
Defining and Formally Specifying the Behavior
of Cooperative Distributed Systems

Toufik Taibi
Department of Electrical and Computer Engineering

University of Western Ontario
London N6A5B9, Ontario, Canada

e-mail:ttaibi@uwo.ca

Abstract

Cooperative Distributed Systems (CDS) represent a class of open
distributed systems, where entities are willing to share their capabilities
with others. This paper first presents a high-level architecture of CDS
and provides an informal description of the behavior (defined by the
set of actions that can be performed) of such a system. Secondly,
the behavior of the system is formally specified using the Temporal
Logic of Actions(TLA). Lastly, the behavior of the system is model-
checked using TLC—the TLA model checker in order to validate that
the invariants and properties defined were satisfied by the behavior.
To our knowledge, there are no recent work on formalizing the generic
behavior of a CDS.

1 Introduction

Traditionally, a distributed system was defined as a collection of independent
“computers” that appears to its users as a single coherent system [8]. Here the
term “computers” abstracts the hardware, operating system, middleware and
the applications running on top of them. A distributed system can be closed
by design such as the case of virtual organizations [1] or open. Openness
makes the system dynamic as entities may join and leave the system anytime.

In Distributed systems, entities rely on other to perform some tasks. We
call this the capability-dependency problem. One may think, why don’t we
build self-contained entities i.e. monolithic entities able to perform all possi-
ble tasks within a given application domain? The answer to this question is

23



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

that spreading capabilities among coordinating entities make it easy to man-
age the complexity of the system as well easily support other system quality
attributes such as availability, modifiability, performance, etc. instead of
merely achieving desired functionality.

Cooperative Distributed Systems (CDS) represent a special type of open
distributed systems where entities are willing to share their capabilities with
others. Today, businesses rely on thousands of different software applica-
tions, each of which developed using different programming languages, run
on different operating systems and hardware platforms, and may define and
represent concepts differently. As a result, it is very difficult for different
applications to communicate with one another and share their capabilities in
a coordinated way.

Due to the dynamic nature of the system, an entity or its required ca-
pability may not be available when needed. This creates a challenge for
requesting entities to keep track of other entities and their capabilities. In
order to facilitate the development of efficient and effective CDS, new inte-
gration and coordination approaches need to be explored and developed in
order to allow entities to seamlessly share their capabilities. The main ob-
jective of the ”integration” is to hide the distribution nature as well as the
heterogeneity and provide a virtual homogeneous environment that can be
accessed anywhere and anytime. CDS integration requires the provision of
right information and services at the right time. This in turn, requires an
explicit knowledge of the dynamically changing available capabilities in the
system.

Throughout the years, CDS design and architectures made many assump-
tions for making their solutions feasible. However, with the explosive growth
of Internet and proliferations of applications using the World Wide Web,
these assumptions can not longer be made. As such, there is a pressing need
to tackle issues that openness, dynamism and heterogeneity are bringing to
current and future CDS [9]. However, first of all we need to define an ar-
chitecture and a sound and generic interaction protocol which can be easily
extended to accommodate efficient and effective solutions to the above men-
tioned issues. We define the behavior of a CDS as a set of actions to be
executed in the system. These actions make-up an interaction protocol.

The Temporal Logic of Actions (TLA) [2] was used to formally specify
the behavior of a CDS. TLA is a logic that combines features of both linear
temporal logic as well as a logic of actions. It is well suited to specify and
reason about concurrent and distributed systems. Unlike other logics, TLA
possesses a fully-fledged language called TLA+ [3] that allows the specifying
the behavior of virtually any system. For years it has been successfully used
to specify hardware systems and is gaining momentum when it comes to spec-

24



International Journal of Information Technology, Vol.15 No. 1, 2009

ifying software systems. Moreover, TLA+ has a model checker named TLC
that allows to check if a given model satisfies a given TLA formula as well
as allowing the verification of the satisfiability of invariants and properties
of the system.

The rest of the paper is organized as follows. Section 2, provides a de-
scription of the high-level architecture of a CDS. Section 3 provides a de-
tailed description of actions performed in the CDS. Section 4 provides an
overview of TLA, TLA+ and TLC, while section 5 describes how TLA+ was
used to specify the behavior of the entire system and how TLC was used
to model-check its behavior and show indeed that invariants and properties
are satisfied by the specification. Section 6 describes how specifications can
be validly refined, while section 7 concludes the paper and highlight ongoing
and future research work.

2 A High-Level Architecture for CDS

A CDS is made-up of entities continuously playing either or both of the
roles of requester or provider. Figure 1 depicts the high-level architecture of
such a system. Whenever an entity wants to join the system it has to do
so through a registration service which provides it with a unique identity.
Similarly, when an entity wants to leave the system it does so through the
registration service which relinquishes its identity and may give it to another
entity joining the system. The registration service can be queried by any
entity in the system to check whether a given identity is registered or not
with the system.

Figure 1: High-Level Architecture of a Cooperative Distributed System

25



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

Any entity can advertise its capabilities with the resource discovery. Bro-
kers also need to advertise the fact that they can offer brokering services.
Any registered entity in the system (including brokers) can query the re-
source discovery to get a list of providers having capabilities matching a
certain request. As such the resource discovery service plays here the role
of a matchmaker. It is then the responsibility of this entity to choose the
provider(s) which best fulfills its selection criteria (or the selection criteria of
its requester in case of a broker).

Entities requiring a full mediation service, should go through a broker.
The basic scenario for using a broker is that an entity acting as a requester
requests through the broker for a given service. The broker in turn find the
required provider(s) through the resource discovery service. Next, the broker
select the best provider(s) available according to criteria set by the requester
in its request. The broker then calls the service(s) of the chosen provider(s)
and get back with a reply to the requester in a transparent manner. As seen
from the description above the broker continuously switch from playing the
role of a requester to playing the role of a provider. As such, “requester” and
“provider” as just roles played by entities. As shown in Figure 1, besides the
services we described, the system has three more services—privacy manage-
ment, trust managements and semantic integration, which are keys success
factors for the system.

Privacy is defined as the degree of information that an entity decides to
show or hide to other entities in the system [5]. For example a requester could
opt to hide either its identity or its request or both. On the other hand, a
provider could opt to hide either its identity or its capabilities or both. The
tasks of the broker (and to a certain extend the resource discovery) are more
complex and thus more time consuming if it handles entities (requesters,
providers) opting to hide some or all of the above attributes.

Trust can be defined as the degree of confidence that an entity is capable
of acting reliably and securely in a particular transaction. Trust management
thus entails the collection of information necessary for defining trust values
of entities and continuously monitoring and adjusting such values [6]. The
relationship between trust and privacy is clear. Depending on the level of
trust between an entity (requester or provider) and a given broker (and to a
certain extend the resource discovery), it can decide to hide/reveal part/all
of its attributes and by doing so either increase or decreases the complexity
and thus cost of the entire mediation(or matchmaking) process.

The semantic integration service is responsible for the semantic integra-
tions of (incompatible) concepts used by the requester and the provider as
to get them to reach a common understanding. This service is becoming
a crucial part of current/future cooperative distributed systems which are

26



International Journal of Information Technology, Vol.15 No. 1, 2009

heterogeneous in nature [4].

It is to be noted that the above services (privacy management, trust man-
agement and semantic integration) are not by any means centralized services
(as it may look in Figure 1 and should be implemented in a completely de-
centralized fashion).

This paper is aimed at providing a formal treatment(using TLA) to the
behavior associated with the interaction between service providers, service
requesters, brokers, registration service and resource discovery service. The
other services will be the focus of future work. Indeed, the formal specifica-
tion of core interaction protocol of a CDS can be validly refined by augment-
ing it with the specification of interaction protocols involving privacy, trust
and semantic integration (see section 6).

3 Interaction Protocol of the Proposed Sys-

tem

In this section, we will provide an overview of the actions involved in CDS.
These actions make-up the interaction protocol of the system. The formal
specification of these actions will be provided in section 5. Figure 2 de-
picts actions involved in the registration process where each entity (requester,
provider, broker) can either join or leave the system through the registration
service. As noted earlier, entities can play different roles. Each time an en-
tity registers, it is given a unique identity (not being used). When an entity
wants to leave the system, it should not have any pending request/reply to
be processed. These will be formally specified in section 5.

Figure 3 depicts the actions involved in the CDS. A provider uses ac-
tion Provider Advertise to advertise its capabilities with the resource dis-
covery. A capability is defined as a tuple made-up of elements of the fol-
lowing types: 〈provID , capDescr , servName, servParam,QoS 〉. provID is a
unique ID given to the provider when it first joined the system. capDescr
describes the capability of the provider which is advertised by this action.
This can be done using text or a (formal) capability description language.
servName represents the name of the service to be called by requesters (or
brokers), servParam represents the service parameters, while QoS repre-
sents the Quality of Service (QoS) offered. A provider can make as many
advertisement as the services it has to offer. Similarly, a broker uses action
Broker Advertise to advertise with the resource discovery for the fact that
it can do brokering services. Its advertisement is defined as a tuple made-up
of two elements of the following types: 〈brID , brDescr〉. brID is a unique ID

27



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

Figure 2: Actions Involved in the Registration Process

given to a broker when it first joined the system. brDescr is a singleton set
that contains the keyword “Broker”. Any time a provider or broker wants
to unadvertise its capabilities it simply calls actions Provider Unadvertise
or Broker Unadvertise respectively.

Figure 3: Actions Involved in the Cooperative Distributed System

Requesters have two options to find service providers. They can either
submit their request to the resource discovery if they just want a match-
making service or to a broker if they want a full-mediation service. In the

28



International Journal of Information Technology, Vol.15 No. 1, 2009

case where they just want a matchmaking service they need to use actions
Requester Request RD and RD Match to make a request and get a list of
matching providers respectively. A request is defined as a tuple made-up
of elements of the following types: 〈reqID , rqtrID , reqDescr , pref 〉. reqID is
a unique ID given to a requester when it first joined the system. rqtrID
is a unique transaction ID that is generated for each transaction made by
a requester. reqDescr is a request description. Similarly to what has been
said about capDescr , reqDescr can be described using either plain text or a
(formal) request description language. pref is a list of preferences that a re-
quester wants. This could include and are not limited to: Quality of Service
(QoS) requirements, required level of trust from the provider,cost, etc. This is
mainly used when the request is made through a broker. In its simplest form,
the resource discovery matches between reqDescr and capDescr . Of course a
“valid” refinement (see section 6) can make this matching more sophisticated.
Consequently, the requester can select the provider(s) that can best fulfill its
criteria (for example that its pref matches QoS of the provider) and call them
using actions Requester Request Provider (using servName and servParam
defined earlier) and get a reply through action Provider Reply Requester .

If a requester wishes to use full-mediation it must use a broker. Since bro-
kers advertise their services with the resource discovery similar to providers,
a requester can get broker IDs from querying the resource discovery using
actions Request Request RD and RD Match. The brokering process is ini-
tialed by a requester making a request to the broker, represented here my
action Requester Request Broker . A request has the same structure as de-
fined in action Requester Request RD .

When a broker receives a request from a requester it in turn creates from
it, its own request to be sent to the resource discovery service using ac-
tion Broker Request RD . In this request, the broker uses its own request
ID (taken from the type brID) and its own transaction ID (taken from the
type brtrID). The resource discovery uses a matchmaking mechanism (ac-
tion RD Match) to come-up with a list of providers having capDescr that
best match reqDescr and sends it to the broker. The broker makes the fi-
nal decision on choosing the provider(s) that can best fulfill the request by
matching pref with QoS of the “shortlisted” providers (this is done using
action Broker Match Requester). Again this process is at its simplest form
and can be made sophisticated by “valid” refinements (see section 6). Us-
ing the information of the chosen provider(s) the broker calls the service of
the relevant provider(s) using (using action Broker Request Provider) us-
ing the service names and parameters provided by the resource discovery
service. Next, the result of calling the services (that comes through action
Provider Reply Broker) is send by the broker to the requester using action

29



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

Broker Reply Requester .

4 Overview of TLA, TLA+ and TLC

TLA was developed by Lamport for describing and reasoning about concur-
rent and distributed systems. The semantics of TLA is defined in terms of
states, where a state is a function from the set of variables to the set of values.
A state function is a non-Boolean expression built from variables and con-
stant symbols. As such a state function is a mapping from the collection of
states to the collection of values. A state predicate (or predicate) is a Boolean
expression built from variable and constant symbols. As such, a state pred-
icate is a mapping from states to Booleans. An action is a Boolean-valued
expression formed from variables, primed variables and constant symbols.
An action represents a relation between old states and new states, where the
unprimed variables refer to the old state and the prime variables refer to the
new state. As such, an action is a function that assigns a Boolean to a pair
of states. A pair of successive states is called a step. For any state function
or predicate F , we define F ′ to be the expression obtained by replacing each
variable v in F by the primed variable v ′. For any action A, Enabled A is a
predicate that is true for a state iff it is possible to take an A step starting
in that state.

Actions can contain parameter symbols which do not represent known
values like 1 or "abc". However, unlike the variables we have considered so
far, the value of a parameter does not change .It must be the same in the
old and new state. The parameter denotes some fixed but unknown value.
It is thus called a rigid variable. The variables introduced are called flexible
variables, or simply variables. A temporal formula is built from elementary
formulas using Boolean operators (basically ∧ and ¬ as the others can be
derived from these two) and the unary operator 2 (always). The operator
3 (eventually) can be derived from 2 by 3F , ¬2¬F . The symbol “,”
means “by definition”.

A behavior is an infinite sequence of states. The meaning of a formula F ,
is a Boolean-valued function on behaviors. Another component of TLA syn-
tax is the stuttering operator on actions. A stuttering on action A under the
vector of variables f occurs when either the action A occurs or the variables
in f remain unchanged (while either some other independent action occurs
or the system remains idle). The stuttering operator and its dual the angle
operator are defined as follows. [A]f , A∨ (f ′ = f ) and 〈A〉f , A∧ (f ′ 6= f ).

Specification are usually written to handle two types of properties for a
system–safety and liveness. Safety properties say what a system must not

30



International Journal of Information Technology, Vol.15 No. 1, 2009

do, while liveness properties say that something does happen. Safety is han-
dled by the way specifications are written, which implicitly define behaviors
that could satisfy them. Liveness is handled through “explicit” fairness re-
quirement. TLA defines two types of fairness properties: weak fairness and
strong fairness as follows:

• WFf (A) , (23〈A〉f ) ∨ ((23¬Enabled〈A〉f ), which means that either
infinitely many A steps occur or A is infinitely often disabled.

• SFf (A) , (23〈A〉f ) ∨ ((32¬Enabled〈A〉f ), which means that either
infinitely many A steps occur or A is eventually disabled forever.

Alternatively, weak fairness and strong fairness can be defined as fol-
lows [3]:

• Weak fairness of A asserts that an A step must eventually occur if A
is continuously enabled.

• Strong fairness of A asserts that an A step must eventually occur if A
is continually enabled.

Continuously means without interruption. Continually means repeatedly,
possibly with interruptions. As such strong fairness implies weak fairness.

In TLA, systems are usually represented as a conjunction of an initial
condition, an action that is continually repeated under stuttering, and a
set of fairness conditions. As such, TLA formulas can be written as Φ ,
InitΦ ∧2[N ]f ∧ F , where:

• InitΦ is a predicate specifying the initial values of variables.

• N is the system’s next-state relation (disjunction of actions).

• f is an n-tuple of variables.

• F is the conjunction of formulas of the form SFf (A) and/or WFf (A),
where A represents an actions or a disjunction of actions.

TLA+ is a high-level language based on set theory, predicate logic, and
TLA. It is a complete specification language for TLA. To get the reader a
feel of a TLA specification, let’s model a light switch and provide concrete
examples of all concepts defined above.

Invariant , S ∈ {0, 1}
Init , S = 0

31



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

On , S = 0 ∧ S ′ = 1
Off , S = 1 ∧ S ′ = 0
Next , On ∨Off
Spec , Init ∧2[Next ]S ∧WFS (Off )
Theorem Spec ⇒ 2Invariant

The above specification has only two possible states. The state where
the light switch is off (S = 0 which is also the initial state) and the state
where the light switch is on(S = 1). S ′ = 1 is an example of a state function
that assigns the value 1 to S after action On is executed. The following are
examples of behaviors that satisfies formula Spec:

• [S = 0] → [S = 1] → [S = 0] → [S = 1] → [S = 1] → [S = 1] → [S =
0]→ [S = 1]→ . . .

• [S = 0] → [S = 0] → [S = 1] → [S = 1] → [S = 0] → [S = 0] → [S =
0]→ . . .

The weak fairness condition stipulates that action Off should be executed
infinitely often (provided it is enabled) as we wish the light to be off to save
energy especially if there are many stuttering steps in which S = 1 and the
light is not being used.

Model checking is the process of checking whether a given model satisfies
a given logical formula (generally a temporal logic formula). Model check-
ers can explore traces allowed by the model, possibly detecting deadlock
or violation of invariants. Moreover, they can assist in the formal verifica-
tion of properties. TLC [3] is a model checker for specifications written in
TLA+. TLC is an explicit-state, on-the-fly model checker. TLA+ and TLC
have been successfully used by hardware engineers to check the correctness
of hardware protocols. It is gaining popularity among software engineers to
specify and check concurrent algorithms and protocols for software systems.

TLC can analyze the state space of finite instances of TLA+ models. In
addition to the TLA+ model, TLC requires a configuration file that defines
the finite-state instance to analyze and declares the specifications and the
properties to verify. TLC needs to know explicitly (through the configura-
tion file) which of the formulas represent the system specification to analyze,
constants, invariants and properties. Figure 4 provides a sample configura-
tion file.

The above configuration file defines concrete instances of a TLA+ module
by defining the sets S1 and S2. The keyword SPECIFICATION indicates the
formula representing the main system specification. The keyword CONSTANTS

provides values to the constants defined in the specification and it is through

32



International Journal of Information Technology, Vol.15 No. 1, 2009

SPECIFICATION Spec

CONSTANTS

S1 = {a1, a2}
S2 = {b1, b2, b3, b4}

INVARIANTS Inv

PROPERTY Prop

Figure 4: Sample TLC Configuration File

these values that a model is created. Properties to be checked are specified
with the PROPERTY Prop statement. This means that TLC checks if Spec ⇒
Prop is valid for the entire state space. Invariants to be checked are specified
with the statement INVARIANT Inv, which requires checking that Spec ⇒
2Inv for every step of a behavior.

TLC firsts checks the syntactic and semantic correctness and well-formedness
of a TLA+ specification. It then computes the graph of reachable states for
the instance of the model defined by the configuration file, while verifying the
invariants. Finally, the temporal properties are verified over the state space.
TLC also reports the number of states it generated during its analysis, the
number of distinct states, and the depth of the state graph (the length of
the longest path). For small models TLC run completes after few seconds.
Trying to analyze somewhat larger models, leads to the well-known problem
of state-space explosion.

5 Formal Specification of the System Behav-

ior

This section describes the formal specification of the system behavior de-
scribed (informally) in the previous section. For the sake of clarity the spec-
ification has been split into 6 parts defined as TLA+ modules (Figure 9-
Figure 14) and put into an Appendix. Furthermore, the specification uses
the generic module named Indentities (Figure 8) which in fact models the
behavior of the registration service for creating and removing identities for
requesters, brokers and providers.

The modules used have been extensively commented as to be as self-
explanatory as possible. The specification used 12 constants (which need
to be populated in a configuration file for the model-checking to work), 18
variables (which values represent the states of the system) and 20 actions
that are executed concurrently. Figure 5 depicts the configuration file we
used to model-check the system behavior. It represents the system model to

33



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

test the interaction protocol.

SPECIFICATION Spec

CONSTANTS

Requesters IDs={r1,r2}
rqtrID={t1,t2}
reqDescr={searching,Broker}
pref={good}
Brokers IDs={b1,b2}
brDescr={Broker}
brtrID={t3,t4}
Providers IDs={p1,p2}
capDescr={searching}
servName={search}
servParam={o1}
QoS={good}

INVARIANTS Invariant

PROPERTY Property

Figure 5: TLC Configuration File

The properties checked where as follows:

• All requests made by a requester or a broker to the resource discovery
need to be processed.

• All requests made by a requester to a broker need to be processed.

• All requests made by a requester or a broker to a provider need to be
processed.

On the other side, invariants were mainly used to ensure that the types
of all variables are preserved throughout the system execution.

The weak fairness requirement is meant to give priority to the match-
ing actions (RD Match and Broker Match Requester). Figure 15 shows the
output of running TLC on module CompleteSystemPart6. The run was suc-
cessful with no violation of invariants or properties.

6 Stepwise Refinement Validation of CDS Spec-

ifications

In this sections we introduce a framework which allows the specification of
CDS at different levels of abstraction and the validation of the refinement

34



International Journal of Information Technology, Vol.15 No. 1, 2009

relationships which exist between the different specifications.

6.1 CDS Specification

The structure of a TLA+ specification of a CDS is shown in Figure 6. All
TLA+ specifications shown in this paper have been well commented (in
shaded gray) in order to make them as self-explanatory as possible. More-
over, TLA+ constructs used will not be detailed here. The reader is advised
to see [3] for further details.

module CDS
constants
C1, C2, . . . , Cq Constants of CDS

variables
u1, u2, . . . , un Variables of CDS

Invariants
∆
= I 1 ∧ I 2 ∧ . . . ∧ Ik Invariants of CDS

Properties
∆
= P1 ∧ P2 ∧ . . . ∧ Pl Properties of CDS

Init
∆
= P Initial predicate defines valid initial states

Ai
∆
= . . . Valid state transition, with i from 1 to m

Next
∆
= A1 ∨ A2 ∨ . . . ∨ Am Valid state transitions defined as disjuntion of actions

u
∆
= 〈u1, u2, . . . , un〉 A name for the tuple of variables

WF u(Bj )/SF u(Bj ) means either strong or weak fairness
Bj represent any disjunction of actions Ai

F
∆
= WFu(B1)/SFu(B1) ∧ . . . ∧WFu(Bp)/SFu(Bp)

Spec
∆
= Init ∧2[Next ]u ∧ F The specification of the CDS

Theorems are proof obligations that reflect that state changes described by actions preserve
invariants and satisfy properties.

theorem Spec ⇒ 2Invariants Invariants must be always preserved
theorem Spec ⇒ Properties Properties must be satisfied

Figure 6: Structure of a TLA+ specification of a CDS

6.2 The Refinement Process

The main advantage of our approach is that the focus is first given to speci-
fying the most abstract version of a given CDS such that “low-level” details

35



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

are avoided. In later versions of the specification, details can be “gradually”
introduced.

A CDS Q is a refinement (or a lower-level version) of a CDS P if every
allowed behavior in Q is allowed in P [2]. If Q is specified using a TLA
formula Ψ and P is specified using TLA formula Φ, Q is a refinement of P
if Ψ is a refinement of Φ.

In order to formally define refinement, we need first to formally define
the concept of “refinement mapping” [2]. If ∆ is a TLA specification, let C∆

be the set of constants of ∆ and V∆ is the set of variables of ∆.

Definition 6.1 (Refinement mapping). Let Ψ and Φ be two specifications
and let ρ : CΦ ∪ VΦ → CΨ ∪ VΨ. ρ is a refinement mapping from Ψ to Φ
iff ρ is a total function and Ψ ⇒ ρ(Φ). ρ(Φ) represents the substitution of
constants and variables of Φ by those of Ψ.

Definition 6.2 (Refinement). Let Ψ and Φ be two specifications. Ψ is a
refinement of Φ if there exists a refinement mapping from Φ to Ψ.

As shown in Figure 7, we must explicitly relate states in the concrete
specification with states in abstract specifications and this can be done in
the form of substitutions (or refinement mappings) of flexible variables of the
abstract specification with expressions of the concrete specification. Using
TLC we can validate that a low-level specification is indeed a refinement of
a more abstract one. The above refinement process has been successfully
applied to the design patterns field [7]. This work has focused on proving
a formal specification of the core interaction protocol of a CDS. This can
be validly refined by augmenting it by handling privacy, trust and semantic
integration as highlighted in the introduction. However showing the specifi-
cations of the possible refinements of the core interaction protocol of a CDS
is beyond the scope of this paper.

7 Conclusion

This paper presented a new architecture for CDS. The main features of such
an architecture is that it accommodates the pressing needs of openness, dy-
namism and heterogeneity through the incorporation of privacy, trust and
semantic integration as integral parts(services) of the system. The behavior
of the proposed system was described both informally and formally using
TLA+. This has allowed it to be easily model-checked using TLC—the
TLA+ model checker. To our knowledge, there is no recent work on for-
malizing the behavior of a CDS. Our specification tried to stay as much as

36



International Journal of Information Technology, Vol.15 No. 1, 2009

module QrefinesP
Concrete CDS

extends Q

Assume CDS P has m constants (C1, . . . , Cm) and n variables (x1, . . . , xn)
Assume CDS Q has p constants (K1, . . . , Kp) and q variables (y1, . . . , yq)
f 1, . . . , fm and g1, . . . , gn are refinement mappings

Abstract
∆
= instance P with

C1← f 1(K1, . . . , Kp),
. . . ,
Cm ← fm(K1, . . . , Kp),
x1 ← g1(K1, . . . , Kp, y1, . . . , yq),
. . . ,
xn ← gn(K1, . . . , Kp, y1, . . . , yq)

AbstractSpec
∆
= Abstract !Spec This is P ’s specification

theorem Spec ⇒ AbstractSpec Spec is Q ’s specification

Figure 7: Structure of a TLA+ refinement of CDS

possible at the highest level of abstraction such that valid refinements can
be easily made when either low-level details are added or the specifications
of “vertical” protocols for trust, privacy and semantic integration are added
to the current protocol.

Currently, we are working on devising protocols for handling privacy and
trust in a completely decentralized manner. This will definitely add another
dimension to the current and help tackle the issues and challenges faced by
current and future CDS.

References

[1] J.E. Klobas and P.D. Jackson, editors. Becoming Virtual: Knowl-
edge Management and Transformation of the Distributed Organization.
Physica-Verlag, 2007.

[2] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, 1994.

37



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

[3] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Boston, MA, USA,
2002.

[4] Natalya F. Noy. Semantic integration: a survey of ontology-based ap-
proaches. SIGMOD Rec., 33(4):65–70, 2004.

[5] Demazeau Y. Piolle, G. and J. Caelen. Privacy management in user-
centred multi-agent systems. In In Proceedings of the 7th Annual Inter-
national Workshop ”Engineering Societies in the Agents World” (ESAW
2006), pages 354–367, 2006.

[6] S. D. Ramchurn, D. Hunyh, and N. R. Jennings. Trust in multi-agent
systems. Knowledge Engineering Review, 19(1):1–25, 2004.

[7] T. Taibi, Angel Herranz, and Juan Jose Moreno-Navarro. Stepwise re-
finement validation of design patterns formalized in tla+ using the tlc
model checker. Journal of Object Technology, To Appear, 2009.

[8] A.S. Tanenbaum and M. Van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice Hall, 2006.

[9] Andrew Warfield, Yvonne Coady, and Norm Hutchinson. Identifying
open problems in distributed systems. In European Research Seminar on
Advances in Distributed Systems (ERSADS), 2001.

Toufik Taibi received his PhD from Multimedia Univer-
sity, Malaysia in 2003. He is currently a post-doctoral fellow
at the department of Electrical and Computer Engineer-
ing at the University of Western Ontario, Canada. Prior
to that he was Assistant Professor at United Arab Emi-
rates University, UAE. Dr. Taibi has more than 14 years of
combined teaching, research and industry experience. His
research interests include formal methods as it applied to
software engineering, multi-agent systems and cooperative
distributed systems.

38



International Journal of Information Technology, Vol.15 No. 1, 2009

Appendix: TLA+ Specifications

module Identities
Allocation and deallocation of identities for entities by the registration service.

extends Naturals
local instance TLC
Finite set of possible identities.

constant IDs
The set of identities that are in use.

variable ids in use

ids in use is always a subset of IDs.
Invariant ∆= ids in use ⊆ IDs

Initially inds in use is emplty.
Init ∆= ids in use = {}

New ∆= ∃ x ∈ IDs :
The ID to be created should not be in use.
∧ x ∈ (IDs \ ids in use)
The set ids in use is augmented with the newly created ID .
∧ ids in use ′ = ids in use ∪ {x}
Delete(x ) ∆=
The ID to be deleted shoudl be in the set ids in use
∧ x ∈ ids in use
The deleted ID is removed from the set ids in use.
∧ ids in use ′ = ids in use \ {x}

Next ∆=
∨New
∨ ∃ x ∈ IDs : Delete(x )
u ∆= 〈ids in use〉

Spec ∆= Init ∧2[Next ]u

Figure 8: TLA+ Module Identities

39



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

module CompleteSystemPart1
extends Naturals, Sequences, TLC

The following constants represent transaction ID , description and preferences of a re-
quester; broker transaction ID , capability desciption,service name, service parameters
and quality of service of providers, brokers IDs, requesters IDs and providers IDs.
brDescr (brDescr = {Broker} in the .cfg file) is used by the broker to averstise its
services with RD

constant rqtrID , reqDescr , pref , brtrID , capDescr , servName, servParam, QoS ,
Brokers IDs, Requesters IDs, Providers IDs, brDescr

brID , rqID and provID represent the set of IDs for brokers, requesters and providers
respectively. capDB and brDB are sets maintained by RD to store capabilities of
providers and brokers respectively. rdQ is the RD queue that stores requests (from
brokers and requesters), while hrdQ is a “history” queue for rqQ . hrdQ is is used in
defining the properties of the specification. rdQ and hrdQ get filled during actions
Requester Request RD and Broker Request RD . Elements get removed from rdQ for
processing in actions RD Match. bQ , tempbQ and hbQ are queues used by brokers to
store requests from requesters. They are indexed by the broker ID (i .e. defined as
functions). The three queues are filled at action Requester Request Broker . Elements
get removed from tempbQ for processing in actions Broker Request RD , while they do
so for bQ in action Broker Match Requester . hbQ is a “history” queue for brokers.
matchDB is a queue indexed by Brokers IDs X brtrID or Requesters IDs X rqtrID and
contains a list of providers for which there is a match between reqDescr and capDescr .
done is a queue indexed by Brokers IDs X brtrID or Requesters IDs X rqtrID and is
used to check if a certain request (from requester or broker) has been fulfilled. This is
needed because from an empty queue of a matchDB of a request we cannot differentiate
between the cases in which a request was not handled and the case in which there was
no matching providers for a given request. mapID is a function that maps a broker
ID and its transaction ID to the requester ID and its transaction ID of the requester.
This is done because brokers are making requests on behalf of requesters. pQ , hpQ are
queues for providers and are indexed by Providers IDs and contain lists of requesters
IDs, requesters transaction IDs, service names and service parameters. hpQ is a “his-
tory” queue for providers. Finally result is a queue indexed by Brokers IDs X brtrID
or Requesters IDs X rqtrID and stores “YES” as a result of a call for a service (of a
provider) by a broker or requester. brL is a set indexed by requesters to store the IDs
of brokers that requesters get through calling Requester Request RD and RD Match.
The list can be used to contact brokers without going throught these actions again. prL
is a set indexed by requesters and brokers to store the IDs of providers. It can be used
to contact the providers directly without going through RD .

variable brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done,
mapID , pQ , hpQ , result , brL, prL

The following are are instances of module Identities used to create IDs of entities.
BrokersIDs

∆
= instance Identities with IDs ← Brokers IDs, ids in use ← brID

RequestersIDs
∆
= instance Identities with IDs ← Requesters IDs, ids in use ← rqID

ProvidersIDs
∆
= instance Identities with IDs ← Providers IDs, ids in use ← provID

Check if an element x belongs to a non-empty sequence s.
in seq(x , s)

∆
= s 6= 〈〉 ∧ ∃ i ∈ domain s : s[i ] = x

Check if an element x belongs to a non-empty sequence f [i ] (range of a function).
in func seq(x , f )

∆
= f 6= 〈〉 ∧ ∃ i ∈ domain f : in seq(x , f [i ])

Check if a tuple element belongs to an element of a non-empty sequence s.
elt in seq(a, s)

∆
= s 6= 〈〉 ∧ ∃ i ∈ domain s, j ∈ (1 . . 4) : s[i ][j ] = a

Check if a tupe element belongs to an element of a non-empty sequence f [k ] (range of a
function).
elt in func seq(a, f )

∆
= f 6= 〈〉 ∧ ∃ k ∈ domain f : elt in seq(a, f [k ])

Figure 9: TLA+ Module CompleteSystemPart1

40



International Journal of Information Technology, Vol.15 No. 1, 2009

module CompleteSystemPart2
extends CompleteSystemPart1

These are sets with possible values of brokers IDs, requesters IDs and providers IDs.
Broker

∆
= Brokers IDs × brtrID × (reqDescr \ brDescr)× pref

Requester
∆
= Requesters IDs × rqtrID × reqDescr × pref

Provider
∆
= Providers IDs × capDescr × servName × servParam ×QoS

These are sets with current values of brokers IDs, requeters IDs and Providers IDs. The
set difference is used to remove “broker”.

cBroker
∆
= brID × brtrID × (reqDescr \ brDescr)× pref

cRequester
∆
= rqID × rqtrID × reqDescr × pref

cProvider
∆
= provID × capDescr × servName × servParam ×QoS

These are definitions used in Invariant , Property and action Init .
Broker OR Requester

∆
= (Brokers IDs × brtrID) ∪ (Requesters IDs × rqtrID)

Call Format
∆
= (Requesters IDs × rqtrID × servName × servParam)

∪ (Brokers IDs × brtrID × servName × servParam)

The property define 3 conditions that need to hold. 1-All requests put by a requester
or broker needs to be handled by the resource discovery. 3-All requests made through
a broker needs to be handled. 3-All requests (from a broker or requester) made to a
provider need to be handled.

Property
∆
=

∧ ∀ 〈x , y, z , t〉 ∈ Broker ∪ Requester : in seq(〈x , y, z , t〉, hrdQ)⇒ done[〈x , y〉] 6= “”
∧ ∀ 〈x , y, z , t〉 ∈ Requester : in func seq(〈x , y, z , t〉, hbQ)⇒ done[〈x , y〉] 6= “”
∧ ∀ 〈x , y, z , t〉 ∈ Call Format : in func seq(〈x , y, z , t〉, hpQ)⇒ result [〈x , y〉] 6= “”

The invariant defines basically the type definition of each variable in the specification
Invariant

∆
=

∧ BrokersIDs!Invariant ∧ RequestersIDs!Invariant ∧ ProvidersIDs!Invariant
∧ capDB ⊆ Provider ∧ brDB ⊆ (Brokers IDs × brDescr)
∧ rdQ ∈ Seq(Broker ∪ Requester) ∧ hrdQ ∈ Seq(Broker ∪ Requester)
∧ bQ ∈ [Brokers IDs → Seq(Requester)] ∧ tempbQ ∈ [Brokers IDs → Seq(Requester)]
∧ hbQ ∈ [Brokers IDs → Seq(Requester)]
∧matchDB ∈ [Broker OR Requester → Seq(Provider ∪ (Brokers IDs × brDescr))]
∧ done ∈ [Broker OR Requester → string]
∧mapID ∈ [Brokers IDs × brtrID → Seq(Requesters IDs × rqtrID)]
∧ pQ ∈ [Providers IDs → Seq(Call Format)] ∧ hpQ ∈ [Providers IDs → Seq(Call Format)]
∧ result ∈ [Broker OR Requester → string]
∧ brL ∈ [Requesters IDs → subset Brokers IDs]
∧ prL ∈ [Brokers IDs ∪ Requesters IDs → subset Provider ]

Here are variables are initialized at the initial state. The first 3 initializations are calls
to the predicate Init of the module identities

Init
∆
=

∧ BrokersIDs!Init ∧ RequestersIDs!Init ∧ ProvidersIDs!Init
∧ capDB = {} ∧ brDB = {}
∧ rdQ = 〈〉 ∧ hrdQ = 〈〉
∧ bQ = [x ∈ Brokers IDs 7→ 〈〉] ∧ tempbQ = [x ∈ Brokers IDs 7→ 〈〉] ∧ hbQ = [x ∈ Brokers IDs 7→ 〈〉]
∧matchDB = [X ∈ Broker OR Requester 7→ 〈 〉]
∧ done = [X ∈ Broker OR Requester 7→ “”]
∧mapID = [X ∈ Brokers IDs × brtrID 7→ 〈 〉]
∧ pQ = [x ∈ Providers IDs 7→ 〈〉] ∧ hpQ = [x ∈ Providers IDs 7→ 〈〉]
∧ result = [X ∈ Broker OR Requester 7→ “”]
∧ brL = [x ∈ Requesters IDs 7→ {}] ∧ prL = [X ∈ Brokers IDs ∪ Requesters IDs 7→ {}]
Action New of module identities is called to create a broker ID and a requester ID .

Create BrokerID
∆
=

∧ BrokersIDs!New
∧ unchanged 〈rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Create RequesterID

∆
=

∧ RequestersIDs!New
∧ unchanged 〈brID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉

Figure 10: TLA+ Module CompleteSystemPart2

41



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

module CompleteSystemPart3
extends CompleteSystemPart2

Action New of module identities is called to create a provider ID .
Create ProviderID

∆
=

∧ ProvidersIDs!New
∧ unchanged 〈brID , rqID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
〈b, bd〉 should not be in brDB . Action Delete of module identities is called to delete broker ID “b”.

Remove BrokerID(b)
∆
= ∃ bd ∈ brDescr :

∧ 〈b, bd〉 /∈ brDB
∧ BrokersIDs!Delete(b)
∧ unchanged 〈rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉

Requester ID “r” must have been processed by bQ of any broker. Requester ID “r”
must have been processed by RD . Request ID “r” must have been processed by pQ of
any provider. Action Delete of module identities is called to delete requester ID “r”.

Remove RequesterID(r)
∆
=

∧ ¬elt in func seq(r , bQ)
∧ ¬elt in seq(r , rdQ)
∧ ¬elt in func seq(r , pQ)
∧ RequestersIDs!Delete(r)
∧ unchanged 〈brID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉

Action Delete of module identitis is called to delete provider ID “p”. The provider ID
shoudl not be in capDB .
Remove ProviderID(p)

∆
=

∧ ¬∃ cd ∈ capDescr , sn ∈ servName, sp ∈ servParam, qs ∈ QoS : 〈p, cd , sn, sp, qs〉 ∈ capDB
∧ ProvidersIDs!Delete(p)
∧ unchanged 〈brID , rqID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Action for a provider to advertise its capabilities with RD

Provider Advertise
∆
= ∃ 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ 〈p, cd , sn, sp, qs〉 /∈ capDB Provider tuple not in capDB
∧ capDB ′ = capDB ∪ {〈p, cd , sn, sp, qs〉} Provider tuple added to capDB
∧ unchanged 〈brID , rqID , provID , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Action for a provider to remove an advertisement from RD

Provider Unadvertise
∆
= ∃ 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ 〈p, cd , sn, sp, qs〉 ∈ capDB Provider tuple in capDB
∧ pQ [p] = 〈〉 pQ [p] is empty
If a provider unadvertise its capabilities it should be removed from prL.
∧ ∀ x ∈ Brokers IDs ∪ Requesters IDs :
prL′ = [prL except ![x ] = if 〈p, cd , sn, sp, qs〉 ∈ @ then @ \ {〈p, cd , sn, sp, qs〉} else @]

∧ capDB ′ = capDB \ {〈p, cd , sn, sp, qs〉} Provider tuple removed from capDB
∧ unchanged 〈brID , rqID , provID , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL〉
Action for a broker to advertise its brokering capability with RD

Broker Advertise
∆
= ∃ 〈b, bd〉 ∈ brID × brDescr :

∧ 〈b, bd〉 /∈ brDB
∧ brDB ′ = brDB ∪ {〈b, bd〉}
∧ unchanged 〈brID , rqID , provID , capDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Action for a broker to remove an advertisement of brokering capability from RD

Broker Unadvertise
∆
= ∃ 〈b, bd〉 ∈ brID × brDescr :

∧ 〈b, bd〉 ∈ brDB

∧ bQ [b] = 〈〉 bQ [b] should be empty
∧ ¬elt in seq(b, rdQ) Broker ID “b” must have been processed by RD
∧ ¬elt in func seq(b, pQ) Broker ID “b” must have been processed by pQ of any provider
If a broker unadvertise its services it should be removed from brL of relevant Requesters
∧ ∀ x ∈ Requesters IDs : brL′ = [brL except ![x ] = if b ∈ @ then @ \ {b} else @]
∧ brDB ′ = brDB \ {〈b, bd〉}
∧ unchanged 〈brID , rqID , capDB , provID , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , prL〉

Figure 11: TLA+ Module CompleteSystemPart3

42



International Journal of Information Technology, Vol.15 No. 1, 2009

module CompleteSystemPart4
extends CompleteSystemPart3

Action for a requester to make a request to RD
Requester Request RD

∆
= ∃ 〈r , rt , rd , pr〉 ∈ cRequester :

∧ ¬elt in seq(rt , hrdQ) “rt” was not previously used by a Requester Request RD action
∧ ¬elt in func seq(rt , hbQ) “rt” was not previously used by a Requester Request Broker action
∧ ¬elt in func seq(rt , hpQ) “rt” was not previously used by a Requester Request Provider action
∧ capDB 6= {} capDB not empty
∧ rdQ ′ = Append(rdQ , 〈r , rt , rd , pr〉) Requester tuple added to rdQ
∧ hrdQ ′ = Append(hrdQ , 〈r , rt , rd , pr〉) Requester tuple added to hrdQ
∧ unchanged 〈brID , rqID , provID , capDB , brDB , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Action for a requester to make a request to the broker

Requester Request Broker
∆
= ∃ rt1 ∈ rqtrID , 〈r , rt2, rd , pr〉 ∈ cRequester , b ∈ brID :

∧ ¬elt in seq(rt2, hrdQ) “rt” was not previously used by a Requester Request RD action
∧ ¬elt in func seq(rt2, hbQ) “rt” was not previously used by a Requester Requet Broker action
∧ ¬elt in func seq(rt2, hpQ) “rt” was not used by a Requester Request Provider action
∧ capDB 6= {} capDB is not empty
∧ b ∈ brL[r ] Broker b is in brL[r ]
∧ rd /∈ brDescr brDescr = {Broker} can only be used when looking for a broker through Requester Request RD
∧ bQ ′ = [bQ except ![b] = Append(@, 〈r , rt2, rd , pr〉)] Requester tuple added to bQ [b]
∧ tempbQ ′ = [tempbQ except ![b] = Append(@, 〈r , rt2, rd , pr〉)] Requester tuple added to tempbQ [b]
∧ hbQ ′ = [hbQ except ![b] = Append(@, 〈r , rt2, rd , pr〉)] Requester tuple added to hbQ [b]
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉
Action for a broker to make a request to RD

Broker Request RD
∆
= ∃ 〈b, bt , rd , pr〉 ∈ cBroker , 〈r , rt〉 ∈ rqID × rqtrID :

∧ ¬elt in seq(bt , hrdQ) “bt” was not previously used by a Broker Request Rd action
∧ ¬elt in func seq(bt , hpQ) “bt” was not previously used by a Broker Request Provider action
∧ capDB 6= {} capDB is not empty
∧ tempbQ [b] 6= 〈〉 queue tempQ [b] is not empty
∧Head(tempbQ [b]) = 〈r , rt , rd , pr〉 the request should be the head of tempbQ
Broker tuple 〈b, bt〉 is mapped to its original requester tuple 〈r , rt〉
∧mapID ′ = [mapID except ![〈b, bt〉] = Append(@, 〈r , rt〉)]
∧ tempbQ ′ = [tempbQ except ![b] = Tail(@)] Requester tuple is removed from tempQ [b]
∧ rdQ ′ = Append(rdQ , 〈b, bt , rd , pr〉) Broker tuple is added to rdQ
∧ hrdQ ′ = Append(hrdQ , 〈b, bt , rd , pr〉) Broker tuple is added to hrdQ
∧ unchanged 〈brID , rqID , provID , capDB , brDB , bQ , hbQ , matchDB , done, pQ , hpQ , result , brL, prL〉

This action is handles the case where the RD is matching a request (from requester or
broker) against the providers in capDB . In its simplest form the match is based on the
fact that reqDescr (of a broker or requester) is equal to capDescr of the provider

RD Match
∆
= ∃ 〈b r , t , rd , pr〉 ∈ cBroker ∪ cRequester :

∧ rdQ 6= 〈〉 rdQ is not empty
∧ capDB 6= {} capDB is not empty
∧Head(rdQ) = 〈b r , t , rd , pr〉 tuple 〈r b, t , rd , pr〉 is the head of rdQ
∧ rdQ ′ = Tail(rdQ) 〈b r , t , rd , pr〉 removed from rdQ
In its simplest form, a match happens when X [2] (capDescr of a provider) matched rd (reqDescr of the request)
∧ ∀X ∈ capDB : ∧matchDB ′ = [matchDB except ![〈b r , t〉] = if X [2] = rd ∧ ¬in seq(X , @) then Append(@, X ) else @]
∧ prL′ = [prL except ![b r ] = if X [2] = rd ∧ rd /∈ brDescr then @ ∪ {X} else @]
∧ if b r ∈ rqID ∧ brDB 6= {} then ∀X ∈ brDB : brL′ = [brL except ![b r ] = if X [2] = rd then @ ∪ {X [1]} else @]

else unchanged brL
∧ done′ = [done except ![〈b r , t〉] = “YES”] This reflects that the request has been handled
∧ unchanged 〈brID , rqID , provID , capDB , brDB , hrdQ , bQ , tempbQ , hbQ , mapID , pQ , hpQ , result〉

Figure 12: TLA+ Module CompleteSystemPart4

43



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

module CompleteSystemPart5
extends CompleteSystemPart4

The following predicate handles choosing elements of a sequence (subset thereof) that fulfill the condition
MatchSubSeq(s, x)

∆
= let MatchPos(e)

∆
= e[5] = x

in SelectSeq(s, MatchPos)

This action handles the case where a broker makes a match of a requester’s request after
RD Match is called. In its simplest form the match is based on the fact that pref of a
requester is equal of QoS of the provider

Broker Match Requester
∆
= ∃ 〈r , rt , rd , pr〉 ∈ cRequester , 〈b, bt〉 ∈ brID × brtrID :

∧ bQ [b] 6= 〈〉 bQ [b] is not empty
∧mapID [〈b, bt〉] 6= 〈〉 mapID [〈b, bt〉] is not empty
∧mapID [〈b, bt〉][1] = 〈r , rt〉 〈b, bt〉 is mapped to 〈r , rt〉
∧ done[〈b, bt〉] = “YES” 〈b, bt〉 is already handled by action RD match
∧Head(bQ [b]) = 〈r , rt , rd , pr〉 tuple 〈r , rt , rd , pr〉 is the head of queue bQ [b]
∧ bQ ′ = [bQ except ![b] = Tail(@)] tuple 〈r , rt , rd , pr〉 is removed from queue bQ [b]
prefrences of a requester are matched against QoS of the providers in matchDB [〈b, bt〉]
∧matchDB ′ = [matchDB except ![〈r , rt〉] = MatchSubSeq(matchDB [〈b, bt〉], pr)]

∧ done′ = [done except ![〈r , rt〉] = “YES”] done[〈r , rt〉] = “YES” reflects that the request has been handled.
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , tempbQ , hbQ , mapID , pQ , hpQ , result , brL, prL〉

This action handles the case where a broker make a request to a provider on behalf of a
requester after RD match and Broker Match Requester have been executed

Broker Request Provider
∆
= ∃ bt1 ∈ brtrID , 〈b, bt2〉 ∈ brID × brtrID , 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ ¬elt in seq(bt2, hrdQ) “bt2” was not previously used by a Broker Request RD action
∧ ¬elt in func seq(bt2, hpQ) “bt2” was not previously used by a Broker Request Provider action
∧mapID [〈b, bt1〉] 6= 〈〉
∧ done[mapID [〈b, bt1〉][1]] = “YES” tuple mapID [〈b, bt1〉] was handled by Broker Match Requester action
∧ 〈p, cd , sn, sp, qs〉 ∈ capDB Provider tuple 〈p, cd , sn, sp, qs〉 is in capDB
∧ 〈p, cd , sn, sp, qs〉 ∈ prL[b] provider 〈p, cd , sn, sp, qs〉 is in prL[b]
∧mapID ′ = [mapID except ![〈b, bt2〉] = mapID [〈b, bt1〉]] new request is mapped to the same requester tuple
∧ pQ ′ = [pQ except ![p] = Append(@, 〈b, bt2, sn, sp〉)] newly made request is added to pQ
∧ hpQ ′ = [hpQ except ![p] = Append(@, 〈b, bt2, sn, sp〉)] newly made request is added to hpQ
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, result , brL, prL〉

This action handles the case where a requester make a request to a provider directly after
RD match has been executed
Requester Request Provider

∆
= ∃ rt1 ∈ rqtrID , 〈r , rt2〉 ∈ rqID × rqtrID , 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ ¬elt in seq(rt2, hrdQ) “rt2” was not previously used by a Requester Request RD action
∧ ¬elt in func seq(rt2, hpQ) “rt2” was not previosuly used by a Requester Request Provider action
∧ ¬elt in func seq(rt2, hbQ) “rt2” was not previously used by an Requester Request Broker action
∧ 〈p, cd , sn, sp, qs〉 ∈ capDB Provider tuple 〈p, cd , sn, sp, qs〉 is in capDB
∧ done[〈r , rt1〉] = “YES” tuple 〈r , rt1〉 was handled by RD Match
∧ 〈p, cd , sn, sp, qs〉 ∈ prL[r ] provider 〈p, cd , sn, sp, qs〉 is in prL[r ]
∧ pQ ′ = [pQ except ![p] = Append(@, 〈r , rt2, sn, sp〉)] Newly made request is added to pQ
∧ hpQ ′ = [hpQ except ![p] = Append(@, 〈r , rt2, sn, sp〉)] Newly made request is added to hpQ
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , result , brL, prL〉

Figure 13: TLA+ Module CompleteSystemPart5

44



International Journal of Information Technology, Vol.15 No. 1, 2009

module CompleteSystemPart6
extends CompleteSystemPart5

This action handles the case where a provider replies to a broker’s request
Provider Reply Broker

∆
= ∃ 〈b, bt〉 ∈ brID × brtrID , 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ pQ [p] 6= 〈 〉 pQ [p] is not empty
∧Head(pQ [p]) = 〈b, bt , sn, sp〉 tuple 〈b, bt , sn, sp〉 is the head of queue pQ [p]
∧ pQ ′ = [pQ except ![p] = Tail(@)] tuple 〈b, bt , sn, sp〉 is removed from queue pQ [p]
∧ result ′ = [result except ![〈b, bt〉] = “YES”] This reflects the result of a service call
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , hpQ , brL, prL〉
This action handles the case where a broker provides the final reply to a requester’s request

Broker Reply Requester
∆
= ∃ 〈b, bt〉 ∈ brID × brtrID , 〈r , rt〉 ∈ rqID × rqtrID :

∧ result [〈b, bt〉] = “YES”
∧mapID [〈b, bt〉][1] = 〈r , rt〉
∧ result ′ = [result except ![〈r , rt〉] = “YES”] This reflects the result of a service call
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , brL, prL〉

This action handles the case where a provider replies to a requester’s request after an
RD Match action is executed.
Provider Reply Requester

∆
= ∃ 〈r , rt〉 ∈ rqID × rqtrID , 〈p, cd , sn, sp, qs〉 ∈ cProvider :

∧ pQ [p] 6= 〈 〉 pQ [p] is not empty
∧Head(pQ [p]) = 〈r , rt , sn, sp〉 tuple 〈r , rt , sn, sp〉 is the head of queue pQ [p]
∧ pQ ′ = [pQ except ![p] = Tail(@)] Tuple 〈r , rt , sn, sp〉 is removed from the queue
∧ result ′ = [result except ![〈r , rt〉] = “YES”] This reflects the result of a service call
∧ unchanged 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , hpQ , brL, prL〉
Next action is a disjunction of all actions

Next
∆
=

∨ Create BrokerID
∨ Create RequesterID
∨ Create ProviderID
∨ ∃ b ∈ brID : Remove BrokerID(b)
∨ ∃ r ∈ rqID : Remove RequesterID(r)
∨ ∃ p ∈ provID : Remove ProviderID(p)
∨ Provider Advertise
∨ Provider Unadvertise
∨ Broker Advertise
∨ Broker Unadvertise
∨ Requester Request RD
∨ Requester Request Broker
∨ Broker Request RD
∨ RD Match
∨ Broker Match Requester
∨ Requester Request Provider
∨ Broker Request Provider
∨ Provider Reply Requester
∨ Provider Reply Broker
∨ Broker Reply Requester

tuple of all variables, used to allow stuttering
u

∆
= 〈brID , rqID , provID , capDB , brDB , rdQ , hrdQ , bQ , tempbQ , hbQ , matchDB , done, mapID , pQ , hpQ , result , brL, prL〉

WF u(R Match ∨ Broker Match Requester) allows these two actions to be executed infinitely often
Spec

∆
= Init ∧ 2[Next ]u ∧WFu (RD Match ∨ Broker Match Requester)

Invariants and Properties are fulfilled
theorem Spec ⇒ 2Invariant
theorem Spec ⇒ Property

Figure 14: TLA+ Module CompleteSystemPart6

45



Toufik Taibi
Defining and Formally Specifying the Behavior of Cooperative Distributed Systems

Figure 15: Output of Running TLC on module CompleteSystemPart6

46


