Scenario 1. The translational wu;
the platform. They satisfy the con- (solid line) and rotational ug accel-
straints (5) and (6), respectively. erations of the platform.

4. Fixed obstacles:
FO1: Centered at (p11,p12) = (9,9) with radius rad; = 1.5.
FO2: Centered at (po1,p2e) = (10, 18) with radius rads = 1.5.
FO3: Centered at (p31,ps2) = (18,16) with radius rads = 2.

5. Control parameters: o; = 0.01, for s =1,2,...,8; ¢, =0.1, for p=1,2,3;
Gr=1forr=1,....4; V1 = Ym2 = Ymz = 1, for m = 1,2, 3;
U =2.5form=1,2,3and k =1,2.

6. Angle-gain parameters: (; = (, = (3 = 1.

7. Convergence parameters: ; =50, for j =1,...,4.

8. Parking bay parameters: Can be obtained from Fig. 8

Figure 8 shows a feasible trajectory from the initial to the final states. In the final phase,
the platform and the links achieved a pre-determined final orientation. Under the initial

conditions, limitations and restrictions, the control laws ensured convergence of the system
state to the equilibrium state.

To illustrate the convergent property of the navigation laws, we have generated the graphs
of velocity and acceleration components (as shown in Figures 9 to 12). The evolution of
the Lyapunov function is similar to Figure 3.

The efficiency of the control laws were tested with various other initial configurations.
Convergence was observed for all cases, provided the initial configurations did not intersect
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with the obstacle space. Mobile manipulators (with any initial orientation) placed near
the outskirts of the parking bay did converge to the desired position. In each case, there
was a nice convergence to the target with 6, 6, and 65 in a small neighborhood of the
desired orientations. Better trajectories were achievable via fine tunings of the control
and convergence parameters, the values of which were quite different for each set of initial
conditions.

6 Conclusion

We have presented a set of continuous time-invariant acceleration control laws that success-
fully tackle the multi-tasking problem posed in this paper. Synthesis of these controllers
for our dynamic system was for the first time attempted via the Lyapunov-based approach,
which guaranteed stability of the system. The new motion planning algorithm enabled us
to obtain collision-free trajectories from initial to desired states within a constrained en-
vironment cluttered with fixed obstacles, whilst satisfying the holonomic, nonholonomic,
kinematic and dynamic constraints associated with the system. Although computationally
intensive, the Lyapunov-based approach can invariably be extended to three-dimensional
cases as well.

Future work includes (a) searching for a similar Lyapunov-based algorithm that guarantees
asymptotic posture stability of mobile manipulators, (b) modifying the proposed control
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Fig. 8: Scenario 2. Trajectory of the mobile manipulator in a constrained workspace.

algorithm for motion planning in dynamic environments, which include mobile and moving
obstacles, (c¢) generalizing the algorithm for a multiple-task that includes motion planning,
collision avoidance, and parking maneuverability of mobile manipulators with a spatial ma-
nipulator, and (d) theoretically proving the existence of an invariant set of initial conditions
that guarantee stabilization of our kinodynamical system.
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