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Abstract 

 

This paper describes a clustering method to group the most similar and important weblogs with their 

descriptive shared words by using a technique from multilinear algebra known as PARAFAC tensor 

decomposition. The proposed method first creates labeled-link network representation of the weblog 

datasets, where the nodes are the blogs and the labels are the shared words. Then, 3-way adjacency 

tensor is extracted from the network and the PARAFAC decomposition is applied to the tensor to get 

pairs of node lists and label lists with scores attached to each list as the indication of the degree of 

importance. The clustering is done by sorting the lists in decreasing order and taking the pairs of top 

ranked blogs and words. Thus, unlike standard co-clustering methods, this method not only groups 

the similar blogs with their descriptive words but also tends to produce clusters of important blogs 

and descriptive words. 

 

Keyword: clustering method, multilinear algebra, PARAFAC tensor decomposition, weblogs 

 

I. Introduction 

 

The researches on network clustering have a long tradition in computer science, especially on 

neighborhood-based network clustering category, where the nodes are being grouped together if they 

are in the vicinity and have a higher-than-average density of links connecting them [1]. An example 

of this category is in parallel computing and distributed computation where n tasks are divided into 

several processes that to be carried out by a separate program or thread running on one of m different 

processors [2]. 

In more general case where the links are weighted according to some particular criteria like 

similarity measures or distance between two nodes, the clustering tasks can be accomplished by 

finding good cuts on the network that optimize certain predefined criterion functions. This is usually 

done by using a technique called spectral clustering that has been emerged as one of the most 

effective tools for document clustering [3]. Under certain conditions, the optimization of the 

criterion functions in spectral clustering is an equivalent problem to computing the singular value 

decomposition (SVD) of the matrix that captures the relationship between the nodes [5]. But because 

the vectors produced by SVD are orthogonal, the results usually do not directly correspond to the 
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real clusters and consequently second phase of processing is needed to refine the results. A variety of 

algorithms (e.g. k-means) can be used for this phase [6]. 

Other famous methods based on similarity matrix can also be used for this category. The direct 

method is multidimensional scaling that simply projects the similarity measures between all node 

pairs in two-dimensional space [7, 8]. This method is computationally expensive because it has to 

calculate the similarities of all pairs, thus other more advanced methods that only calculate partial 

similarities, like k-means [9, 10], simulated annealing [11, 10], and genetic algorithms [12, 10] are 

usually being used instead. But due to the incomplete calculations, these methods are subjected to 

the local optima trap. 

In addition to the neighborhood-based network clustering, there is another clustering category 

that works on labeled-link network; the nodes are in the same group if they share set of similar 

labels. In online auction networks, this method can be used to find similar users, and then by 

utilizing user’s preferences in buying and selling activities, a recommendation system can be 

proposed [13]. In hyperlinks environment like web pages, this method can group similar domains 

with their descriptive hypertexts [14]. Fig. 1 shows the two clustering categories conceptually. In (a), 

there are two clusters which are well connected within the clusters and only have one link connects 

them. Conversely, in (b), node 1 and 2 are in the same group due to the similarity in their labels even 

though they are not connected at all. 

 

1 2

x

y

z x

y

z

(a) (b)
 

Fig. 1. Clustering based on neighborhood (a), and based on link’s labels (b). 
 

In this paper, we describe a clustering method to group the most similar and important weblogs 

with their descriptive shared words by using PARAFAC tensor decomposition. In the document 

clustering research, this is known as co-clustering problem and has been extensively studied because 

of its practical uses.  

The PARAFAC decomposition is closely related to matrix factorization techniques (see section 

II.B), but instead of working in two-dimensional document-feature matrix, this method extract three-

dimensional document-document-feature tensor from labeled-link network model of the dataset (see 

Fig. 2). The benefit of this model is the degree of importance of the blogs can be revealed because 

PARAFAC decomposition gives higher scores to well connected nodes [14, 15]. Thus important 

blogs tend to be placed in higher ranks. 

This work is motivated by Kolda et al. [14] where they model the web pages as the labeled-link 

network (the nodes are the pages and the labels are the hypertexts), construct the adjacency tensor of 

the network, and apply tensor decomposition to find the grouping of the pages and the relevant 

hypertexts. We extend this idea by using contents of the documents instead of the hypertexts, and 

consequently this task becomes the co-clustering problem. The challenge of weblogs clustering is 

not a trivial problem. Different from well prepared datasets like TDT2
1
 and Reuters

2
 document 

corpora, weblog datasets contain no information about predefined clusters that can be used to 

compare the results. Thus standard metrics like F-measure, Purity, Entropy, Mutual Information [6], 

and Accuracy [16] cannot be used to measure the quality of the results. Also with the tendency of 

user-centric contents in the Web 2.0 era, the blogs have already become very important information 

                                                 
1
 http:///www.nist.gov/speech/tests/tdt/tdt98/index.htm 

2
 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html 
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sources. So, the ability to co-cluster the most important blogs will be valuable in assisting the 

building of the indices for searching. 

 

II. Related Works 

 

There are many algorithms or combination of algorithms that can be used in the co-clustering 

problem. We divide the important algorithms into two categories. 

 

A. Document-document clustering 

Almost all clustering algorithms can be extended in co-clustering problem by finding the most 

relevant features for each cluster. This task is also known as the problem of finding the cluster 

centroids. Note that feature is used instead of term/word to emphasize the fact that the 

documents actually being characterized by their discriminative features. These features are not 

limited to words and phrases only, but also formatting tags (e.g. in html files), and even 

(although very rare) some special characters or punctuations. 

There are two classes of algorithms that are widely being used in this category [6]. The first 

is the discriminative algorithms that are based on the similarity measures of document pairs, 

for example: multidimensional scaling, k-means algorithms, simulated annealing, and genetic 

algorithms. And the second is the generative algorithms that make assumption about the 

distribution of the data to create model estimation and then use iterative procedure to alternate 

between the model and the document assignment. The examples are Gaussian model [17], 

expectation-maximization (EM) algorithm [18], von Mises-Fisher (vMF) model [19], and 

model-based k-means algorithm [20]. 

 

B. Document-feature clustering 

In this category, the co-clustering problem is handled directly. Some of the algorithms are 

spectral clustering, matrix factorization, and phrase-based model [6]. 

Spectral clustering builds bipartite graph representation of the documents and then finds good 

cuts on the graph to optimize predefined objective functions. Because there are two type of 

nodes (document and feature), the result gives the clusters of similar documents with relevant 

features. Examples of spectral clustering are divide-and-merge method [21] and fuzzy co-

clustering [22]. 

Matrix factorization is a technique to approximate a matrix (A) by the sum of K matrices (Ak, 

k = 1, 2, …, K) that each is produced by cross product of a pair of vectors. This technique not 

only reduces data size, but also can increase clustering accuracy because it can reveal the latent 

relationship between different features that coexist in several documents. If the features are 

words, this technique can solve synonym problem by indexing not only the words appear in the 

documents but also other words that are mutually coexistence in other documents. After the 

matrix is factorized, the clustering results are obtained by finding in which factorization group 

a document or a feature has the highest score. This group is the cluster label for the 

corresponding document or word. Two famous matrix factorization techniques are SVD and 

nonnegative matrix factorization (NMF). While SVD produces orthogonal vectors that can 

contain negative terms, NMF produces nonnegative vectors that are not necessarily be 

orthogonal. Because of these characteristics, NMF is better than SVD in finding clusters in the 

document collection [16], and can be directly utilized as a clustering method. The problem 

associated with NMF is it depends on initialization; the same data with different initializations 

will produce different results. Some methods can be used to overcome this drawback, like 

using spherical k-means to produce vector seeds for NMF [23], or implementing initialization 

strategies to produce stable results [24]. 
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Phrase-based models try to overcome the weakness in the vector space models by not only 

encoding the words but also the sequence of the words. Two examples are suffix tree clustering 

[25] that uses shared suffixes from sentences to identify base clusters of the documents, and 

document index graph [26] that represents each word as a vertex in a directed multigraph. 

 

III. Data Preparation 

 

To conduct the experiment, we use two datasets. The first is from technorati’s top 100 blogs
3
 by fans 

and top 100 blogs by authorities downloaded on February 6
th

, 2009. The number of non overlapping 

blogs is 147 (successful downloaded blogs is 140) and the number of words is 9689 (600 words after 

filtering mechanism is applied). The second dataset is from three sites
4
 downloaded on the same 

date. The number of non overlapping blogs is 155 (successful downloaded blogs is 152) and the 

number of words is 9099 (592 after filtering mechanism is applied). Note that because tensor 

decomposition is an expensive method, the number of used words is limited to only about 600. 

The filtering mechanism is built to filter out punctuations, tags, stop words, and words that have 

less discrimination power in clustering like high frequency and very low frequency words, and to 

stem the words. The stemming algorithm used is porter stemmer [27], a de facto standard stemming 

algorithm in information retrieval (IR). Further, the filtering is also adapted before the data is fetched 

by using only contents from blog’s rss feeds. 

Algorithm 1 is used to fetch feeds from list of the rss feeds in “blogfeedlist” text file, parse the 

contents, and return a dictionary that holds information about the blog’s names as the keys and the 

contents as the values. A dictionary, also known as associative memories or associative arrays, is a 

datatype that holds pairs of keys and values. Unlike vector or array which is indexed by integers, a 

dictionary is indexed its keys. In Algorithm 1, blogscontent (a dictionary) holds blog’s titles as the 

keys. The values of blogscontent itself are also dictionaries, which hold every word in a blog feed as 

the keys and the number of the appearance as the values. 

 
Algorithm 1. Function to create a dictionary of blog’s name as the keys and their contents as the values. 

 

1. function getFeedsContent(blogfeedlist = readFile(“blogfeedlist”)) { 

2.     blogscontent = dictionary(); 

3.     for each feedurl in blogfeedlist { 

4.         try: 

5.             title = getTitle(feedurl); 

6.             blogscontent [title] = wordCount(feedurl); 

7.         exception: 

8.             printscreen(“Failed to fetch the feed”); 

9.             continue to the next feedurl; 

10.     } 

11.      return blogscontent; 

12. } 

 

 

Algorithm 2 describes the wordCount() function (used in Algorithm 1) that takes a feed’s url and 

list of stop words
5
 as the inputs and returns a dictionary of unique words in the feed as the keys and 

the number of appearance of those words as the values. Note that the words are weighted based on 

                                                 
3
 http://technorati.com/pop/ 

4
 http://www.bestcollegesonline.com/blog/2009/02/05/top-100-creative-writing-blogs/, http://www.bestbloglist.com/top-  

  50-blogs.html, and http://adage.com/power150/ 
5
 http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words 
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their locations in the feed; the description is given highest weight, 10, because this is the place where 

the authors describe their blog’s themes. The next location, the title of the post, is given weight of 3, 

and each word in the post is given weight of 1. The blog title itself is not used because there are 

many cases where the blog’s title doesn’t reflect its contents. 

 
Algorithm 2. Function to list unique words in a blog feed and count their appearances. 

 

1. function wordCount(feedurl, stopwords = readFile(“stopwords”),  

2.           int descriptionweight = 10, int posttitleweight = 3, 

3.           int wordweight = 1) { 

4.     wordscount = dictionary(); 

5.     content = parse(feedurl); 

6.     description = separateWords(content.description); 

7.     if (description != null) { 

8.         for each word in description { 

9.             if (word in stopwords) 

10.                 continue to the next word; 

11.             word = porterStemmer(word); 

12.             wordscount[word] += descriptionweight; 

13.         } 

14.     } 

15.     poststitle = separateWords(content.poststitle); 

16.     if (poststitle != null) { 

17.         for each title in poststitle { 

18.             if (title in stopwords) 

19.                 continue to the next title; 

20.             title = porterStemmer(title); 

21.             wordscount[title] += posttitleweight; 

22.         } 

23.     } 

24.     summaries = separateWords(content.summaries); 

25.     if (summaries != null) { 

26.         for each word in summaries { 

27.             if (word in stopwords) 

28.                 continue to the next word; 

29.             word = porterStemmer(word); 

30.             wordscount[word] += wordweight; 

31.         } 

32.     } 

33.     return wordscount; 

34. } 
 

 

The first step in reading the feed is to parse the content by using parse(), a function that reads 

feed’s xml file and stores the returned values in content (see section V for the implementation of 

this function). This variable has several member variables: description holds the description of the 

blog, poststitle holds titles of the post, and summaries holds summaries of the post. The second step 

is to separate words by using separateWords() that takes string as the input and returns a list of 

words in that string. We only consider any non alphanumeric characters as the separators, so words 

such as C++, Yahoo!, and AT&T, will not be correctly recognized as the complete words. The 

implementation of this function is not shown here because it is trivial to code it in any scripting 

languages. The last step is to filter the words out if they are in stopwords list and stem them before 

inputting to wordscount. 
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Algorithm 3. Function to create blog-word characteristic matrix (vector space model). 

 
1. function createCharMatrix(blogscontent = getFeedsContent(),  

2.          double lower = 0.1,  

3.          double upper = 0.25) { 

4.     blogslist = array(); 

5.     int i = 0; 

6.     for each blog in blogscontent { 

7.         blogslist[i] = blog; 

8.         i++; 

9.     } 

10.     count = dictionary(); 

11.     for each blog in blogslist { 

12.         for each word in blogscontent[blog] { 

13.             if (blogscontent[blog][word] > 1) 

14.                 count[word] += 1; 

15.         } 

16.     } 

17.     uniquewordslist = array(); 

18.     int i = 0; 

19.     for each blog in blogslist { 

20.         for each word in blogscontent[blog] { 

21.             percentage = count[word]/length(blogfeedlist); 

22.             if ((word not in uniquewordslist) and (lower < percentage < upper) ) { 

23.                 uniquewordslist[i] = word; 

24.                 i++; 

25.             } 

26.         } 

27.     } 

28.     blogsmatrix = matrix(); 

29.     int i, j = 0; 

30.     for blog in blogslist { 

31.         for word in uniquewordslist { 

32.             if (word in blogscontent[blog]) { 

33.                 blogsmatrix[i][j] = blogscontent[blog][word]; 

34.                 j++; 

35.             } 

36.             else 

37.                 blogsmatrix[i][j] = 0; 

38.         } 

39.         i++; 

40.     } 

41.     return blogsmatrix; 

42. } 

 

Algorithm 3 takes output from Algorithm 1 and returns blog-word characteristic matrix, 

blogsmatrix. This matrix is the vector space model of the dataset. For list of unique words, we filter 

out words that appear too often by setting the value of upper variable and words that appear only in a 

few blogs by setting the value of lower variable (these values are the percentage of the blogs that 

contain corresponding words). High frequency words are not really useful because they don’t 

distinguish one blog with others, and low frequency words are too unique so that users almost never 

use them as the query terms. We set the value of lower to 0.1 and the value of upper to 0.25. This is 

not the ideal limits; in [10] the author suggests to use the minimum desired cluster size as the lower 
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limit and 0.4 as the upper limit. We use these values to keep the size of datasets small enough to 

allow PARAFAC decomposition being applied. 

Algorithm 4 is used to transform the output of Algorithm 3 (characteristic matrix) into adjacency 

tensor. This tensor will be decomposed by using PARAFAC algorithm to produce the co-clustering 

of blogs and shared words in the next section. Note that colon symbol (:) denotes full range of the 

given index. 

 
Algorithm 4. Function to transform the characteristic matrix into adjacency tensor. 

 

1. function matrixToTensor(blogsmatrix = createCharMatrix()) { 

2.     int K = length(blogsmatrix[0][:]); 

3.     int I = length(blogsmatrix[:][0]); 

4.     adjTensor = tensor(); 

5.     for int k = 0, 1, …, K-1 { 

6.         for int i = 0, 1, …, I-1 { 

7.             adjTensor [i][:][k] = blogsmatrix[:][k]; 

8.             adjTensor [i][i][k] = 0; 

9.             if (blogsmatrix[i][k] == 0) 

10.                 adjTensor [i][:][k] = 0; 

11.         } 

12.     } 

13.     temp = adjTensor; 

14.     for int k = 0, 1, …, K-1 { 

15.         for int j = 0, 1, …, I-1 { 

16.             for int i = 0, 1, …, I-1 { 

17.                 if (adjTensor[i][j][k] != 0) 

18.                     adjTensor[i][j][k] = adjTensor[i][j][k] + temp[j][i][k]; 

19.             } 

20.         } 

21.     } 

22.     return adjTensor; 

23. } 

 

The data preparation described in Algorithm 1-4 is equivalent to manipulating the blog dataset 

into labeled link network. Fig. 2 gives an example of the manipulation process and the extraction of 

the adjacency tensor from the network. Because the network is constructed from bipartite graph, the 

result is undirected, thus each frontal slice of the tensor (adjacency matrix for each shared word) is a 

symmetric matrix. 

 

IV. PARAFAC Tensor Decomposition 

 

The PARAFAC decomposition is a higher-order analogue technique to the SVD, but the vectors 

produced by the PARAFAC are not generally orthogonal as the case in the SVD [15]. The 

PARAFAC decomposition approximates a 3-way tensor by the sum of R rank-1 outer products of 

vectors hr, ar, and tr as shown in Fig. 3. Vector hr is hub vectors, ar is authority vectors, and tr is 

term vectors for each rank r. PARAFAC decomposition of tensor X can be written as [14]: 

 

                                                      



R

r

rrrr

1

tahTA,H,λX       (1) 
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Fig. 2. The labeled-link network construction and adjacency tensor extraction. 
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Fig. 3. (a) 3-way adjacency tensor of the network, and (b) its R rank-1 PARAFAC decomposition. 
 

where H, A, and T is the hub, authority and term matrices of R rank-1 X decomposition, ○ is outer 

vectors product,  and λr (λ1 ≥ λ2 ≥ ··· ≥ λR) is the weight for each group r. H, A, and T are formed by 

arranging vectors hr, ar, and tr such that: 

 

                         rrr tttTaaaAhhhH  212121 and,,     (2) 

 

To calculate PARAFAC decomposition, greedy PARAFAC algorithm is used [14]. Algorithm 5 

shows the algorithm. Symbol ||*||2 denotes L
2
 norm of a vector. 

 
Algorithm 5. Greedy PARAFAC tensor decomposition. 

 

1. function parafac(X = matrixToTensor(), rank, ε) { 

2.     int N = length(X[0][:][0]); 

3.     int M = length(X[0][0][:]); 

4.     double λ =1; 

5.     x, y, z, Ψ = array(); 

6.     H, A, T = matrix(); 
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7.     for int l = 0, 1, …, rank-1 { 

8.         for int n = 0, 1, …, N-1 { 

9.             x[n] = 1; 

10.             y[n] = 1; 

11.         } 

12.         for int m = 0, 1, …, M-1 

13.             z[m] = 1; 

14.         
222

zyx ; 

15.         do { 

16.             θ = δ; 

17.               





2

0
32 ][:][][:][][:][][

l

r

TT rrrr TzAyHΨzyXx ; 

18.               





2

0
31 ][:][][:][][:][][

l

r

TT rrrr TzHxAΨzxXy ; 

19.               





2

0
21 ][:][][:][][:][][

l

r

TT rrrr AyHxTΨyxXz ; 

20.             x = normalize(x);  

21.             y = normalize(y);  

22.             z = normalize(z); 

23.             
222

zyx ; 

24.         } while (|θ – δ| < ε); 

25.         h = x; a = y; t = z; λ = δ; 

26.         Ψ[l] = λ; 

27.         for int n = 0, 1, ..., N-1 { 

28.             H[n][l] = h[l]; 

29.             A[n][l] = a[l]; 

30.         } 

31.         for int m = 0, 1, ..., M-1 

32.             T[m][l] = t[l]; 

33.     } 

34.     return H, A, T, Ψ ; 

35. } 

 

There are 3 types of tensor-vector multiplications in Algorithm 5: 1 , 2 , and 3 . A 3-way 

tensor if multiplied by a vector will become a matrix. But different from a matrix-vector 

multiplication, the tensor has 3 dimensions, so there are 3 possibilities of multiplying a tensor with a 

vector. The operation 1 , 2 , and 3  accommodate these possibilities. Eq. (3) gives examples of 1 , 

2 , and 3  operations, where X is a 3-way tensor, u is a vector, and Hi (i = 1, 2, 3) are matrices. 
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There are also sequences of tensor-vector multiplications in Algorithm 5. The results of the 

sequence multiplications (line 17, 18, and 19) are vectors because the tensor is multiplied twice by 

two vectors. There is an important issue in the sequence multiplication. As shown in eq. (3), the 

result of the multiplication always reduces the dimension of the tensor, and because the 

multiplications are performed one by one, there is possibility that the corresponding dimension no 

longer exists due to the dimensional reduction. Eq. (4) gives an example of such condition. 

 

                                                                zyXx 32        (4) 

 

The result of yX 2  is a matrix, consequently the third dimension no longer exists. Thus 3  

operation can no longer be performed. Eq. (5) gives definition of the tensor-vector sequence 

multiplications to deal with this problem [28]. 

 

                                           
 
 








 nm

nm

nm

nm

nm
 if

 if

1 vuX

vuX
vuX      (5) 

 

And because in the greedy PARAFAC algorithm m < n, the second definition is used, 

  vuXvuX 1 nmnm . 

Algorithm 6 summarizes the process of weblog clustering from the data preparation to tensor 

decomposition step. 

 
Algorithm 6. Summary of the weblog clustering using PARAFAC tensor decomposition. 
 

1.  Store list of blog rss feeds in “blogfeedlist” file 

2.  Store list of stop words in “stopwords” file 

3.  Get blogs content:  

blogscontent =  getFeedsContent(readFile(“blogfeedlist”)) 

4.  Extract blogs characteristic matrix from contents of the blogs:  

blogsmatrix = createCharMatrix(blogscontent) 

5.  Transform characteristic matrix into adjacency tensor:  

X = matrixToTensor(blogsmatrix) 

6.  Pick decomposition rank R and a small constant ε and do decomposition on X to get H, A, T, and Ψ: 

 H, A, T, Ψ = parafac(X, R, ε) 

 

V. Experimental Results 

 
We decompose the tensor of each dataset into 2, 4, …, 14 groups. Our codes for download and data 

preparation steps are written in python by using Universal Feed Parser module
6
 for parse() function 

(see Algorithm 2), and for decomposition step are written in MATLAB by using MATLAB Tensor 

Toolbox
7
 [29]. The codes are executed in notebook with Mobile AMD processor 3000+ and 480 MB 

DDR RAM. The maximum number of groups, 14, was not chosen but the maximum number that our 

computer can process due to the memory limitation. The computational time increases rapidly as the 

number of groups increases, with approximately 1.5 hour for first dataset and 1.8 hour for second 

dataset for 14-group decomposition. Table 1 and 2 show the results for 4-group decomposition. 

                                                 
6
 http://www.feedparser.org/ 

7
 http://www.models.kvl.dk/source/nwaytoolbox/ 
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Table 1. Four-group decomposition for first dataset. 

                    First Group                            Second Group  

Blog Score Word Score  Blog Score Word Score 
Deadspin 0.2893 american 0.2934  Deadspin 0.3219 american 0.2917 
Gizmodo 0.2683 cases 0.2647  Gizmodo 0.2791 cases 0.2716 
PW 0.2283 government 0.2124  PW 0.2342 government 0.2231 
NewsBusters.org 0.2235 facts 0.2003  Consumerist 0.2066 facts 0.1950 
Salon, Glenn 
Greenwald 

0.2206 official 0.1774  NewsBusters.org 0.1999 official 0.1815 

Consumerist 0.2019 countries 0.1773  Lifehacker 0.1976 countries 0.1736 
Lifehacker 0.1927 president 0.1682  Defamer 0.1886 administration 0.1670 
Gawker 0.1854 order 0.1624  Gawker 0.1875 order 0.1619 
Stepcase Lifehack 0.1778 administration 0.1560  Bollywood and Cricket 0.1821 president 0.1499 
Defamer 0.1769 claim 0.1390  Jalopnik 0.1730 court 0.1387 
... ... ... ...  ... ... ... ... 

                         Third Group                     Fourth Group  

Blog Score Word Score  Blog Score Word Score 
PW 0.44078 term 0.07075  Gizmodo 0.36531 apple 0.33161 
The Unofficial Apple Weblog 0.29312 feed 0.06948  Lifehacker 0.29706 users 0.31632 
Engadget 0.28701 roll 0.02122  The Unofficial Apple Weblog 0.28522 search 0.22253 
Joystiq [Xbox] 0.27705 beginning 0.01338  Mashable! 0.26911 iphone 0.21675 
Joystiq 0.27639 low 0.01299  ReadWriteWeb 0.20867 application 0.19533 
Luxist 0.26193 sales 0.01166  Stepcase Lifehack 0.18556 windows 0.17675 
Gadling 0.24983 white 0.01149  The Official Google Blog 0.17158 store 0.15905 
Download Squad 0.20966 bit 0.01138  Download Squad 0.16017 mobile 0.15565 
TV Squad 0.20943 apple 0.01087  Free Real Traffic to Your Blog  0.15640 download 0.15297 
Autoblog 0.20684 store 0.01037  PW 0.15460 social 0.1491 
... ... ... …  ... ... ... ... 

     
Table 2. Four-group decomposition for second dataset. 

                    First Group                            Second Group  

Blog Score Word Score  Blog Score Word Score 
Contrary Brin 0.28917 suggestion 0.34724  The Writing Show 0.28019 character 0.41977 
Writing well is the best 
revenge 

0.22315 nations 
0.22647 

 
Writing well is the best 
revenge 

0.24459 novel 0.32174 

WOW! Women On 
Writing Blog 

0.20731 american 
0.22327 

 
WOW! Women On 
Writing Blog 

0.23399 agent 0.20159 

The Writing Show 0.19113 obama 0.16663  Luc Reid 0.22835 join 0.16947 
Luc Reid 0.18307 politics 0.16641  Blog Fiction 0.19351 author 0.13254 
Six Pixels of Separation 0.17633 president 0.13191  Kim's Craft Blog 0.18505 chapter 0.10687 
Silliman's Blog 0.17114 america 0.11149  Killer Fiction 0.17404 contest 0.10521 
Write Better 0.16631 order 0.09754  Ask Allison 0.17174 mysterius 0.09959 
Writer Beware Blogs! 0.16551 war 0.09223  Writer Beware Blogs! 0.16436 editor 0.09833 
Blog Fiction 0.16277 effect 0.08813  Spina Bifida Moms 0.15873 literary 0.09772 
... ... ... ...  ... ... ... ... 

                         Third Group                     Fourth Group  

Blog Score Word Score  Blog Score Word Score 
PR 2.0 0.43184 twitter 0.50665  Poets.org 0.49855 poetry 0.69627 
Six Pixels of Separation 0.29547 community 0.38279  Silliman's Blog 0.31082 poem 0.62861 
Search Engine Guide 0.18448 network 0.27929  Poets Who Blog 0.27703 celebrity 0.09291 
Chris Garrett on New 
Media 

0.17712 conversion 0.25382  Harriet 0.24965 literary 0.07892 

Marketing Profs Daily Fix 0.17524 facebook 0.22431  Poetry & Poets in Rags 0.21138 nation 0.07756 
Writing well is the best 
revenge 

0.17013 brand 0.19333  Creative Writing Contests 0.20100 american 0.07611 

The Writing Show 0.16423 customer 0.17262  WOW! Women On Writing Blog 0.19192 interview 0.07394 
WOW! Women On 
Writing Blog 

0.16418 connection 0.16602  The Writing Show 0.19076 contest 0.07386 

The Urban Muse 0.14707 relation 0.12927  
Writerswrite.com's Writer's 
Blog 

0.18135 award 0.06302 

Write Better 0.14459 advertisement 0.12124  
Mike's Writing Workshop & 
Newsletter 

0.17831 collection 0.04723 

... ... ... …  ... ... ... ... 
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To evaluate clustering accuracy, we compare the tensor decomposition results with NMF results. 

The reasons of choosing the NMF are: (1) the NMF is analogue to the PARAFAC decomposition in 

two-dimensional space (while PARAFAC works in higher dimensions), (2) the NMF is preferable 

than the SVD because it produces nonnegative vectors that are not necessarily be orthogonal, so the 

vectors are more corresponding to the topics [16], and (3) the NMF produces superior results, 

especially if NC weighted scheme is used [16]. 

Eq. (6) gives formulation of the NMF: 

                                                                         T
UVC         (6) 

 

where C is the N×M blog-term matrix, U is nonnegative N×R blog-factor matrix, and V is 

nonnegative M×R term-factor matrix. The problem is how to find U and V that approximate C. The 

method used here to find U and V is based on multiplicative update rules [30]. And in order to get 

the superior results, NC weighted (NMF-NCW) scheme is chosen. In NMF-NCW, normalized 

version of C is used instead. 

                                                                        T
UVC         (7) 

 

where C
*
 = C(diag(C

T
Ce))

-1/2
. To alleviate the local optima trap problem associated with the NMF, 

10 trials are performed for each factorization and the best result is picked as the solution. As stated 

earlier, standard metrics like F-measure, Purity, Entropy, Mutual Information, and Accuracy, cannot 

be used because no information about predefined clusters is available. Here we define two metrics to 

assess the quality of the results without the need of the predefined clusters. 

The first metric is similarity measure that indicates the similarities between the decomposition/ 

factorization results and the standard measures. In search engine researches, similarity measure is 

used to compare the results returned by certain ranking algorithm to the standard measures. For 

example, the results of query “barack obama” returned by a search engine is compared to the user 

votes (standard measures) for the same query to measure the quality of the ranking algorithm 

implemented by the search engine. We borrow this idea to formulate the metric. But because the 

results returned by the tensor decomposition are matrices (H, A, and T), they must be converted into 

blog and word vectors first by using blog and word queries. And because the queries and the groups 

to be found can be blog or word vectors, there are four possibilities in the query-result relationships 

as shown in Table 3. 

As the standard measures, because user votes for any specific queries are not available, matrix C 

is used instead. This choice is intuitive because entries of C are exact, so it doesn’t produce errors or 

approximate values. Before similar/relevant groups to the queries can be found, the blog’s similarity 

matrix B and word’s similarity matrix W must be calculated in advanced. Let N be the number of 

blogs and M be the number of words, B is N×N matrix with its entries defined as: 

 

                                                 Njijiji  ,1,:),(:),,(cos),( CCB      (8) 

 

and W is M×M matrix with its entries defined as: 

 
                                             Mqpqpqp  ,1,)(:,),(:,cos),( CCW      (9) 

 
Table 3. Query - result relationship 

Query Similar/relevant group to be found 

Blogs Blogs 

Blogs Shared words 

Shared Words Blogs 

Shared words Shared words 
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Fig. 4. Similarity measures for PARAFAC decomposition, first dataset (left) and second dataset (right). 
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Fig. 5. Similarity measures for NMF method, first dataset (left) and second dataset (right). 

 

 
Table 4. Standard and decomposition result vectors formulations. 

 Task 1 Task 2 Task 3 Task 4 

vstd Cqword C
T
qblog Bqblog Wqword 

vdec H
T
Tqword TH

T
qblog HH

T
qblog TT

T
qword 

 

There are two query vectors, N×1 blog’s query vector qblog, and M×1 word’s query vector qword, 

where the entries are ones if the corresponding blogs/words appear in the queries and zero otherwise. 

Because we are only interested in the average quality of the results, and not in evaluating specific 

cases, all entries are set to ones: qblog = ones(N,1) and qword = ones(M,1). Table 4 gives the 

formulations of standard vector, vstd, and decomposition result vector, vdec, for all four tasks: 

1 Task 1: Find the most relevant blogs to words query, 

2 Task 2: Find the most relevant words to blogs query, 

3 Task 3: Find the most similar blogs to blogs query, and 

4 Task 4: Find the most similar words to words query. 

For the NMF case, vstd and vdec formulations are equivalent; simply by replacing H with U and T 

with V. 

The similarities between vstd and vdec are calculated by using cosine criterion. Fig. 4 shows the 

results for the PARAFAC decomposition and Fig. 5 for the NMF method. 

In the PARAFAC decomposition, there are strong patterns for both datasets; while task 1 and 3 

maintain good results for all decomposition groups, task 2 and 4 give unsatisfactory results. Because 

task 1 and task 3 are the standard way in utilizing blog search engines and apparently there is no 

practical use of task 2 and 4, these results are promising for indexing purpose. 
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Fig. 6. Fractions of overlap for PARAFAC decomposition, first dataset (left) and second dataset (right). 
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Fig. 7. Fractions of overlap for NMF method, first dataset (left) and second dataset (right). 

 

In general, the NMF produces better and stable results for all tasks in average. But for the 

important tasks, task 1 and task 3, there are only small differences between these two methods, so it 

cannot be implied that the NMF is better than the PARAFAC decomposition in the similarity 

measure metric. 

The second metric is fraction of overlap that calculates the percentages of overlapping blogs in 

all blog lists for each decomposition/factorization group. Because the co-clustering is done by 

sorting the lists of blogs and words in decreasing order (see Table 1 and 2) and the members of each 

blog list differ only in the orders, if the complete lists are used, the fractions of overlap become 1s. 

Also because the important aspect of this arrangement is to group the most similar and important 

blogs with their descriptive shared words, it is natural to use only top ranked blogs. Here we 

calculate the fractions of overlap for top 10, 20, and 30 blogs only. 

In addition to its main function, this metric also has another important role; it can be used to 

reveal whether a clustering method is able to distinguish the important blogs from the less important 

ones. If the method has this ability, it will produce high values of overlapping because the important 

blogs tend to be ranked in the top of the lists. Fig. 6 and 7 show the results for PARAFAC 

decomposition and NMF method respectively. 

In Fig. 6, the overlaps are increasing as the number of decomposition groups and the number of 

top ranked blogs are increasing. This tendency looks consistent for all plots and datasets. There are 

anomalies in 10-group in the first dataset. This happens because all 10 blog vectors in the group are 

repeating each others. If we ignore it, the plots are almost identical for both datasets.  

As shown in Fig. 7, the results of the NMF are quite the same. The important difference is the 

number of overlap produced by the NMF is smaller than the PARAFAC decomposition. There are 

twofold implications: the NMF produces more distinct topical clusters, and the PARAFAC 

decomposition produces clusters that contain more information about the degree of importance of 
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the blogs. In the quest of co-clustering the most similar and important blogs with their relevant 

shared words, the information about the degree of importance is more desirable than the distinct 

clusters. Thus, the PARAFAC decomposition is preferable than the NMF in this task. 

 

V. Conclusion 

 
This paper discusses the possibility of using PARAFAC decomposition in co-clustering the most 

similar and important blogs with their contents. From similarity measure and fraction of overlap 

calculations, it can be concluded that this method can be used to group the most similar and 

important blogs with their most descriptive shared words. The main drawback of this method is the 

computational costs to perform the calculations. We will address this problem in the future research 

by using optimization techniques, sparse tensor format, and memory management between RAM 

and harddisk. 
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