
Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 108

Abstract

This paper describes a clustering method to group the most similar and important weblogs with their

descriptive shared words by using a technique from multilinear algebra known as PARAFAC tensor

decomposition. The proposed method first creates labeled-link network representation of the weblog

datasets, where the nodes are the blogs and the labels are the shared words. Then, 3-way adjacency

tensor is extracted from the network and the PARAFAC decomposition is applied to the tensor to get

pairs of node lists and label lists with scores attached to each list as the indication of the degree of

importance. The clustering is done by sorting the lists in decreasing order and taking the pairs of top

ranked blogs and words. Thus, unlike standard co-clustering methods, this method not only groups

the similar blogs with their descriptive words but also tends to produce clusters of important blogs

and descriptive words.

Keyword: clustering method, multilinear algebra, PARAFAC tensor decomposition, weblogs

I. Introduction

The researches on network clustering have a long tradition in computer science, especially on

neighborhood-based network clustering category, where the nodes are being grouped together if they

are in the vicinity and have a higher-than-average density of links connecting them [1]. An example

of this category is in parallel computing and distributed computation where n tasks are divided into

several processes that to be carried out by a separate program or thread running on one of m different

processors [2].

In more general case where the links are weighted according to some particular criteria like

similarity measures or distance between two nodes, the clustering tasks can be accomplished by

finding good cuts on the network that optimize certain predefined criterion functions. This is usually

done by using a technique called spectral clustering that has been emerged as one of the most

effective tools for document clustering [3]. Under certain conditions, the optimization of the

criterion functions in spectral clustering is an equivalent problem to computing the singular value

decomposition (SVD) of the matrix that captures the relationship between the nodes [5]. But because

the vectors produced by SVD are orthogonal, the results usually do not directly correspond to the

Weblog Clustering in Multilinear Algebra Perspective

Andri Mirzal

Graduate School of Information Science and Technology,

Hokkaido University, Kita 14 Nishi 9, Kita-Ku, Sapporo 060-0814, Japan

andri@complex.eng.hokudai.ac.jp

International Journal of Information Technology, Vol. 15 No. 1, 2009

109

real clusters and consequently second phase of processing is needed to refine the results. A variety of

algorithms (e.g. k-means) can be used for this phase [6].

Other famous methods based on similarity matrix can also be used for this category. The direct

method is multidimensional scaling that simply projects the similarity measures between all node

pairs in two-dimensional space [7, 8]. This method is computationally expensive because it has to

calculate the similarities of all pairs, thus other more advanced methods that only calculate partial

similarities, like k-means [9, 10], simulated annealing [11, 10], and genetic algorithms [12, 10] are

usually being used instead. But due to the incomplete calculations, these methods are subjected to

the local optima trap.

In addition to the neighborhood-based network clustering, there is another clustering category

that works on labeled-link network; the nodes are in the same group if they share set of similar

labels. In online auction networks, this method can be used to find similar users, and then by

utilizing user’s preferences in buying and selling activities, a recommendation system can be

proposed [13]. In hyperlinks environment like web pages, this method can group similar domains

with their descriptive hypertexts [14]. Fig. 1 shows the two clustering categories conceptually. In (a),

there are two clusters which are well connected within the clusters and only have one link connects

them. Conversely, in (b), node 1 and 2 are in the same group due to the similarity in their labels even

though they are not connected at all.

1 2

x

y

z x

y

z

(a) (b)

Fig. 1. Clustering based on neighborhood (a), and based on link’s labels (b).

In this paper, we describe a clustering method to group the most similar and important weblogs

with their descriptive shared words by using PARAFAC tensor decomposition. In the document

clustering research, this is known as co-clustering problem and has been extensively studied because

of its practical uses.

The PARAFAC decomposition is closely related to matrix factorization techniques (see section

II.B), but instead of working in two-dimensional document-feature matrix, this method extract three-

dimensional document-document-feature tensor from labeled-link network model of the dataset (see

Fig. 2). The benefit of this model is the degree of importance of the blogs can be revealed because

PARAFAC decomposition gives higher scores to well connected nodes [14, 15]. Thus important

blogs tend to be placed in higher ranks.

This work is motivated by Kolda et al. [14] where they model the web pages as the labeled-link

network (the nodes are the pages and the labels are the hypertexts), construct the adjacency tensor of

the network, and apply tensor decomposition to find the grouping of the pages and the relevant

hypertexts. We extend this idea by using contents of the documents instead of the hypertexts, and

consequently this task becomes the co-clustering problem. The challenge of weblogs clustering is

not a trivial problem. Different from well prepared datasets like TDT2
1
 and Reuters

2
 document

corpora, weblog datasets contain no information about predefined clusters that can be used to

compare the results. Thus standard metrics like F-measure, Purity, Entropy, Mutual Information [6],

and Accuracy [16] cannot be used to measure the quality of the results. Also with the tendency of

user-centric contents in the Web 2.0 era, the blogs have already become very important information

1
 http:///www.nist.gov/speech/tests/tdt/tdt98/index.htm

2
 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 110

sources. So, the ability to co-cluster the most important blogs will be valuable in assisting the

building of the indices for searching.

II. Related Works

There are many algorithms or combination of algorithms that can be used in the co-clustering

problem. We divide the important algorithms into two categories.

A. Document-document clustering

Almost all clustering algorithms can be extended in co-clustering problem by finding the most

relevant features for each cluster. This task is also known as the problem of finding the cluster

centroids. Note that feature is used instead of term/word to emphasize the fact that the

documents actually being characterized by their discriminative features. These features are not

limited to words and phrases only, but also formatting tags (e.g. in html files), and even

(although very rare) some special characters or punctuations.

There are two classes of algorithms that are widely being used in this category [6]. The first

is the discriminative algorithms that are based on the similarity measures of document pairs,

for example: multidimensional scaling, k-means algorithms, simulated annealing, and genetic

algorithms. And the second is the generative algorithms that make assumption about the

distribution of the data to create model estimation and then use iterative procedure to alternate

between the model and the document assignment. The examples are Gaussian model [17],

expectation-maximization (EM) algorithm [18], von Mises-Fisher (vMF) model [19], and

model-based k-means algorithm [20].

B. Document-feature clustering

In this category, the co-clustering problem is handled directly. Some of the algorithms are

spectral clustering, matrix factorization, and phrase-based model [6].

Spectral clustering builds bipartite graph representation of the documents and then finds good

cuts on the graph to optimize predefined objective functions. Because there are two type of

nodes (document and feature), the result gives the clusters of similar documents with relevant

features. Examples of spectral clustering are divide-and-merge method [21] and fuzzy co-

clustering [22].

Matrix factorization is a technique to approximate a matrix (A) by the sum of K matrices (Ak,

k = 1, 2, …, K) that each is produced by cross product of a pair of vectors. This technique not

only reduces data size, but also can increase clustering accuracy because it can reveal the latent

relationship between different features that coexist in several documents. If the features are

words, this technique can solve synonym problem by indexing not only the words appear in the

documents but also other words that are mutually coexistence in other documents. After the

matrix is factorized, the clustering results are obtained by finding in which factorization group

a document or a feature has the highest score. This group is the cluster label for the

corresponding document or word. Two famous matrix factorization techniques are SVD and

nonnegative matrix factorization (NMF). While SVD produces orthogonal vectors that can

contain negative terms, NMF produces nonnegative vectors that are not necessarily be

orthogonal. Because of these characteristics, NMF is better than SVD in finding clusters in the

document collection [16], and can be directly utilized as a clustering method. The problem

associated with NMF is it depends on initialization; the same data with different initializations

will produce different results. Some methods can be used to overcome this drawback, like

using spherical k-means to produce vector seeds for NMF [23], or implementing initialization

strategies to produce stable results [24].

International Journal of Information Technology, Vol. 15 No. 1, 2009

111

Phrase-based models try to overcome the weakness in the vector space models by not only

encoding the words but also the sequence of the words. Two examples are suffix tree clustering

[25] that uses shared suffixes from sentences to identify base clusters of the documents, and

document index graph [26] that represents each word as a vertex in a directed multigraph.

III. Data Preparation

To conduct the experiment, we use two datasets. The first is from technorati’s top 100 blogs
3
 by fans

and top 100 blogs by authorities downloaded on February 6
th

, 2009. The number of non overlapping

blogs is 147 (successful downloaded blogs is 140) and the number of words is 9689 (600 words after

filtering mechanism is applied). The second dataset is from three sites
4
 downloaded on the same

date. The number of non overlapping blogs is 155 (successful downloaded blogs is 152) and the

number of words is 9099 (592 after filtering mechanism is applied). Note that because tensor

decomposition is an expensive method, the number of used words is limited to only about 600.

The filtering mechanism is built to filter out punctuations, tags, stop words, and words that have

less discrimination power in clustering like high frequency and very low frequency words, and to

stem the words. The stemming algorithm used is porter stemmer [27], a de facto standard stemming

algorithm in information retrieval (IR). Further, the filtering is also adapted before the data is fetched

by using only contents from blog’s rss feeds.

Algorithm 1 is used to fetch feeds from list of the rss feeds in “blogfeedlist” text file, parse the

contents, and return a dictionary that holds information about the blog’s names as the keys and the

contents as the values. A dictionary, also known as associative memories or associative arrays, is a

datatype that holds pairs of keys and values. Unlike vector or array which is indexed by integers, a

dictionary is indexed its keys. In Algorithm 1, blogscontent (a dictionary) holds blog’s titles as the

keys. The values of blogscontent itself are also dictionaries, which hold every word in a blog feed as

the keys and the number of the appearance as the values.

Algorithm 1. Function to create a dictionary of blog’s name as the keys and their contents as the values.

1. function getFeedsContent(blogfeedlist = readFile(“blogfeedlist”)) {

2. blogscontent = dictionary();

3. for each feedurl in blogfeedlist {

4. try:

5. title = getTitle(feedurl);

6. blogscontent [title] = wordCount(feedurl);

7. exception:

8. printscreen(“Failed to fetch the feed”);

9. continue to the next feedurl;

10. }

11. return blogscontent;

12. }

Algorithm 2 describes the wordCount() function (used in Algorithm 1) that takes a feed’s url and

list of stop words
5
 as the inputs and returns a dictionary of unique words in the feed as the keys and

the number of appearance of those words as the values. Note that the words are weighted based on

3
 http://technorati.com/pop/

4
 http://www.bestcollegesonline.com/blog/2009/02/05/top-100-creative-writing-blogs/, http://www.bestbloglist.com/top-

 50-blogs.html, and http://adage.com/power150/
5
 http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 112

their locations in the feed; the description is given highest weight, 10, because this is the place where

the authors describe their blog’s themes. The next location, the title of the post, is given weight of 3,

and each word in the post is given weight of 1. The blog title itself is not used because there are

many cases where the blog’s title doesn’t reflect its contents.

Algorithm 2. Function to list unique words in a blog feed and count their appearances.

1. function wordCount(feedurl, stopwords = readFile(“stopwords”),

2. int descriptionweight = 10, int posttitleweight = 3,

3. int wordweight = 1) {

4. wordscount = dictionary();

5. content = parse(feedurl);

6. description = separateWords(content.description);

7. if (description != null) {

8. for each word in description {

9. if (word in stopwords)

10. continue to the next word;

11. word = porterStemmer(word);

12. wordscount[word] += descriptionweight;

13. }

14. }

15. poststitle = separateWords(content.poststitle);

16. if (poststitle != null) {

17. for each title in poststitle {

18. if (title in stopwords)

19. continue to the next title;

20. title = porterStemmer(title);

21. wordscount[title] += posttitleweight;

22. }

23. }

24. summaries = separateWords(content.summaries);

25. if (summaries != null) {

26. for each word in summaries {

27. if (word in stopwords)

28. continue to the next word;

29. word = porterStemmer(word);

30. wordscount[word] += wordweight;

31. }

32. }

33. return wordscount;

34. }

The first step in reading the feed is to parse the content by using parse(), a function that reads

feed’s xml file and stores the returned values in content (see section V for the implementation of

this function). This variable has several member variables: description holds the description of the

blog, poststitle holds titles of the post, and summaries holds summaries of the post. The second step

is to separate words by using separateWords() that takes string as the input and returns a list of

words in that string. We only consider any non alphanumeric characters as the separators, so words

such as C++, Yahoo!, and AT&T, will not be correctly recognized as the complete words. The

implementation of this function is not shown here because it is trivial to code it in any scripting

languages. The last step is to filter the words out if they are in stopwords list and stem them before

inputting to wordscount.

International Journal of Information Technology, Vol. 15 No. 1, 2009

113

Algorithm 3. Function to create blog-word characteristic matrix (vector space model).

1. function createCharMatrix(blogscontent = getFeedsContent(),

2. double lower = 0.1,

3. double upper = 0.25) {

4. blogslist = array();

5. int i = 0;

6. for each blog in blogscontent {

7. blogslist[i] = blog;

8. i++;

9. }

10. count = dictionary();

11. for each blog in blogslist {

12. for each word in blogscontent[blog] {

13. if (blogscontent[blog][word] > 1)

14. count[word] += 1;

15. }

16. }

17. uniquewordslist = array();

18. int i = 0;

19. for each blog in blogslist {

20. for each word in blogscontent[blog] {

21. percentage = count[word]/length(blogfeedlist);

22. if ((word not in uniquewordslist) and (lower < percentage < upper)) {

23. uniquewordslist[i] = word;

24. i++;

25. }

26. }

27. }

28. blogsmatrix = matrix();

29. int i, j = 0;

30. for blog in blogslist {

31. for word in uniquewordslist {

32. if (word in blogscontent[blog]) {

33. blogsmatrix[i][j] = blogscontent[blog][word];

34. j++;

35. }

36. else

37. blogsmatrix[i][j] = 0;

38. }

39. i++;

40. }

41. return blogsmatrix;

42. }

Algorithm 3 takes output from Algorithm 1 and returns blog-word characteristic matrix,

blogsmatrix. This matrix is the vector space model of the dataset. For list of unique words, we filter

out words that appear too often by setting the value of upper variable and words that appear only in a

few blogs by setting the value of lower variable (these values are the percentage of the blogs that

contain corresponding words). High frequency words are not really useful because they don’t

distinguish one blog with others, and low frequency words are too unique so that users almost never

use them as the query terms. We set the value of lower to 0.1 and the value of upper to 0.25. This is

not the ideal limits; in [10] the author suggests to use the minimum desired cluster size as the lower

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 114

limit and 0.4 as the upper limit. We use these values to keep the size of datasets small enough to

allow PARAFAC decomposition being applied.

Algorithm 4 is used to transform the output of Algorithm 3 (characteristic matrix) into adjacency

tensor. This tensor will be decomposed by using PARAFAC algorithm to produce the co-clustering

of blogs and shared words in the next section. Note that colon symbol (:) denotes full range of the

given index.

Algorithm 4. Function to transform the characteristic matrix into adjacency tensor.

1. function matrixToTensor(blogsmatrix = createCharMatrix()) {

2. int K = length(blogsmatrix[0][:]);

3. int I = length(blogsmatrix[:][0]);

4. adjTensor = tensor();

5. for int k = 0, 1, …, K-1 {

6. for int i = 0, 1, …, I-1 {

7. adjTensor [i][:][k] = blogsmatrix[:][k];

8. adjTensor [i][i][k] = 0;

9. if (blogsmatrix[i][k] == 0)

10. adjTensor [i][:][k] = 0;

11. }

12. }

13. temp = adjTensor;

14. for int k = 0, 1, …, K-1 {

15. for int j = 0, 1, …, I-1 {

16. for int i = 0, 1, …, I-1 {

17. if (adjTensor[i][j][k] != 0)

18. adjTensor[i][j][k] = adjTensor[i][j][k] + temp[j][i][k];

19. }

20. }

21. }

22. return adjTensor;

23. }

The data preparation described in Algorithm 1-4 is equivalent to manipulating the blog dataset

into labeled link network. Fig. 2 gives an example of the manipulation process and the extraction of

the adjacency tensor from the network. Because the network is constructed from bipartite graph, the

result is undirected, thus each frontal slice of the tensor (adjacency matrix for each shared word) is a

symmetric matrix.

IV. PARAFAC Tensor Decomposition

The PARAFAC decomposition is a higher-order analogue technique to the SVD, but the vectors

produced by the PARAFAC are not generally orthogonal as the case in the SVD [15]. The

PARAFAC decomposition approximates a 3-way tensor by the sum of R rank-1 outer products of

vectors hr, ar, and tr as shown in Fig. 3. Vector hr is hub vectors, ar is authority vectors, and tr is

term vectors for each rank r. PARAFAC decomposition of tensor X can be written as [14]:

 



R

r

rrrr

1

tahTA,H,λX  (1)

International Journal of Information Technology, Vol. 15 No. 1, 2009

115

Blog A

------- Word 1 ------- Word 2 ---

----- Word 1 ------ Word 2 -----

------- Word 3 -------- Word 2 --

------------------- Word 1 ---------

--- Word 1 --------- Word 1 -----

---- Word 1 ---------------------

Blog B

------ Word 3 ---- Word 2 -------

Word 3 --- Word 3 --- Word 1

---------------------- Word 3 ------

-------------------------- Word 3 --

Blog C

--------------------------- Word 2 -

----------------------- Word 2 -----

Blog D

----------------------- Word 3 -----

------------------- Word 2----------

---------- Word 2 --- Word 2 ----

----------- Word 2 -----------------

------------------ Word 2----------

(a) The blog dataset



















150

020

511

136A

B

C

D

1 2 3

(b) The characteristic matrix

(blog vs. word)

A C DB

1 2 3

6

3
1

1 1

5

2

5

1

(c) Bipartite graph representation

A B

C D

Word1: 7

Word2: 4

Word3: 6

W
o

rd
2

:
5

W
ord2: 8W

ord3: 2

W
ord2: 3

W
o

rd
2

:
6

W
o

rd
3

:
6

Word2: 7

(d) Labeled-link network model



















0000

0000

0007

0070



















0768

7035

6304

8540



















0062

0000

6006

2060

Word 1

Word 2

Word 3

A B C D

A

B

C

D

(e) The adjacency tensor

Fig. 2. The labeled-link network construction and adjacency tensor extraction.

(a) 3-way adjacency tensor

nodes

n
o

d
e

s
te

rm
s

r = 1 r = 2

≈ + + ···

r = R

h1

a1

t1

h2

a2

t2

hR

aR

tR

(b) Its PARAFAC decomposition representation

Fig. 3. (a) 3-way adjacency tensor of the network, and (b) its R rank-1 PARAFAC decomposition.

where H, A, and T is the hub, authority and term matrices of R rank-1 X decomposition, ○ is outer

vectors product, and λr (λ1 ≥ λ2 ≥ ··· ≥ λR) is the weight for each group r. H, A, and T are formed by

arranging vectors hr, ar, and tr such that:

      rrr tttTaaaAhhhH  212121 and,,  (2)

To calculate PARAFAC decomposition, greedy PARAFAC algorithm is used [14]. Algorithm 5

shows the algorithm. Symbol ||*||2 denotes L
2
 norm of a vector.

Algorithm 5. Greedy PARAFAC tensor decomposition.

1. function parafac(X = matrixToTensor(), rank, ε) {

2. int N = length(X[0][:][0]);

3. int M = length(X[0][0][:]);

4. double λ =1;

5. x, y, z, Ψ = array();

6. H, A, T = matrix();

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 116

7. for int l = 0, 1, …, rank-1 {

8. for int n = 0, 1, …, N-1 {

9. x[n] = 1;

10. y[n] = 1;

11. }

12. for int m = 0, 1, …, M-1

13. z[m] = 1;

14.
222

zyx ;

15. do {

16. θ = δ;

17.   





2

0
32][:][][:][][:][][

l

r

TT rrrr TzAyHΨzyXx ;

18.   





2

0
31][:][][:][][:][][

l

r

TT rrrr TzHxAΨzxXy ;

19.   





2

0
21][:][][:][][:][][

l

r

TT rrrr AyHxTΨyxXz ;

20. x = normalize(x);

21. y = normalize(y);

22. z = normalize(z);

23.
222

zyx ;

24. } while (|θ – δ| < ε);

25. h = x; a = y; t = z; λ = δ;

26. Ψ[l] = λ;

27. for int n = 0, 1, ..., N-1 {

28. H[n][l] = h[l];

29. A[n][l] = a[l];

30. }

31. for int m = 0, 1, ..., M-1

32. T[m][l] = t[l];

33. }

34. return H, A, T, Ψ ;

35. }

There are 3 types of tensor-vector multiplications in Algorithm 5: 1 , 2 , and 3 . A 3-way

tensor if multiplied by a vector will become a matrix. But different from a matrix-vector

multiplication, the tensor has 3 dimensions, so there are 3 possibilities of multiplying a tensor with a

vector. The operation 1 , 2 , and 3 accommodate these possibilities. Eq. (3) gives examples of 1 ,

2 , and 3 operations, where X is a 3-way tensor, u is a vector, and Hi (i = 1, 2, 3) are matrices.

33

1

332121333

22

1

232131222

11

1

132132111

1 where,)(),,(),(

1 where,)(),,(),(

1 where,)(),,(),(

3

3

2

2

1

1

IiiuiiiXiiH

IiiuiiiXiiH

IiiuiiiXiiH

I

i

I

i

I

i



















uXH

uXH

uXH

 (3)

International Journal of Information Technology, Vol. 15 No. 1, 2009

117

There are also sequences of tensor-vector multiplications in Algorithm 5. The results of the

sequence multiplications (line 17, 18, and 19) are vectors because the tensor is multiplied twice by

two vectors. There is an important issue in the sequence multiplication. As shown in eq. (3), the

result of the multiplication always reduces the dimension of the tensor, and because the

multiplications are performed one by one, there is possibility that the corresponding dimension no

longer exists due to the dimensional reduction. Eq. (4) gives an example of such condition.

   zyXx 32  (4)

The result of yX 2 is a matrix, consequently the third dimension no longer exists. Thus 3

operation can no longer be performed. Eq. (5) gives definition of the tensor-vector sequence

multiplications to deal with this problem [28].

 
 








 nm

nm

nm

nm

nm
 if

 if

1 vuX

vuX
vuX (5)

And because in the greedy PARAFAC algorithm m < n, the second definition is used,

  vuXvuX 1 nmnm .

Algorithm 6 summarizes the process of weblog clustering from the data preparation to tensor

decomposition step.

Algorithm 6. Summary of the weblog clustering using PARAFAC tensor decomposition.

1. Store list of blog rss feeds in “blogfeedlist” file

2. Store list of stop words in “stopwords” file

3. Get blogs content:

blogscontent = getFeedsContent(readFile(“blogfeedlist”))

4. Extract blogs characteristic matrix from contents of the blogs:

blogsmatrix = createCharMatrix(blogscontent)

5. Transform characteristic matrix into adjacency tensor:

X = matrixToTensor(blogsmatrix)

6. Pick decomposition rank R and a small constant ε and do decomposition on X to get H, A, T, and Ψ:

 H, A, T, Ψ = parafac(X, R, ε)

V. Experimental Results

We decompose the tensor of each dataset into 2, 4, …, 14 groups. Our codes for download and data

preparation steps are written in python by using Universal Feed Parser module
6
 for parse() function

(see Algorithm 2), and for decomposition step are written in MATLAB by using MATLAB Tensor

Toolbox
7
 [29]. The codes are executed in notebook with Mobile AMD processor 3000+ and 480 MB

DDR RAM. The maximum number of groups, 14, was not chosen but the maximum number that our

computer can process due to the memory limitation. The computational time increases rapidly as the

number of groups increases, with approximately 1.5 hour for first dataset and 1.8 hour for second

dataset for 14-group decomposition. Table 1 and 2 show the results for 4-group decomposition.

6
 http://www.feedparser.org/

7
 http://www.models.kvl.dk/source/nwaytoolbox/

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 118

Table 1. Four-group decomposition for first dataset.

 First Group Second Group

Blog Score Word Score Blog Score Word Score
Deadspin 0.2893 american 0.2934 Deadspin 0.3219 american 0.2917
Gizmodo 0.2683 cases 0.2647 Gizmodo 0.2791 cases 0.2716
PW 0.2283 government 0.2124 PW 0.2342 government 0.2231
NewsBusters.org 0.2235 facts 0.2003 Consumerist 0.2066 facts 0.1950
Salon, Glenn
Greenwald

0.2206 official 0.1774 NewsBusters.org 0.1999 official 0.1815

Consumerist 0.2019 countries 0.1773 Lifehacker 0.1976 countries 0.1736
Lifehacker 0.1927 president 0.1682 Defamer 0.1886 administration 0.1670
Gawker 0.1854 order 0.1624 Gawker 0.1875 order 0.1619
Stepcase Lifehack 0.1778 administration 0.1560 Bollywood and Cricket 0.1821 president 0.1499
Defamer 0.1769 claim 0.1390 Jalopnik 0.1730 court 0.1387
...

 Third Group Fourth Group

Blog Score Word Score Blog Score Word Score
PW 0.44078 term 0.07075 Gizmodo 0.36531 apple 0.33161
The Unofficial Apple Weblog 0.29312 feed 0.06948 Lifehacker 0.29706 users 0.31632
Engadget 0.28701 roll 0.02122 The Unofficial Apple Weblog 0.28522 search 0.22253
Joystiq [Xbox] 0.27705 beginning 0.01338 Mashable! 0.26911 iphone 0.21675
Joystiq 0.27639 low 0.01299 ReadWriteWeb 0.20867 application 0.19533
Luxist 0.26193 sales 0.01166 Stepcase Lifehack 0.18556 windows 0.17675
Gadling 0.24983 white 0.01149 The Official Google Blog 0.17158 store 0.15905
Download Squad 0.20966 bit 0.01138 Download Squad 0.16017 mobile 0.15565
TV Squad 0.20943 apple 0.01087 Free Real Traffic to Your Blog 0.15640 download 0.15297
Autoblog 0.20684 store 0.01037 PW 0.15460 social 0.1491
... …

Table 2. Four-group decomposition for second dataset.

 First Group Second Group

Blog Score Word Score Blog Score Word Score
Contrary Brin 0.28917 suggestion 0.34724 The Writing Show 0.28019 character 0.41977
Writing well is the best
revenge

0.22315 nations
0.22647

Writing well is the best
revenge

0.24459 novel 0.32174

WOW! Women On
Writing Blog

0.20731 american
0.22327

WOW! Women On
Writing Blog

0.23399 agent 0.20159

The Writing Show 0.19113 obama 0.16663 Luc Reid 0.22835 join 0.16947
Luc Reid 0.18307 politics 0.16641 Blog Fiction 0.19351 author 0.13254
Six Pixels of Separation 0.17633 president 0.13191 Kim's Craft Blog 0.18505 chapter 0.10687
Silliman's Blog 0.17114 america 0.11149 Killer Fiction 0.17404 contest 0.10521
Write Better 0.16631 order 0.09754 Ask Allison 0.17174 mysterius 0.09959
Writer Beware Blogs! 0.16551 war 0.09223 Writer Beware Blogs! 0.16436 editor 0.09833
Blog Fiction 0.16277 effect 0.08813 Spina Bifida Moms 0.15873 literary 0.09772
...

 Third Group Fourth Group

Blog Score Word Score Blog Score Word Score
PR 2.0 0.43184 twitter 0.50665 Poets.org 0.49855 poetry 0.69627
Six Pixels of Separation 0.29547 community 0.38279 Silliman's Blog 0.31082 poem 0.62861
Search Engine Guide 0.18448 network 0.27929 Poets Who Blog 0.27703 celebrity 0.09291
Chris Garrett on New
Media

0.17712 conversion 0.25382 Harriet 0.24965 literary 0.07892

Marketing Profs Daily Fix 0.17524 facebook 0.22431 Poetry & Poets in Rags 0.21138 nation 0.07756
Writing well is the best
revenge

0.17013 brand 0.19333 Creative Writing Contests 0.20100 american 0.07611

The Writing Show 0.16423 customer 0.17262 WOW! Women On Writing Blog 0.19192 interview 0.07394
WOW! Women On
Writing Blog

0.16418 connection 0.16602 The Writing Show 0.19076 contest 0.07386

The Urban Muse 0.14707 relation 0.12927
Writerswrite.com's Writer's
Blog

0.18135 award 0.06302

Write Better 0.14459 advertisement 0.12124
Mike's Writing Workshop &
Newsletter

0.17831 collection 0.04723

... …

International Journal of Information Technology, Vol. 15 No. 1, 2009

119

To evaluate clustering accuracy, we compare the tensor decomposition results with NMF results.

The reasons of choosing the NMF are: (1) the NMF is analogue to the PARAFAC decomposition in

two-dimensional space (while PARAFAC works in higher dimensions), (2) the NMF is preferable

than the SVD because it produces nonnegative vectors that are not necessarily be orthogonal, so the

vectors are more corresponding to the topics [16], and (3) the NMF produces superior results,

especially if NC weighted scheme is used [16].

Eq. (6) gives formulation of the NMF:

 T
UVC  (6)

where C is the N×M blog-term matrix, U is nonnegative N×R blog-factor matrix, and V is

nonnegative M×R term-factor matrix. The problem is how to find U and V that approximate C. The

method used here to find U and V is based on multiplicative update rules [30]. And in order to get

the superior results, NC weighted (NMF-NCW) scheme is chosen. In NMF-NCW, normalized

version of C is used instead.

 T
UVC  (7)

where C
*
 = C(diag(C

T
Ce))

-1/2
. To alleviate the local optima trap problem associated with the NMF,

10 trials are performed for each factorization and the best result is picked as the solution. As stated

earlier, standard metrics like F-measure, Purity, Entropy, Mutual Information, and Accuracy, cannot

be used because no information about predefined clusters is available. Here we define two metrics to

assess the quality of the results without the need of the predefined clusters.

The first metric is similarity measure that indicates the similarities between the decomposition/

factorization results and the standard measures. In search engine researches, similarity measure is

used to compare the results returned by certain ranking algorithm to the standard measures. For

example, the results of query “barack obama” returned by a search engine is compared to the user

votes (standard measures) for the same query to measure the quality of the ranking algorithm

implemented by the search engine. We borrow this idea to formulate the metric. But because the

results returned by the tensor decomposition are matrices (H, A, and T), they must be converted into

blog and word vectors first by using blog and word queries. And because the queries and the groups

to be found can be blog or word vectors, there are four possibilities in the query-result relationships

as shown in Table 3.

As the standard measures, because user votes for any specific queries are not available, matrix C

is used instead. This choice is intuitive because entries of C are exact, so it doesn’t produce errors or

approximate values. Before similar/relevant groups to the queries can be found, the blog’s similarity

matrix B and word’s similarity matrix W must be calculated in advanced. Let N be the number of

blogs and M be the number of words, B is N×N matrix with its entries defined as:

   Njijiji  ,1,:),(:),,(cos),(CCB (8)

and W is M×M matrix with its entries defined as:

   Mqpqpqp  ,1,)(:,),(:,cos),(CCW (9)

Table 3. Query - result relationship

Query Similar/relevant group to be found

Blogs Blogs

Blogs Shared words

Shared Words Blogs

Shared words Shared words

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 120

2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decomposition Group

S
im

ila
ri
ty

 M
e
a
s
u
re

Task 1
Task 2
Task 3
Task 4

2 4 6 8 10 12 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decomposition Group

S
im

ila
ri
ty

 M
e
a
s
u
re

Task 1
Task 2
Task 3
Task 4

Fig. 4. Similarity measures for PARAFAC decomposition, first dataset (left) and second dataset (right).

2 4 6 8 10 12 14
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Factor

S
im

ila
ri
ty

 M
e
a
s
u
re

Task 1
Task 2
Task 3
Task 4

2 4 6 8 10 12 14

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Factor

S
im

ila
ri
ty

 M
e
a
s
u
re

Task 1
Task 2
Task 3
Task 4

Fig. 5. Similarity measures for NMF method, first dataset (left) and second dataset (right).

Table 4. Standard and decomposition result vectors formulations.

 Task 1 Task 2 Task 3 Task 4

vstd Cqword C
T
qblog Bqblog Wqword

vdec H
T
Tqword TH

T
qblog HH

T
qblog TT

T
qword

There are two query vectors, N×1 blog’s query vector qblog, and M×1 word’s query vector qword,

where the entries are ones if the corresponding blogs/words appear in the queries and zero otherwise.

Because we are only interested in the average quality of the results, and not in evaluating specific

cases, all entries are set to ones: qblog = ones(N,1) and qword = ones(M,1). Table 4 gives the

formulations of standard vector, vstd, and decomposition result vector, vdec, for all four tasks:

1 Task 1: Find the most relevant blogs to words query,

2 Task 2: Find the most relevant words to blogs query,

3 Task 3: Find the most similar blogs to blogs query, and

4 Task 4: Find the most similar words to words query.

For the NMF case, vstd and vdec formulations are equivalent; simply by replacing H with U and T

with V.

The similarities between vstd and vdec are calculated by using cosine criterion. Fig. 4 shows the

results for the PARAFAC decomposition and Fig. 5 for the NMF method.

In the PARAFAC decomposition, there are strong patterns for both datasets; while task 1 and 3

maintain good results for all decomposition groups, task 2 and 4 give unsatisfactory results. Because

task 1 and task 3 are the standard way in utilizing blog search engines and apparently there is no

practical use of task 2 and 4, these results are promising for indexing purpose.

International Journal of Information Technology, Vol. 15 No. 1, 2009

121

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Decomposition group

F
ra

c
ti
o
n
 o

f
o
v
e
rl
a
p Top 10

Top 20
Top 30

2 4 6 8 10 12 14

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Decomposition group

F
ra

c
ti
o
n
 o

f
o
v
e
rl
a
p

Top 10
Top 20
Top 30

Fig. 6. Fractions of overlap for PARAFAC decomposition, first dataset (left) and second dataset (right).

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Factor

F
ra

c
ti
o
n
 o

f
O

v
e
rl
a
p

Top 10
Top 20
Top 30

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Factor

F
ra

c
ti
o
n
 o

f
o
v
e
rl
a
p

Top 10
Top 20
Top 30

Fig. 7. Fractions of overlap for NMF method, first dataset (left) and second dataset (right).

In general, the NMF produces better and stable results for all tasks in average. But for the

important tasks, task 1 and task 3, there are only small differences between these two methods, so it

cannot be implied that the NMF is better than the PARAFAC decomposition in the similarity

measure metric.

The second metric is fraction of overlap that calculates the percentages of overlapping blogs in

all blog lists for each decomposition/factorization group. Because the co-clustering is done by

sorting the lists of blogs and words in decreasing order (see Table 1 and 2) and the members of each

blog list differ only in the orders, if the complete lists are used, the fractions of overlap become 1s.

Also because the important aspect of this arrangement is to group the most similar and important

blogs with their descriptive shared words, it is natural to use only top ranked blogs. Here we

calculate the fractions of overlap for top 10, 20, and 30 blogs only.

In addition to its main function, this metric also has another important role; it can be used to

reveal whether a clustering method is able to distinguish the important blogs from the less important

ones. If the method has this ability, it will produce high values of overlapping because the important

blogs tend to be ranked in the top of the lists. Fig. 6 and 7 show the results for PARAFAC

decomposition and NMF method respectively.

In Fig. 6, the overlaps are increasing as the number of decomposition groups and the number of

top ranked blogs are increasing. This tendency looks consistent for all plots and datasets. There are

anomalies in 10-group in the first dataset. This happens because all 10 blog vectors in the group are

repeating each others. If we ignore it, the plots are almost identical for both datasets.

As shown in Fig. 7, the results of the NMF are quite the same. The important difference is the

number of overlap produced by the NMF is smaller than the PARAFAC decomposition. There are

twofold implications: the NMF produces more distinct topical clusters, and the PARAFAC

decomposition produces clusters that contain more information about the degree of importance of

Andri Mirzal

Weblog Clustering in Multilinear Algebra Perspective

 122

the blogs. In the quest of co-clustering the most similar and important blogs with their relevant

shared words, the information about the degree of importance is more desirable than the distinct

clusters. Thus, the PARAFAC decomposition is preferable than the NMF in this task.

V. Conclusion

This paper discusses the possibility of using PARAFAC decomposition in co-clustering the most

similar and important blogs with their contents. From similarity measure and fraction of overlap

calculations, it can be concluded that this method can be used to group the most similar and

important blogs with their most descriptive shared words. The main drawback of this method is the

computational costs to perform the calculations. We will address this problem in the future research

by using optimization techniques, sparse tensor format, and memory management between RAM

and harddisk.

References

[1] M.E.J. Newman, "Clustering and Preferential Attachment in Growing Networks," in Phys. Rev. E 64,

025102, 2001.

[2] M.E.J. Newman, "Finding Community Structure in Networks Using the Eigenvectors of Matrices," in

Phys. Rev. E 74, 036104, 2006.

[3] I.S. Dhillon, Y. Guan, and B. Kulis, "Kernel K-means: Spectral Clustering and Normalized Cuts," in

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 551-556, 2004, ACM Press.

[4] A.N. Langville and C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine

Rankings, Princeton University Press, 2006.

[5] I.S. Dhillon, "Co-clustering documents and words using bipartite spectral graph partitioning," in

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 269-274, 2001, ACM Press.

[6] N.O. Andrews and E.A. Fox, "Recent Developments in Document Clustering," Technical Report TR-

07-35, Computer Science, Virginia Tech, 2007.

[7] J. B. Kruskal and M. Wish, Multidimensional Scaling, Sage Publications, Beverly Hills, 1977.

[8] T. Segaran, Programming Collective Intelligence: Building Smart Web 2.0 Applications, O’Reilly

Media Inc., 2007.

[9] J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations,"

Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability," Berkeley,

University of California Press, 1:281-297, 1967.

[10] M. Konchady, Text Mining Application Programming, Charles River Media, 2006.

[11] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by Simulated Annealing," Science,

220, 4598, pp. 671-680, 1983.

[12] J.H. Holland, "The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Performance,"

Proceedings of the First European Conference on Artificial Life. MIT Press. 1992

[13] Y. Kawachi, S. Yoshii, and M. Furukawa, "Labeled Link Analysis for Extracting User Characteristics

in E-commerce Activity Network," in Proceedings of the 2006 IEEE/WIC/ACM International

Conference on Web Intelligence, pp. 73-80, 2006.

[14] T.G. Kolda, B.W. Bader, and J.P. Kenny, "Higher-Order Web Link Analysis Using Multilinear

Algebra," in Proceedings of the 5th IEEE International Conference on Data Mining, pp. 242-249, 2005.

[15] T.G. Kolda and B.W. Bader, "The TOPHITS Model for Higher-Order Web Link Analysis," in

Workshop on Link Analysis, Counterterrorism and Security, 2006.

[16] W. Xu, X. Liu, and Y. Gong, "Document Clustering Based on Non-negative Matrix Factorization,"

Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pp. 267-273, 2003.

International Journal of Information Technology, Vol. 15 No. 1, 2009

123

[17] X. Liu, Y. Gong, W. Xu, and S. Zhu, "Document Clustering with Cluster Refinement and Model

Selection Capabilities," Proceedings of the 25th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 191-198, 2002, ACM Press.

[18] R. Neal and G. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and other

Variants," Learning in Graphical Models, Kluwer, 1998.

[19] A. Banerjee, I.S. Dhillon, J. Ghosh, and S. Sra, "Clustering on the Unit Hypersphere using von Mises-

Fisher Distributions," J. Mach. Learn. Res., Vol. 6, pp. 1345-1382, 2005.

[20] S. Zhong and J. Ghosh, "Scalable, Balanced Model-based Clustering," Proceedings Third SIAM

International Conference Data Mining, pp. 71-82, 2003.

[21] D. Cheng, S. Vempala, R. Kannan, and G. Wang, "A Divide-and-merge Methodology for Clustering,"

Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, pp. 196-205, 2005, ACM Press.

[22] W.C. Tjhi and L. Chen, "Fuzzy Co-clustering of Web Documents," Proceedings of the 2005

International Conference on Cyberworlds, pp. 545-551, 2005, IEEE Computer Society.

[23] S. Wild, J. Curry, and A. Dougherty, "Improving Non-negative Matrix Factorization through Structured

Initialization," Pattern Recognition, Vol. 37, pp. 2217-2232, 2004.

[24] A.N. Langville, C.D. Meyer, and R. Albright, "Initialization for the Nonnegative Matrix Factorization,"

Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2006.

[25] S.M. zu Eiben, B. Stein, M. Potthast, "The Suffix Tree Document Model Revisited," Journal of

Universal Computer Science, pp. 596-063, 2005

[26] K.M. Hammouda and M.S. Kamel, "Efficient Phrase-based Document Indexing for Web Document

Clustering," IEEE Transactions on Knowledge and Data Engineering, 16(10):1279-1296, 2004.

[27] C.J. van Rijsbergen, S.E. Robertson, and M.F. Porter, “New Models in Probabilistic Information

Retrieval,” British Library Research and Development Report, No. 5587, 1980.

[28] B.W. Bader and T.G. Kolda, "MATLAB Tensor Classes for Fast Algorithm Prototyping," Sandia

Report SAND2004-5187, 2004.

[29] C. A. Andersson and R. Bro, "The N-way toolbox for MATLAB," in Chemometrics & Intelligent

Laboratory Systems, 52(1):14, 2000.

[30] D.D. Lee and H.S. Seung, "Algorithms for Non-negative Matrix Factorization," Nature, 401:788-791,

1999.

Andri Mirzal is a Doctoral course student in Graduate School of Information

Science and Technology, Hokkaido University. He received Bachelor of

Engineering from Department of Electrical Engineering, Institute of

Technology Bandung and Master of Information Science and Technology

from Hokkaido University. His research interests are in complex networks,

web search engine, and document clustering.

