
International Journal of Information Technology, Vol. 14 No. 2, 2008

81

Automatic mining of Threatening e-mail using
Ad Infinitum algorithm

 Appavu alias Balamurugan1, Rajaram 2, Muthupandian 1 and Athiappan1

1Department of Information Technology,
Thiagarajar College of Engineering,

Madurai-625 015, India.

2Department of Computer Science and Engineering,
Thiagarajar College of Engineering,

Madurai- 625 015, India.

E-mail :{ sbit, rrajaram@tce.edu}

Abstract

We have proposed a new classifier named Ad Infinitum to identify e-mails containing
terrorist threats. This Ad Infinitum is an enhancement of decision tree induction algorithm
which will generate reliable rules to discriminate emails from potentially dangerous to
those that are safe, with the help of agent. In the preprocessing stage, we have used
deception theory which states that deceptive writing is characterized by reduced frequency
of first person pronouns, exclusive words, elevated frequency of negative emotion words
and action verbs. We have demonstrated the effectiveness of the proposed approach on a
real world email corpus.

Keywords: Data mining, Threatening e-mail detection, Decision Tree, Ad Infinitum
 algorithm, Classification, Concept mining.

1. Introduction

The tragedy of September 11 is immeasurable and it has caused a permanent effect in
United States and rest of the World. In order to avoid such disaster in future, an effective
security system need to be established. Moreover it was identified that the terrorists have
used the e-mail as the medium for transferring information among them. In order to prevent
such disaster in future there is a need to identify the possible meaning of the information
which is exchanged among the terrorists.

Data mining has been the science of extracting useful information from large data sets or
databases. Data mining has recently become one of the most attractive message analyzing
tools, also it creates considerable attention towards database practitioners and researchers
because of its applicability in many areas such as decision support, market strategy,

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

82

financial forecasts, etc. Combining techniques from the fields like statistics, machine
learning, databases, etc, data mining helps in extracting useful and invaluable information
from database and it is a powerful tool that enables criminal investigators who may lack
extensive training as data analyst to explore large database quickly and efficiently.

E-mail has become one of today's standard means of communication. E-mail data is also
growing rapidly, creating needs for automated analysis. So to detect crime, a spectrum of
techniques should be applied to discover and identify patterns and make predictions. Data
mining has emerged to address problems of understanding ever-growing volumes of
information for structured data, finding patterns within data that are used to discover useful
knowledge.

As individuals increase their usage of electronic communication, there has been research in
the area of detecting deception in these new forms of communication. Models of deception
assume that deception leaves a footprint. Work done by various researchers suggests that
deceptive writing is characterized by reduced frequency of first-person pronouns, exclusive
words, elevated frequency of negative emotion words and action verbs. We apply this
model of deception to the e-mail dataset and preprocess the e-mail body. To train the
system we used Ad Infinitum classifier that categorizes the email as either threatening or
normal.

Classification is a primary data mining task aimed at learning a function that classifies a
database record into one of the several predefined classes (e.g. classification of e-mails into
normal versus threatening) based on the value of the instances. Common classification
algorithms like Back Propagation, Naive Bayes, Decision Tree and Support Vector
Machine are designed to optimize the predictive performance of the Induced model. Other
aspects of knowledge discovery such as identification of relevant features and inconsistent
data are given only secondary consideration by most existing algorithms. Consequently
classification models induced from real world data does not deal with inconsistent data and
are statistically insignificant. The Ad Infinitum algorithm presented in this paper is aimed
at solving these problems.

In this paper we have introduced a novel approach for building simple and reasonably
accurate classifier termed Ad Infinitum for classification and detection of threatening e-
mails from the given user Inbox. We have categorized the e-mail in to two types such as
threatening and normal. Threatening e-mail provides information about the future criminal
activities which creates serious consequences in future. And these types of malicious e-
mails (i.e. e-mail- related to terrorism, fraud, etc.) can be identified through our proposed
system, by which the security enforcing methods can be strengthened. Also we can prevent
the occurrences of future attacks.

1.1 Motivation

The importance of National security has increased significantly due to the sequential bomb
blast, hijack of planes and gets intensified since the terrorist attack on 11 September 2001

International Journal of Information Technology, Vol. 14 No. 2, 2008

83

on the world trade centre which killed more than 3000 innocent people. The Central
Intelligence Agency (CIA), Federal Bureau of Investigation (FBI) and other countries
national security agencies are actively collecting key information from domestic and
foreign intelligence to prevent future attacks. These efforts have in turn motivated us to
collect data and undertake this paper work as a challenge.

1.2 The contribution of this paper

• In supervised learning for e-mail classification we introduced new classification
algorithm named Ad-Infinitum which is particularly suitable for classifying text
documents. It is fast, easy to tune, and can handle large feature sets. We compare the
learning behavior of Ad Infinitum with well established algorithms such as Decision Tree
(DTs), Support Vector Machines (SVM) and Naive Bayes (NB) and show that Ad
Infinitum outperforms well.

• We have implemented the feature selectors, TFV and IG and show that IG outperforms
the widely used and computationally more expensive TFV.

• We conduct a large scale algorithm performance evaluation on the benchmark spam
filtering corpora LingSpam and PU1. We compare Ad Infinitum, DT, SVM and NB, using
the same version of the corpora, the same pre-processing and optimising the parameters of
all algorithms.

• We show empirically that Ad Infinitum can be successfully used to learn from a small
number of labeled examples in the domain of threatening e-mail detection.

1.3 Organization of the Paper

The paper is organized as follows: Section 2 defines problem statement and related works
in this area. Section 3 describes the proposed work and implementation. Section 4
illustrates the experimental setup .Section 5 discusses about the experimental result and
discussion. Section 6 discusses the performance evaluation; Section 7 concludes the paper
and points out some potential future work.

2. Problem Statement and Related Work

E-mail classification (e.g. Threatening e-mail detection) is a supervised learning problem.
It can be formally stated as follows. Given a training set of labeled e-mail documents
Dtrain= { (d1, C1), …,(dn ,Cn) },where di is an e-mail document from a document set D and Ci

is the label chosen from a predefined set of categories C, the goal is to induce a hypothesis
(classifier) h : D → C that can correctly classify new, unseen e-mail documents Dtest , Dtest ¢
Dtrain. Here C contains two labels: Threatening and Normal (legitimate).

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

84

It is hard to remember what our lives were like without e-mail. Though e-mail was
originally developed for sending simple text messages, it has become more robust in the
last few years. So, it is one possible source of data from which potential problem can be
detected. Thus the problem is to find a system that identifies the deception in
communication through e-mails by which the security enforcing methods can be
strengthened. Also we can prevent the occurrence of future attacks.

E-mail classification has been an active area of research. Cohen [7] developed a
propositional learning algorithm RIPPER to induce keyword-spotting rules for filing e-
mails into folders. The multi-class problem was transformed into several binary problems
by considering one folder versus all the others. The comparison with the traditional
information retrieval method Rocchio indicated similar accuracies. Cohen argued that
keyword spotting rules are more useful as they are easier to understand, modify and can be
used in conjunction with user-constructed rules.

Bayesian approaches are the most widely used in text categorization and e-mail
classification. They allow quick training and classification and can be easily extended to
incremental learning. While rule-based approaches make binary decisions, probabilistic
techniques provide a degree of confidence of the classification which is an advantage,
especially for cost-sensitive evaluation. Sahami et al. [24] applied NB for spam e-mail
filtering using bag of words representation of the e-mail corpora and binary encoding. The
performance improved by the incorporation of hand-crafted phrases (e.g. ‘‘FREE!’’, ‘‘be
over 21’’) and domain-specific features such as the domain type of the sender and the
percentage of non-alphabetical characters in the subject. Rennie’s iFile [22] uses NB to file
e-mails into folders and suggest the three most suitable folders for each message. The
system applies stemming, removes stop words and uses document frequency threshold as
feature selector. SpamCop [17] is a system for spam e-mail filtering also based on NB.
Both stemming and a dynamically created stop word list are used. The authors investigated
the effect of the training data size, different ratios of spam and non-spam e-mails, use of
trigrams instead of words and also showed that SpamCop outperforms Ripper. Provost’s
experiments [18] also confirmed that NB outperforms Ripper in terms of classification
accuracy on both filing e-mail into folders and spam filtering.

MailCat [28] uses a Nearest-neighbor (k-NN) technique and tf-idf representation to file e-
mails into folders. k-NN supports incremental learning but requires significant time for
classification of new e-mails. Androutsopoulos et al. [5] found that Naive Bayes and a k-
NN technique called TiMBL clearly outperform the keyword- based spam filter of Outlook
2000 on the LingSpam corpora. Ensembles of classifiers were also used for spam filtering.
Sakkis et al. [25] combined a NB and k-NN by stacking and found that the ensemble
achieved better performance. Carreras et al. [6] showed that boosted trees outperformed
decision trees, NB and k-NN. Rios and Zha [23] applied RF for spam detection on time
indexed data using a combination of text and meta data features. For low false positive
spam rates, RF was shown to be comparable with SVM in classification accuracy.

International Journal of Information Technology, Vol. 14 No. 2, 2008

85

One of the first Decision tree algorithms, ID3 [20], has applied the Chi-square statistic to
the null hypothesis about the irrelevance of a test attributes. However, most other methods
of decision tree learning like CART and C4.5 [19], have adopted the post pruning approach
for the sake of exploring a large set of potentially valid patterns. [26] developed
incremental versions of decision tree induction algorithm (system ID4) where uncertain
instances are labeled by an expert. [30] Proposed ID5: Optimization of Tree generated by
ID4 (systems ID5 or ITI)). [13] developed a method based on singular value decomposition
to detect unusual and deceptive communication in e-mail. The problem with this approach
is that it does not deal with incomplete data in an efficient and elegant way and cannot
incorporate new data incrementally without having to reprocess the entire matrix.

A list of existing approaches for classification and detection of threatening e-mails is only
limited. [3] applied a decision tree (ID3) algorithm for threatening e-mail detection. The
problem with this approach is that it cannot give reliable rules which lead to
misclassification of correct record. [1] Presented Association rule mining for suspicious e-
mail detection and problem with approach is that computational time is relatively slow. [2]
compared to a cross experiment between four classification methods including Decision
Tree, Naive Bayes,SVM and NN for the classification of e-mail in to threatening or normal
and decision tree performed better than other classifiers.

We extend previous research on supervised e-mail classification by: (1) Applying Ad
Infinitum algorithm for detecting threatening e-mails, comparing Ad Infinitum with a
number of state-of-the-art classifiers and showing that it is the better choice in terms of
accuracy, running and classification time and simplicity to tune. (2) Introducing a new
feature selector that is accurate and computationally efficient. (3)Comparing the
performance of a large number of algorithms on the benchmark corpora for threatening e-
mail detection using the same version of the data and the same pre-processing.

3. Proposed work and Implementation

3.1 Classifier construction framework

Classification is the process of finding a set of models that describe and distinguish data,
classes and concepts, for the purpose of being able to use the model to predict the class of
objects whose class label is unknown. In this paper, we develop Ad Infinitum algorithm
which aims to identify the threatening e-mail from e-mail corpus. In contrast to previous
decision tree algorithms, our proposed algorithm provides optimal and reliable decision for
situations which cannot be handled by majority voting concept in decision tree induction
algorithm.

3.2 E-mail Corpora used in the experiment

We used two publicly available [14] corpora: LingSpam, PU1, as shown in Table 2.
LingSpam [5] was created by mixing spam e-mails received by a user with legitimate e-
mails sent to the Linguist mailing list. PU1 [4] consists of e-mails received by a user over

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

86

three years. A representative dataset was constructed taking into account the e-mails
received by regular correspondents and removing duplicate e-mails received on the same
day. The corpus was encrypted for privacy reasons by replacing each token with a number.

 Table 1: A sample e-mail data set used in the experiment

E-mail Message

1 The IISC Scientist Conference hall should be blast on tomorrow at 10.00 a.m
2 Today there will be bomb blast in parliament house and the US consulates in

India at 11.46 a.m.Stop it, if you could. Cut relations with the U.S.A.Long Live
Osama Finladen Asadullah Alkalfi.

3 Indian airlines Boeing-727 from Chennai to Delhi will be hijacked on
tomorrow

4 Beware, Tomorrow, there will be a bomb blast at CM’ office.
5 There is going to be terrorist attack in Chennai airport

 Table 2: Spam filtering Corpora –Statistics

The problem we faced when trying to test out new ideas dealing with e-mail systems was
an inherent limitation of the available threatening e-mails because we only have access to
our own data, our results and experiments, no doubt reflect some bias. In order to avoid
the problem, we have created two corpora: TCEThreatening 1, TCEThreatening 2 which
is a mixture of our own threatening e-mail data set with bench mark spam filtering
corpora Ling Spam and PU1 as shown in Table 3.

 Table 3: Email Corpus used in the experiment

3.3 Pre-processing of the corpora

The first step in the process of constructing a classifier is the transformation of the e-
mails into a format suitable for the classification algorithms. We have developed a
generic architecture for e-mail categorization called automated feature selection. It
supports the bag of words representation which is most commonly used in e-mail

Corpus # E-mails # Spam E-mails # Legitimate E-mails

PU1 1099 481 618
LingSpam 2893 481 2412

Corpus # E-mails # Threatening
E-mails

Spam E-mails # Legitimate E-mails

TCEThreatening 1 2099 500 481 1118

TCEThreatening 2 3893 500 481 2912

International Journal of Information Technology, Vol. 14 No. 2, 2008

87

categorization. All unique terms (tokens, e.g. words, special symbols, numbers etc.) in
the entire training corpus are identified and each of them is treated as a single feature. A
feature selection mechanism is applied to choose the most important terms and reduce
dimensionality. Each document is then represented by a vector that contains a normalized
weighting for every selected term which represents the importance of that term in the
document.

3.4 Term extraction in TCEThreatening 1 and TCEThreatening 2

Here the Body and Subject were used, and the following headers were parsed and
tokenized: Sender, Recipient and Subject. Attachments are considered as a part of the
body and are processed in their original format (binary, text, and html). All these fields
were treated equally and a single bag of words was created for each e-mail.

3.5 Features, weighting and normalization.

Feature selection is an important step in e-mail categorization as e-mail documents have a
large number of terms. Removing the less informative and noisy terms reduces the
computational cost and improves the classification performance. The features are ranked
according to the feature selection mechanism and those with value higher than a
threshold are selected. In this paper, we implemented two feature selectors: Information
Gain (IG) and Term Frequency Vector (TFV). IG is the most popular and one of the most
successful feature selection techniques used in text categorization. Given a set of possible
categories C= {c1… ck}, the IG of a feature f is defined as

I(G)=∑k

i=1 P (ci) log P(ci) +P(f) ∑k
i=1 P(ci|f) log P(ci|f)+P(f)-1 ∑k

i=1P (ci|f)
-1 log P (ci|f)

-1 (1)

It measures the known amount about the presence or absence of a document and helps us
to predict the category. The importance of the feature is measured globally as the
computation is done for each feature across all categories.IG has quadratic time
complexity.

Like IG, TFV is category dependent. For each term f, we compute the term frequency (tf)
in each category and then calculate the variance as

 TFV (f) =∑k
i=1[tf (f, c1) - mean_tf (f)] 2 (2)

The normalizing factor from the standard variance formula is ignored, as our goal is to
rank features and select the ones with the highest score. Features with high variance
across categories are considered informative and are selected. For example, terms that
occur predominantly in some of the categories will have high variance and terms that
occur in all categories will have low variance. TFV can be seen as an improvement of the
document frequency, which is the simplest method for feature reduction. For each term in
the training corpora, document frequency counts the number of documents in which the
term occurs and selects features with frequency above a predefined threshold. Yang and
Pedersen [34] compared several feature selectors and found that document frequency is

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

88

comparable to the best performing techniques (IG and for feature reduction up to 90%).
They concluded that document frequency is not just an adhoc approach but a reliable
measure for selecting informative features. However, document frequency is category
independent and will simply select terms with high DF no matter about their distribution
in the categories. TFV addresses this problem by not selecting terms with high document
frequency if they appear frequently in each category, i.e. are not discriminating. Both
TFV and document frequency is highly scalable as they have linear complexity. Our
approach incorporates the three most popular feature weighting mechanisms: (1) binary,
(2) term frequency and (3) term frequency-inverse document frequency (tf-idf). In the
first method weights are either 0 or 1 denoting absence or presence of the term in the e-
mail. In the term frequency method the weights correspond to the number of times the
feature occurs in the document. Term frequency weights are more informative than the
binary weights. The third method assigns higher weights to features that occur frequently,
but also balances this by reducing the weight if a feature appears in many documents.

The time taken to build the classifier is shown in Table 4. It is an important consideration
as classifiers must be kept up to date and this requires re-training. The fastest algorithm
was NB (although it was the less accurate), the slowest was SVM, AD-INFINITUM was
fast enough –it built a classifier for 4.715 s on average.

 Table 4: Time(s) to build the classifier for IG (results for TFV are similar)

3.6 Proposed Ad Infinitum Classifier

The basic algorithm for decision tree induction is a greedy algorithm that constructs
decision trees in a top-down recursive divide-and-conquer manner. The algorithm,
summarized given below, is a version of ID3, a well-known decision tree induction
algorithm.

Table 5: Algorithm for Decision tree induction

AD-INFINITUM DT SVM NB

TCETHREATEN 1 3.25 3.55 37.83 0.41

TCETHREATEN 2 6.18 6.58 70.17 0.75

Average 4.715 5.07 54.00 0.58

Algorithm:
Generate a decision tree from the given training data.

 Input: The training samples, test samples, represented by discrete-valued attributes;
the set of candidate attributes, attribute-list.

 Output: A decision tree and set of rules.

International Journal of Information Technology, Vol. 14 No. 2, 2008

89

The basic strategy is as follows.

 The tree starts as a single node representing the training samples (step 1).

 If the samples are all of the same class, then the node becomes a leaf and is
labeled with that class (steps 2 and 3).

 Otherwise, the algorithm uses an entropy-based measure known as information
gain as a heuristic for selecting the attribute that will best separate the samples
into individual classes (step6). This attribute becomes the “test” or “decision”
attribute at the node (step7). In this version of the algorithm, all attributes are
categorical, that is, discrete-valued. Continuous-valued attributes must be
discretized.

 A branch is created for each known value of the test attribute and the samples are
partitioned accordingly (steps 8-10).

 The algorithm uses the same process recursively to form a decision tree for the
samples at each partition. Once an attribute has occurred at a node, it need not be
considered in any of the node’s descendents (step 13).

 The recursive partitioning stops only when any one of the following conditions is
true:

1. All samples for a given node belong to the same class (steps 2 and 3), or

2. There are no remaining attributes on which the samples may be further
partitioned (step 4). In this case, majority voting is employed (step 5).
This involves converting the given node into leaf and labeling it with the

 Method:
1) Create a node N;
2) if samples are all of the same class, C then
3) return N as a leaf node labeled with the class C;
4) if attribute-list is empty then
5) return N as a leaf node labeled with the most common class in samples // Majority

voting
6) select test-attribute, the attribute among attribute-list with the highest information

gain;
7) label node N with test-attribute;
8) for each known value ai of test-attribute //partition the samples
9) grow a branch from node N for the condition test-attribute= ai ;
10) let si be the set of samples in samples for which test-attribute= ai;// a partition
11) if si is empty then
12) attach a leaf labeled with the most common class in samples;
13) else attach the node returned by Generate Extended_Decision_tree (si ,attribute-

list-test-attribute);

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

90

class in majority among samples. Alternatively, the class distribution of
the node samples may be stored.

3. There are no samples for the branch test=attribute=ai (step 11). In this
case, a leaf is created with the majority class in samples (step 12).

3.6.1 Unhandled Exception of the Decision tree induction algorithm

We have used TCEThreatening 1 and TCEThreateing 2 corpora for the decision tree
induction algorithm to compute and inferred that different set of rules were developed for
same training dataset. In order to prove this, we have used the open source software
WEKA to examine the training dataset. WEKA uses attribute-file-format (*.arff), so we
have converted our dataset into attribute file format, which is given in the Table 6 and 7.
In these tables we have given the training dataset and the attribute values are specified in
attribute file format. In these tables the class attribute and its values are specified in red
color. From the training dataset we expect that the same set of rules would be generated,
since both training dataset are same. The records highlighted with the red color are
important because the decision tree induction algorithm does not handle these instances
correctly and generates incorrect rules. In the forthcoming discussion we will confirm
that the rules generated by decision tree induction algorithm are not reliable and hence
error occurs in the classification of the training dataset as well as test set. For the software
WEKA, the attributes and their possible values are given in the general format as
@attribute attribute_name {possible values for the attribute} and hence the two inputs are
same.
Table 6: A Sample Training Data set 1 Table 7: A Sample Training Data set 2

International Journal of Information Technology, Vol. 14 No. 2, 2008

91

The table 6 & 7 were given as input to WEKA and the classification is done on the
training dataset using the decision tree induction algorithm. Training data is chosen to be
the test option. According to this option, the generated rules are used to classify the given
dataset. For the training data in Table 6, WEKA’s tree structure is provided in Fig.1. For
the given data the decision tree induction algorithm starts its recursive function of
identifying the attribute with the highest information gain. On the first recursion, the
attribute named “hijack” gets highest information gain that it divides the dataset into two
half, which is the core idea behind the algorithm. The recursive function identifies the
attributes at each iteration and the rules are generated. The tree structure is given in the
Fig.2 and a node with the red color is important because this is the single rule that differs
from the training data in table 6. This rule is generated because this situation satisfies the
condition in steps 4 and 5 of the decision tree induction algorithm (majority voting).

 Figure (1): WEKA’s tree structure for training dataset in Table 6

The majority voting is the stopping condition for the recursive partitioning and the
possible data at that position is given in the Table 8.

Table 8: A sample partitioned data from training tuples in Table 6

Attack Blast Murder Threatening
no yes Yes no
yes no No no
yes no No Yes

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

92

From this Table 8 “attack” gets the highest information gain and hence it splits the table
into two, one is when attack = yes, then class threaten = no and the other condition is
when attack = no, then the recursive function is applied on the Table 8.

Table 9: Example for situation where majority voting not possible

Finally the entire tree structure is generated and the possible set of rules generated are as follows.

Figure (2): Generated Tree for Table 6 Figure (3): Generated Tree for Table 7

Generated rules for Table 6

1. If hijack=yes then threatening=no
2. If hijack=no & terrorist=yes & attack=yes & blast=yes then threatening=yes
3. If hijack=no & terrorist=yes & attack=yes & blast=no then threatening=no
4. If hijack=no & terrorist=yes & attack=no then threatening=no

Blast Murder Threatening
no No no
no No yes

International Journal of Information Technology, Vol. 14 No. 2, 2008

93

5. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=yes
then threatening= no

6. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &
blast=yes & murder=yes then threatening=no

7. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &
blast=yes & murder=no then threatening=yes

8. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &
blast=no then threatening=yes

9. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=no then
threatening=yes

10. If hijack=no & terrorist=no & disaster=yes & kill=no then threatening=no
11. If hijack=no & terrorist=no & disaster=no then threatening=yes

3.6.2 Identification of the Inconsistent data from Training tuples in Table 6

Since the generated rules compare the training data given and classifies according to the
class label value for the particular rule, we consider that the rules are highly reliable and
the algorithm classifies correctly. During the comparison, rule no.5 predicts that the
instance 17 should have class label “Threatening= no” but the record has the class label
value as “Threatening= yes” and thus the algorithm identifies the inconsistent instance.

 Figure (4): Instance information for Table 6

Now we are examining the Table 7 and expecting that the rules generated should be the
same and the same 17th instance should be classified as inconsistent.

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

94

 Figure (5): WEKA’s tree structure for training dataset in Table 7

But one of the generated rule gives contradictory result and that rule classifies the 17th

instance correctly and classifies the 16th instance as inconsistent record. The generation of
contradictory rule is because the majority voting is the stopping condition for the
recursive partitioning and the possible data at that position is given in the Table 10.

 Table 10: A sample partitioned training data set for Table 7

Attack Blast Murder Threatening
yes yes yes yes
no yes yes no
no yes no yes

From this Table 10 “attack” gets the highest information gain and hence it splits it into
two, one is when attack = yes, then class Threaten = no and the other condition is when
attack = no, then the recursive function is applied on the table.

 Table 11: Example for situation where majority voting not possible

Blast Murder Threatening
yes yes no
yes no yes

International Journal of Information Technology, Vol. 14 No. 2, 2008

95

Finally the entire tree structure is generated and the possible set of rules generated are as
follows
Generated rules for Table 7

1. If hijack=yes then threatening=no
2. If hijack=no & terrorist=yes & attack=yes & blast=yes then threatening=yes
3. If hijack=no & terrorist=yes & attack=yes & blast=no then threatening=no
4. If hijack=no & terrorist=yes & attack=no then threatening=no
5. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=yes

then threatening= yes
6. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &

blast=yes & murder=yes then threatening=no
7. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &

blast=yes & murder=no then threatening=yes
8. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes & attack=no &

blast=no then threatening=yes
9. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=no then

threatening=yes
10. If hijack=no & terrorist=no & disaster=yes & kill=no then threatening=no
11. If hijack=no & terrorist=no & disaster=no then threatening=yes

3.6.3 Identification of the Inconsistent data from training tuples in Table 7

Since the generated rules compare the training data given and classifies according to the
class label value for the particular rule, we consider that the rules are highly reliable and
the algorithm does correct classification. During the comparison, rule no.5 predicts the
16th instance should have class label “Threatening= yes” but the record has the class label
values as “Threatening= no” and thus the algorithm identifies the inconsistent instance.

 Figure (6): Instance Information for Table 7

Thus for the same set of data different classification rules are generated and the instances
in Table 6 which are correctly classified are classified as inconsistent records when Table

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

96

7 is given as the input. This type of misconception occurs when recursive partitioning
faces a data set which has equal number of records but the concept of majority voting
works correctly when number of records is unequal. For example, consider the Table 12.
 Table 12: A Sample training data set

When table 12 is to be partitioned, the majority voting can be applied. According to
majority voting, the distinct count of the attribute is found and highest distinct value is
taken into account. Here the value of weapon = yes occurs three times and hence it is
taken as the value for the attribute “weapon” and then its corresponding count on class
label values is taken into account where the value “weapon = yes” occurs 3 times and
“threatening = yes” occurs 2 times and hence the rules generated for the dataset will be

If “weapon = yes” then “threatening = yes”

Now consider the Table 13 & 14 which indicates the problem with majority voting and
these kind of conditions are not handled in the decision tree induction algorithm. For
example
Table 13: A sample training dataset Table 14: A sample training dataset

In the Table 13 the count of weapon = yes is 2 and weapon = no is 2, so majority voting
cannot be applied on the attribute “weapon” and hence the rules cannot be generated.

 If “weapon =?” then “threatening=?”

In table 14 the count of weapon = yes is 4 and hence majority voting can be applied to
attribute “weapon” but deciding of the class label “threatening” cannot be determined
because the count of “threatening = yes” is 2 and “threatening = no” is 2 and hence the
rules cannot be generated
 If “weapon = yes” then “threatening =?”
Since the Table 13 and 14 faces the same problem, WEKA developers cannot provide
any specific solution to this problem, so they have used deciding factor in the attribute

Weapon Threatening(Class label)

Yes Yes
Yes Yes
No Yes
Yes No

weapon Threatening(Class label)

yes Yes
yes no
no yes
no no

weapon Threatening(Class label)

yes yes
yes yes
yes no
yes no

International Journal of Information Technology, Vol. 14 No. 2, 2008

97

value declaration. When table 13 is given as input to WEKA, the tool faces the same
problem and so it has referenced the value given in the attribute declaration.
For the Table 13, when attribute declaration is given as

@attribute weapon {yes, no} @attribute weapon {no, yes}
@attribute threatening {yes, no} @attribute threatening {no, yes}
Then, the rule generated is Then, the rule generated is

If “weapon =yes” then “threatening =yes” If “weapon =no” then “threatening =no”

Similarly for the Table 14 we can obtain the required result in WEKA by just changing
the attribute declaration. Thus the decision tree induction algorithm does not handle this
problem.

3.6.4 Ad Infinitum algorithm

For this problem, the possible solution is that the user should assign the value of the class
label under this situation. The class value given by the user would be the best solution
and the machine learning algorithms cannot give optimal solution. Hence Ad infinitum
would be the extension of the decision tree induction algorithm by giving best solution
not giving contradictory rules.

Table 15: The Ad infinitum Tree – updating terminating condition of decision tree
induction algorithm

1) if attribute-list is empty then
2) if training data rules is null
3) return N as a leaf node labeled with the most common class in samples // Majority

voting
 This rule traversal from the root to the leaf is alpha rule.
 If (record satisfy alpha rule)

 Correctly classified as (as normal Decision Tree Induction).
 Else

 Incorrectly classified (as normal Decision Tree Induction).
4) else
5) return N as a leaf node labeled with the attribute corresponding to class label

value from the user guided class value // Agent(user)
 This rule traversal from the root to the leaf is beta rule.// An unique rule
 If (record satisfy beta rule)

 Correctly classified.(This type of records cannot be handled by
Decision Tree Induction algorithm)

 Else
 Incorrectly classified.

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

98

Table 16: The proposed Ad Infinitum algorithm

In Ad infinitum algorithm, any dataset considered for classification would fall under any
one of the categories:-

a. Consistent data
b. Inconsistent data identified by alpha rules
c. Inconsistent data identified by beta rules

But in the Decision tree induction algorithm any dataset would fall under any one of the
following categories:-

1. Consistent data
2. Inconsistent data

3.6.5 Alpha and Beta rules

The inconsistent data are those which are not classified in the given training dataset.
Hence efficiency of the algorithm decreases due to the inability to classify the given data.

Algorithm:
Ad Infinitum. Generate a decision tree from the given training data.

 Input: The training samples, test samples, represented by discrete-valued
attributes; the set of candidate attributes, attribute-list.

 Output: A decision tree and set of rules.
 Method:

1) Create a node N;
2) if samples are all of the same class, C then
3) return N as a leaf node labeled with the class C;
4) if attribute-list is empty then
5) if training data rules is null
6) return N as a leaf node labeled with the most common class in samples //

Majority voting
7) else
8) return N as a leaf node labeled with the attribute corresponding to

class label value from the user guided class value // Agent(user)
9) select test-attribute, the attribute among attribute-list with the highest

information gain;
10) label node N with test-attribute;
11) for each known value ai of test-attribute //partition the samples
12) grow a branch from node N for the condition test-attribute= ai ;
13) let si be the set of samples in samples for which test-attribute= ai;//a

partition
14) if si is empty then
15) attach a leaf labeled with the most common class in samples;
16) else attach the node returned by Generate extended_decision_tree (si

,attribute-list-test-attribute);

International Journal of Information Technology, Vol. 14 No. 2, 2008

99

The inconsistent instances are identified by alpha rules. The noisy data occurs in the
training data due to human error, that is, the user gives irrelevant value in the dataset.
Hence the algorithm should be developed to handle these noisy data too.

 Table 17: A Sample training data set

When a rule is formed by a set of instances in which the value of the class label counts
more than 50% than its counterpart, then that rule is acceptable and those instances which
contradicts this rule will be recorded as noisy data. The inconsistent records considered as
noise are identified by beta rules. This idea is clearly depicted in the Table 17 in which
the attribute weapon has 2 “yes” values with the class label “yes” and a record with the
class label “no”. The record which is classified as inconsistent by the decision tree
induction algorithm (i.e. the third and fourth record) should be removed before the
training dataset is considered for classification as noisy data. This automatically increases
the efficiency of the algorithm drastically.

4. Experimental Setup

We used the TCEThreatening 1 and TCEThreatening2 corpus, with the standard bag of
words representation and IG for feature selection. Each email was broken up into two
sections: - The words found in the subject header and the words found in the main body
of the message. A summary of the feature sets (views) used in the experiment is given in
Table 18. The feature selection was applied individually to each view of the data using
IG. Upon inspection of the word lists and their IG values, it was decided that the top 100
words was a suitable cut-off. This depicts a drastic dimensionality reduction.

Table 18: Feature sets (views used)

Weapon Threatening(Class label)

yes yes
yes yes
no yes
yes no

View Description
Body All words that appear in

the body of an e-mail

Subject All words that appear in
subject of an e-mail

All All words that appear in
the body and subject of an
e-mail

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

100

Table 19: Top 20 features selected by IG for the feature set: Body

Table 20 contains the accuracy results obtained using 10-fold cross validation. Except
with NB with subject, all other feature sets, with all classifiers, obtained very high
accuracy, with Ad Infinitum being the best classifier. The best performing feature sets
were All and Body.

Table 20: Accuracy (%) using various feature sets in the supervised experiment

5. Experimental results and discussion

The application of data mining to the task of automatic threatening e-mail detection is
done and experiments were carried out on an email corpus. In order to conduct an
experiment, different sets of emails (TCETHN1 and TCETHN2) are used. The system was
trained with the use of Ad Infinitum algorithm. When the training process was finished,
the best quality rules were taken as the final classification rules.

S.No Body
1 Bomb
2 Attack
3 Blast
4 Terrorist
5 Kill
6 Kidnap
7 Murder
8 Hijack
9 Disaster
10 Danger
11 Weapon
12 Destroy
13 Explode
14 Capture
15 Demolish
16 Assassinate
17 Slaughter
18 Damage
19 Assail
20 Shoot

Classifier Subject Body All
Ad Infinitum 92.8 98.6 99.7
DT 90 97.4 99.4
SVM 92.6 95.6 99.2
NB 74.9 95.4 95.8

International Journal of Information Technology, Vol. 14 No. 2, 2008

101

 Figure (7): Proposed Ad Infinitum Tree
Generated rules:

1. If hijack=yes then threatening=no
2. If hijack=no & terrorist=yes & attack=yes & blast=yes then

threatening=yes
3. If hijack=no & terrorist=yes & attack=yes & blast=no then threatening=no
4. If hijack=no & terrorist=yes & attack=no then threatening=no
5. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes &

attack=yes then threatening=”User/Domain expert’s decision”
6. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes &

attack=no & blast=yes & murder=yes then threatening=no
7. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes &

attack=no & blast=yes & murder=no then threatening=yes
8. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=yes &

attack=no & blast=no then threatening=yes
9. If hijack=no & terrorist=no & disaster=yes & kill=yes & weapon=no then

threatening =yes
10. If hijack=no & terrorist=no & disaster=yes & kill=no then threatening=no
11. If hijack=no & terrorist=no & disaster=no then threatening=yes

To evaluate performance we calculate accuracy (A), recall (R), precision (P) and F1
measure. Accuracy is the most commonly used measure in machine learning. Precision,
recall and their combination, the F1 measure, are the most popular criteria used in text

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

102

categorization. In the multi class task of general mail classification, macro-averaging [27]
was used – precision, recall and the F1 measure were first calculated for each class and
the results were then averaged.In the threatening e-mail detection experiment we
calculated accuracy, Threatening recall (TR), Threatening precision (TP) and Threatening
F1 measure (TF1). TR is the proportion of threatening e-mails in the test set that are
classified as threatening, TP is the proportion of e-mails in the test data classified as
threatening that are truly threatening. Discarding a legitimate e-mail is of greatest
concern to most users than classifying a threatening message as legitimate. This means
that high TP is particularly important.
The classification results of TCETHN2 and TCETHN1 are given in Table 21.By
comparing Accuracy and TF1 scores, we can see that overall Ad-Infinitum is the best
classifier, obtaining the most consistent results on the two corpora for both IG and
TFV.When IG was used as feature selector ,Ad Infinitum achieved the best accuracy for
both TCETHN2 and TCETHRN1.When TFV was used as feature selector, the best
accuracy for both corpora was achieved by Ad Infinitum and DT.The second best
classifier is Decision Tree. The worst classifier is NB failing behind the winner in terms
of TF1.We should keep in mind that for threatening e-mail detection TP is more
important than TR.

Table 21: Performance of AD-INFINITUM, DT, SVM and NB on threatening
e-mail detection. (E-mail corpus in Table 3 is taken)

A TP TR TF1

TCETHREATENING 2
AD-INFINITUM-IG
DT-IG
SVM-IG
NB-IG
AD-INFINITUM-TFV
DT-TFV
SVM-TFV
NB-TFV

TCE THREATENING 1
AD-INFINITUM-IG
DT-IG
SVM-IG
NB-IG
AD-INFINITUM-TFV
DT-TFV
SVM-TFV
NB-TFV

98.75
97.28
95.65
94.93
99.20
98.80
98.50
94.41

95.50
92.45
92.10
86.35
99.10
98.30
98.10
89.35

97.88
94.44
97.78
91.64
97.10
96.30
94.10
90.54

94.15
90.40
94.05
93.83
96.75
96.25
94.50
96.20

96.72
94.04
80.89
82.20
96.72
96.10
92.80
79.89

93.82
92.42
87.40
74.20
96.45
96.05
91.90
78.40

97.29
94.24
88.54
86.66
96.91
96.20
93.45
84.88

93.98
91.40
90.60
82.87
96.59
96.15
93.13
86.39

International Journal of Information Technology, Vol. 14 No. 2, 2008

103

Evaluation on Predictive accuracy in TCEThreatening 1 corpus
(IG as feature selector)

80
82
84
86
88
90
92
94
96
98

1

Classifiers

A
cc

u
ra

cy
 i

n
 % Ad Infinitum

DT

SVM

NB

Evaluation on Predictive accuracy in TCEThreatening 2 corpus
(IG as feature selector)

93

94

95

96

97

98

99

100

Classifiers

A
c
c
u

ra
c
y
 i

n
 % Ad Infinitum

DT

SVM

NB

 Figure (8): Classifiers performance on TCE THREATENING 2 Corpus

Figure (9): Classifiers performance on TCETHREATENING 1 Corpus

Again we tested the portability across corpora using TCETHREATENING1 and
TCETHREATENING2, see Table 22. We trained a Ad Infinitum classifier on
TCETHREATENING2 and test it on TCETHREATENING1 (and vice versa), using the
features selected from the training corpora. Typical confusion matrices are given in Table

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

104

23. The good news is that in both cases threatening e-mails are relatively well recognized
(TR=86.0 and 85.2) which can be explained with the common characteristics of
threatening e-mails across the two corpora.

 Table 22: Portability across corpora using Ad Infinitum (IG as feature
selector, similar results for TFV)

 Table 23: Confusion matrices

6. Conclusion and future work

E-mail is an important vehicle for communication .It is one possible source of data from
which the potential problem can be detected. E-mail classification is highly important for
the domain such as detection of threatening e-mail which does not contain any historical
data. From the experimentation done by us, we infer that arbitrary decision making of the
decision tree induction algorithm leads to misclassification of correct instances which is
overcome by the proposed algorithm. The proposed work will be helpful for identifying
the threatening e-mail and also assist the investigators to get the information in time to
take effective actions to reduce the criminal activities. A problem we faced when trying
to test out new ideas dealing with e-mail systems was an inherent limitation of the
available data, because we only have access to our own data, our results and experiments
no doubt reflect some bias. Much of the work published in the e-mail classification
domain also suffers from the fact that it tries to reach general conclusion using very small
data sets collected on a local scale.

In this paper we consider supervised e-mail classification for the task of threaten e-mail
detection and investigate the performance of four algorithms: Ad Infinitum, DT, SVM
and NB. Our findings can be summarized as follows:

• In supervised learning setting, we have shown that Ad Infinitum is a promising
approach for automatic detection of threatening e-mail. It outperforms in terms of
classification performance well-established algorithms such as DT(s), SVM and NB
being also more complex than Ad Infinitum. Ad Infinitum is easy to tune, and runs very

Training set Testing set A TR TP TF1

(a) TCETHN 2 TCETHN 1 58.59 86.0 34.99 49.73

(b) TCETHN 1 TCETHN 2 12.41 85.2 11.33 20.0

#Assigned as (a) Threatening Normal (b)Threatening Normal

Threatening 430 70 426 74

Normal 799 800 3335 58

International Journal of Information Technology, Vol. 14 No. 2, 2008

105

efficiently on large datasets with high number of features, which makes it very attractive
for text categorization.

• We have implemented a feature selector IG and found that it performs better than the
popular and computationally more expensive TFV.

• We compared the performance of a number of algorithms on the TCETHREATENING
1 and TCETHREATENING 2 e-mail corpora which is a mixture of our own e-mail data
set with benchmark spam filtering corpora LingSpam and PU1.

References

[1] S. Appavu alias Balamurugan and R. Rajaram, “Association rule mining for
Suspicious Email Detection: A Data mining approach”, Proceedings of the IEEE
International Conference on Intelligence and Security Informatics, New Jersey, USA, pp.
316 – 323, 2007.

[2] S. Appavu alias Balamurugan and R.Rajaram, “Data mining Techniques for
Suspicious Email Detection: A Comparative Study”, Proceedings of the European
Conference on Data mining, Portugal, 2007.

[3] S.Appavu alias Balamurugan and R.Rajaram, “Suspicious Email Detection via
Decision Tree: A Data mining Approach”, Journal of Computing and Information
Technology –CIT 15, PP.161-169, 2007.

[4] I.Androutsopoulos, J. Koutsias, V.Chandrinos and C. Spyropoulos, “An experimental
comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-
mail messages”, in: Proc. ACM SIGIR 2000, pp. 160–167.

[5] I.Androutsopoulos , G.Palioras ,V. Karkaletsis , G. Sakkis , C. Spyropoulos and P.
Stamatopoulos , “Learning to filter spam e-mail: A comparison of a Naive Bayesian and
memory-based approach”, in: Proc. 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD) 2000, pp. 1–13.

[6] X.Carreras and L. Marquez, “Boosting trees for anti-spam email filtering”, in: Proc.
4th International Conference on Recent Advances in Natural Language Processing,
2001.

[7] W. Cohen, “Learning rules that classify e-mail”, in: Proc. AAAI Symposium on
Machine Learning in Information Access, 1996, pp. 18–25.

[8] M.Dash and H.Liu, “Feature Selection for Classification”, Intelligent Data Analysis,
vol.1, no.3, 1997.

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

106

[9] N.Ducheneaut and L.Watts, “In search of coherence: a review of e-mail research”,
Human-Computer Interaction 20 (2004) 11–48.

[10] P.Graham, “Better Bayesian filtering”, 2003,
<http://www.paulgraham.com/better.html>.

[11] Ian H.Witten and Eibe Frank, “Data Mining, Practical Machine Learning Tools and
 Techniques”.

[12] Jiawei Han, Micheline Kamber, “Data Mining Concepts and Techniques”, Morgan
 Kaufmann Publishers.

[13] P.S.Keila and D.B.Skillicorn, “Detecting unusual and deceptive communication
 in e-mail”, Technical reports, June 2005.

[14] LingSpam and PU1 datasets, <http//www.aueb.gr/users/ion/publications.html>.

[15] C.Manning and H. Schutze, “Foundations of Statistical Natural Language
 Processing”, MIT Press, 1999.

 [16] Message Labs, 2005, <http://www.messagelabs.com/Threat_Watch>.

 [17] P.Pantel and D. Lin, “SpamCop: A spam classification and organization program”,
in: Proc. AAAI Workshop on Learning for Text Categorization 1998.

 [18] J.Provost, “Naive-Bayes vs. rule learning in classification of e-mail”, University of
Texas at Austin, 1999
.
[19] R.Quinlan, “C4.5: Programs for Machine Learning”, Morgan Kaufman, 1993.

[20] J. R. Quinlan,” Induction of decision trees. Machine Learning”, 1:1–106, 1986.

[21] J.R.Quinlan, (1983). “Learning efficient classification procedures and their
application to chess end games (pp. 463-482). In Michalski, Carbonell & Mitchell (Eds.),
Machine learning: An artificial intelligence approach. San Mateo, CA: Morgan
Kaufmann.

[22] J.Rennie, “An application of machine learning to e-mail filtering”, in: Proc. KDD-
2000 Text Mining Workshop, 2000.

[23] G.Rios and H.Zha, “Exploring support vector machines and random forests for spam
detection”, in: Proc. First International Conference on Email and Anti Spam (CEAS),
2004.

International Journal of Information Technology, Vol. 14 No. 2, 2008

107

[24] M. Sahami, S.Dumais, D. Heckerman and E. Horvitz “A Bayesian approach to
filtering junk e-mail”, in: Proc. AAAI Workshop on Learning for Text Categorization,
1998.

[25] G.Sakkis, I.Androutsopoulos, G.Palioras, V.Karkaletsis, C. Spyropoulos and
P.Stamatopoulos, “Stacking classifiers for anti-spam filtering of e-mail”, in: Proc. 6th
Conference on Empirical Methods in Natural Language Processing, 2001, pp. 44–50.

[26] J.C.Schlimmer, and D. Fisher (1986a), “A case study of incremental concept
induction”, Proceedings of the Fifth National Conference on Artificial Intelligence (pp.
496-501). Philadelpha, PA: Morgan Kaufmann.

[27] F.Sebastiani, “Machine learning in automated text categorization”, ACM Computing
Surveys 34 (2002) 1–47.

[28] R.Segal, M. Kephart and MailCat, “An intelligent assistant for organizing e-mail”,
in: Proc. Third International Conference on Autonomous Agents, 1999.

[29] P.N.Tan, M. Steinbach and V.Kumar, “Introduction to Data Mining”, Addison
Wesley, 2005.

[30] P.E.Utgoff, (1988), “ID5: An incremental ID3”, Proceedings of the Fifth
International Conference on Machine Learning (pp. 107-120). Ann Arbor, MI: Morgan
Kaufman.

[31] V.Vapnik, “Statistical Learning Theory”, Wiley, 1998.

[32] Weka, http//www.cs.waikato.ac.nz/ml/weka.

[33] S.Whittaker, V.Bellotti, and P. Moody, “Introduction to this special issue on
revisiting and reinventing e-mail”, Human-Computer Interaction 20 (2005) 1–9.

[34] Y.Yang and J. Pedersen, “A comparative study on feature selection in text
categorization”, in: Proc. 4th International Conference on Machine Learning, 1997.

Appavu alias Balamurugan, Rajaram, Muthupandian and Athiappan
Automatic mining of threatening e-mail using Ad Infinitum algorithm

108

S.Appavu alias Balamurugan was born in Tamil nadu, India, in 1979.He
received B.E. degree in Electronics and Communication Engineering
from the Madurai Kamaraj University, Madurai, in 2001.He also
received the M.E in Computer Science from the University of Madras in
2003.He is currently pursuing Ph.D in Information and Communication
Engineering from Anna university, Chennai, India. Now he is a lecturer
in the Department of Information Technology, Thiagarajar College of
Engineering, Madurai, India. His main interests are Data mining,
Classification, and Performance issues in Classification algorithms.

Dr. R.Rajaram, Dean of CSE/IT, Thiagarajar College of Engineering, has BE
degree in Electrical and Electronics Engineering from Madras University in
1966.He secured the M Tech degree in Electrical Power Systems Engineering
in 1971 from IIT Kharagpur, and the Ph.D. degree on Energy Optimization
from Madurai Kamaraj University in 1979. He and his research scholars have
published/presented more that 45 research papers in Journals and
Conferences. His current areas of interest are Mobile Agents, Cryptography
and Data mining. He has published more than 13 text books on Computer
languages and Basic Communications.He has served the Makerere University
at Uganda during 1977-1978 and University of Mosul during 1980-1981. He
secured two best technical paper awards from the Institution of Engineers

India and one from Indian Society for Technical Education.

M.MuthuPandian is currently doing final year B.Tech Information
Technology at Thiagarajar College of Engineering, Madurai, India. His
research interests include study on various classifications and clustering
algorithms of Data mining and improving its performance by handling
various demerits. He is a member of Computer Society of India (CSI) and
Indian Society for Technical Education (ISTE).

G.Athiappan is currently doing final year B.Tech Information Technology
at Thiagarajar College of Engineering, Madurai, India. His research interests
include Data mining and Information Security. He is a member of Computer
Society of India (CSI) and Indian Society for Technical Education (ISTE).

