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Abstract 

Recently Extreme Learning Machine (ELM) has been attracting attentions for its simple and fast 

training algorithm, which randomly selects input weights. Given sufficient hidden neurons, ELM has 

a comparable performance for a wide range of regression and classification problems. However, in 

this paper we argue that random input weight selection may lead to an ill-conditioned problem, for 

which solutions will be numerically unstable. In order to improve the conditioning of ELM, we 

propose a robust input weight selection algorithm for the ELM with linear hidden neurons. 

Experiment results show that by applying the proposed algorithm generalization performance is 

improved in the presence of noises. 

Keyword: extreme learning machine, ill-conditioned, least squares.  

I. Introduction

Extreme Learning Machine (ELM) [1] which is a single-hidden layer feedforward neural network 

(SLFNN) randomly selects input weights and hidden neuron biases without training. The output 

weights are analytically determined by Moore-Penrose generalized inverse. Without iteratively 

tuning parameters as in Back-Propagation (BP), the learning speed of ELM can be thousands of 

times faster than gradient-decent learning algorithms. Given enough hidden neurons, performance of 
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this simple learning algorithm is comparable to traditional gradient-decent based algorithms in terms 

of Root Mean Square Error (RMSE) and classification rate for regression and classification 

problems respectively. 

Many efforts have been emphasized on the accuracy of solutions obtained by ELM, whereas 

numerical stability is generally ignored [2]. Numerical stability is an important aspect of a system. 

An ill-conditioned system may have its solutions very sensitive to perturbation in data. In particular, 

for ill-conditioned system even though the change in the problem data is small, the change in the 

solution may be large. This implies that the estimated solution from data may be nowhere near the 

true solution, and thus becomes useless. Unfortunately training of ELM with large hidden neurons 

usually constitutes an ill-posed problem. Therefore, the solutions obtained by ELM may be sensitive 

to data perturbation and become a poor estimation to the truth. 

In order to improve the conditioning of ELM, this paper proposes an input weight selection 

algorithm for an ELM with linear hidden neurons. The rest of paper is organized as follows. Section 

II introduces some important concepts and preliminaries of ELM and condition number which is 

adopted as a qualitative measure of conditioning. Section III gives the problem formulation and 

further limits our scope on ELM with linear hidden neurons. Section IV proposes an input weight 

selection algorithm in light of basic linear algebra. Experiments and numerical results are presented 

in Section V, and finally this paper concludes with Section VI. 

II. Preliminaries

Given a training dataset {( ( ), ( )), 1,..., }L n n n N x t , where 1( ) ( ( ),..., ( ))T d

dn x n x n x and

1( ) ( ( ),..., ( ))T m

mn t n t n t , an ELM with activation function ( )g   and N  hidden neurons can be

analytically modeled as, 

1

( ( ) ) ( ), 1,...,
N

j j

j

T
jg n b n n N



   β w x t (1) 
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where 1( ,..., )T

j j jd

dw w w  is the weight vector connecting the input layer to the jth hidden 

neuron, 
jb  is the bias of the jth hidden neuron, and 

1( ,..., )T

j j jm β  is the weight vector 

connecting the jth hidden neuron to the output layer. Throughout this paper the output neuron is 

linear unless otherwise specified. A sketch of an ELM neural network is represented in Figure 1. 

Note that
1

( ) ( )
d

j ji i j

i

z n w x n b


  . 

 

Equation (1) can be written in the matrix form as: 

 Hβ T  (2) 

where 

 

1

1

1

1

( (1) ) ( (1) )

( ( ) ) ( ( ) )

N

N

T T

N
N N

T T

N

g b g b

g N b g N b



  
 

  
 

   

H

w x w x

w x w x

 (3) 

 

 

 

1

      

1

and

TT

T T

N

N m N m

N

 

  
  

    
  

    

 β T

β t

β t

 (4) 
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Figure 1. The architecture of an ELM neural network. 
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Since N N for most cases, the output weights of ELM can be calculated as the least squares 

solution of linear equation defined in (2), as follows, 

 †ˆ β H T  (5) 

We argue that the calculation of fining least squares solutions of linear system (5) may constitute an 

ill-conditioned problem. Specifically, random input weights may lead to an ill-conditioned H , 

especially when a large number of hidden neurons are used. The conditioning of a matrix can be 

qualitatively characterized by condition number. Condition number is defined from the analysis of 

error bounds for linear system Ax b  , and formulated as the product of two matrix norms [3], 

 1( ) || || || ||  A A A  (6) 

for any consistent norm. Throughout the paper 2-norm condition number and consistent matrix 

norms are adapted. In particular for 2-norm we have, 

 max
2

min

( )
( )

( )




 

A
A

A
 (7) 

By definition 1 1( ) || || || || || || || || 1      A A A AA I , and ( ) A  for singular matrix. Given x as 

the least squares solution for Ax b   and  x   for  ( ) ( )   A F x b+ f , we would like to see 

how solution changes according to the perturbations. As shown in [3], for nonsingular square matrix 

the relative error for x  is proportional to ( ) A  , 

 
 

 2( ) O


  
  

     
 

A
A

x x F f

x b
 (8) 

For least squares cases, the error bound is more complicated, and using consistent 2-norm, the 

relative error is proportional to 2

2 2 2( ) || || ( )  A Ar  [3], where ˆ Ar x b   is the residual for 

estimated solution x̂ .  An ill-conditioned system has large condition number while a well-

conditioned system has small condition number. 
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For most problems, there is a prior that if   is small, the change in the solution 
  x x

x
 should 

be small as well. However, it is apparent that for linear system Ax b , if ( ) A  is large the upper 

bound of relative error will be large, which means relative small perturbation A  in b  and may lead 

to large change in the solution. In practical perturbation due to measurements in the input or 

approximation during computation is difficult to void. As a consequence, for an ill-conditioned 

system the calculated least squares x̂  is usually a poor estimate to the truth and thus becomes 

useless. Note that since the error upper bound is affected by the condition number, it does not 

necessarily mean that the relative error is large for a particular case. Nevertheless, condition number 

is a good indicator of a system conditioning which shows how close a system is to be ill-conditioned. 

In this paper we propose an input weight selection algorithm to minimize the condition number of 

coefficient matrix H , and the problem formulation is shown in the next section. 

III. Problem Formulation 

 

One essential learning step of ELM is the least squares calculation for linear system (2). Because 

from (3) the elements of coefficient matrix H  are functions of input weights iw  and input data jx , 

the condition number of H  is determined by input weights and input data. Therefore, it is apparent 

that arbitrary input weights consider no robustness for the solution, and only an elaborate selection 

of input weights with respect to a particular set of input data may achieve a well-conditioned system.  

As mentioned before, we adapt condition number of coefficient matrix H  as a qualitative metric of 

robustness.  Combined with ordinary least squares, the problem of network learning is formulated as, 

 
 

 2( ) O


  
  

     
 

A
A

x x F f

x b
 (9) 

where the first term is the least squares error and the second term indicates the condition number of 

the coefficient matrix.   controls the trade-off between residuals of fit and robustness of the 

solution. When 0  , the network finds solutions with more concerns on accuracy, and when 
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   more on robustness instead. The formulated learning can be regarded as a multi-objective 

optimization problem. For simplicity this paper applies a greedy approach which consists of two 

consecutive steps of optimization. In light of the layered network structure, the first step optimizes 

condition number of coefficient matrix ( ) H , by selecting input weights according to input data jx , 

and then second step calculates least squares solution β  as original network does. 

However, minimizing the condition number is not trivial since currently we lack of a closed-form 

expression of ( ) H  on variable w . In this paper, we focus on a simplified SLFNN with only linear 

hidden neurons. Note that for this case we have ( ( )) ( ),j jg z n z n j   as in Figure 1. Therefore, we 

have 

 

1

1

1

1

(1) (1)

( ) ( )

N

N

T T

N
N N

T T

N

b b

N b N b



  
 

  
 

   

H

w x w x

w x w x

 (10) 

Although neural networks with linear activation function are only able to express linear input-output 

mapping, by limiting our scope on linear neural networks, the study can be analyzed in mathematical 

detail with linear algebra directly applicable. 

IV. Proposed Well-Conditioned Extreme Learning Machine 

 

A. Robust Input Weight Selection 

Given a matrix 1[ ,..., ] N N

N

 H q q  where iq  is the ith column vector of H , we can define a 

correlation matrix such that 
N NT

A = H H . By definition we have 

( ) ( ) ( )T

i i i   H H H A  where ( )i H denotes the ith singular value of H , 

and ( )i A denotes the ith eigenvalue of A . Therefore, according to (7) the spectrum condition 

number can be rewritten as, 

 max
2

min

( )
( )

( )




 

A
H

A
 (11) 
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where 
max ( ) A and 

min ( ) A  are matrix A 's  largest and smallest eigenvalues respectively. 

Let i jq q  and 
2 2

0i j k  q q , , and then we have 
2   

0    
T

ij i j

k if i j
if i j

  


q q  . It can be 

seen that A  is a diagonal matrix of identical diagonal elements. Therefore, it follows 

that max min( ) ( ) A A . From (11) the 2-norm condition number 
2 ( ) H   is one, which is the 

global minimum. 

Remark 1: By constructing a coefficient matrix H  of which columns satisfy 

i jq q and
2 2

0i j k  q q , i j  , we can guarantee the perfect conditioning of matrix 

H . As a consequence, the calculated solution of (5) is robust with respect to changes of H and 

T . 

If linear hidden neurons are considered, coefficient matrix H can be expressed in the form of 

1,...,[ ] N

N

NT T  H X Xw w , where ( 1)[  ]T T d

i i ib  w w and ( 1)[ (1),..., ( )] d NN   X x x , 

by defining ( 1)( ) [ ( )  1]T T dn n  x x .  

Remark 2: According to Remark 1, we want to adjust iw for 1,...,i N , such that for i j  , 

T

iX w is orthogonal to T

jX w , i.e. ( ) ( ) 0T T T

i j X Xw w  and
2 2

T T

i jX Xw w .  

In order to find input weights for all columns, we consider columns one by one. Given a 

randomly selected 1w , we have 1

T
X w as the first column of H . For the second column it is 

necessary to have 2 1( ) ( ) 0T T T X Xw w according to Remark 2. Note that 

2 1 2 1( ) ( )T T T T TX X XXw w w w , and since X and 1w are known, we can find a vector space S such 

that S a , a  is orthogonal to 1

1

T dXX w . This vector space S is also known as the null 

space of matrix 1 ( 1)

1[( ) ]T T d XX w . Therefore, we can simply choose  , which is the 

normalized basis of the null space, and then calculate 
1

2

T

T





X

X

w
w  to allow the two columns 
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to have identical norms. For the third column, using obtained 
1w and

2w  we continue to find 
3w  

such that 3w is orthogonal to both 
1

T
XX w  and 

2

T
XX w . Similarly, this can be solved by finding 

the null space of matrix 2 ( 1)1

2

( )

( )

T T
d

T T
  

 
 

XX

XX

w

w
.   

In this manner, iteratively we can analytically calculate 
iw for 1,...,i N . However, the 

existence of 
iw should be discussed. Assume that we want to calculate

N
w , and from previous 

iterations we have iw for 1,..., 1i N  . Then 
N

w  is supposed to be calculated by solving the 

null space of matrix

1

( 1) ( 1)

1

( )

( )

T T

N d

T T

N

  



 
 

  
 
 

XX

XX

w

w

 . Assume this matrix is not rank deficient, 

i.e. rank( ) min( 1, 1)N d   . For the dimension of null space of  we have [3], 

  dim null( ) rank( ) 1d     (12) 

In order to guarantee the existence of non-empty null space, i.e.  dim null( ) 0 , from (12) 

we have 1 rank( ) 0d    . Therefore, 2d N  and the upper bound of applicable hidden 

neuron is 1d  .  

As a summary, the algorithm of finding input weights up to 1d   is shown in Table 1. After 

calculating the input weights, output weight is calculated as the same as original ELM.  
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B. Complexity Analysis 

Computational complexity has been investigated to analyze efficiency of the proposed 

algorithm. According to Table 1, Step 3 requires the computation of matrix
T

XX . Although it 

takes 2( 1)d N operations [3], only one time calculation is required by saving the result. In 

addition, Step 3 takes 2 2( 1)N d  operations to obtain N columns.  Assume that both output 

weights and null space are computed using Singular Value Decomposition (SVD), then number 

of operations for calculating output weights is 314 8NN N  and 34 8NN N for null space [3]. 

Let 1N d  , then the upper bound of operations is 4 3 211 2 15N N N N   which is 

4 2( )O N N N . Comparing the complexity of original ELM which is 3 2( )O N N N , additional 

complexity is introduced due to the iterations used for input weight selection. However, the 

number of iteration is bounded by input dimension d , and the additional complexity can be 

Table 1. Algorithm for input weight selection 

1. Uniformly randomly select 1

1

dw . 

2. For 2,...,i N , where 1N d   

3. Calculate 
1 1,...,T T

iXX XXw w where   ( 1)

1,...,
d N

N

  X x x . 

4. Find the null space S of matrix

1

( 1) ( 1)

1

( )

( )

T T

i d

T T

i

  



 
 

 
 
 

XX

XX

w

w

. 

5. Randomly select a vector , where   is the normalized basis of S . 

6. Calculate 
i

w by
1

T

i

i T







X

X

w
w . 

7. Repeat from Step 2. 
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ignored for most practical problems N d . Exceptions are problems for biological data which 

usually incline to have more input dimensions than number of data. 

C. Algorithm for Well-Conditioned Extreme Learning Machine 

The number of hidden neurons is the only one parameter which needs to be selected. In order 

to achieve full automation, an adaptive method of choosing number of hidden neurons is 

proposed based on cross validation. 

Thanks to the proposed robust input weight selection, the number of hidden neurons is 

bounded by 1d   for a given dataset
1( ) ( ( ),..., ( ))T d

dn x n x n x , where 1,...,n N . This 

upper bound greatly reduces the search space for optimal number of hidden neurons. Therefore 

it is possible to conduct an exhaustive search in the reduced space. For the given dataset ( )nx , 

there are 1d   candidate models, 
N

M  for 1,..., 1N d  . Based on cross validation, the model 

with smallest testing error will be selected. 

Given a dataset {( ( ), ( )), 1,..., }L n n n N x t , where 1( ) ( ( ),..., ( ))T d

dn x n x n x  and 

1( ) ( ( ),..., ( ))T m

mn t n t n t , the proposed algorithm for Well-Conditioned Extreme Learning 

Machine is summarized as follows, 

Initialization: Let 1N  , and randomly split L  into J equal parts 1 2, ,..., JL L L , where J  is an 

integer. For the jth fold of the J-fold cross-validation, define ( )j

jL L L    as the training data 

and jL as the testing data. 

Learning steps: 

  while 1N d   

(a) Calculate the input weight iw for 1,...,i N  according to Table 1. 

(b) Calculate the well-conditioned coefficient matrix H based on (10). 

(c) Calculate the output weightβ based on (5). 

(d) Calculate the overall testing error for the mth single response as follows, 
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   
 

2
( )

( ), ( )

( ) ( )
m j

j

m Nm
j i t i L

t i M i



 
x

x  (13) 

where a scalar ( )mt i denotes the expected output of the mth single response, 

and  ( ) ( )j

Nm
M i

x denotes the mth single response for model 
N

M  which is 

trained with ( )jL  on input ( )ix . 

end while 

(e) choose the optimal number of hidden neurons as, 

   
 

2
( )

( ), ( )

arg min ( ) ( )
m j

j

m Nm
j i t i L

N t i M i



  
x

x  (14) 

V. Numerical Experiments 

 

In this section, numerical experiments have been conducted to compare the proposed algorithm and 

original ELM. Both accuracy and robustness of the solutions are considered. Before each trail of 

experiment, we randomly split the entire data into training data and testing data according to the 

ratio of 1:1. Totally 80 trials of each dataset are repeated to obtain reliable results and the average 

over all the trails is used for comparison. 

We normalize all the input attributes (except expected outputs) into the range of [0,1] . Random 

variables for both original ELM and the proposed algorithm are uniformly randomly distributed on 

the interval [0,1] . Calculations of least squares and null space of a matrix are implemented by 

Matlab using SVD. Details of experiments and simulation results are presented in the rest of this 

section. 

A. Experiment Data 

Breiman's linear regression is used for comparisons between original and proposed 

algorithm. The regression data is synthesized according to Breiman's work [4] which is 

commonly used by statisticians as a mouse experiment of testing algorithms. The input vector 
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is a random vector
1 30[ ,..., ]TX X X which follows a multivariate normal distribution with zero 

means. The covariance matrix  was designed as, 

 , , 1,...,30
i j

R i j


   (15) 

R iss set to be 0.7 for this experiment. The response iss generated according to the linear 

model, 

 1 1 30 30...Y X X       (16) 

where the noise (0,1)N  and the coefficients m m   . Given h  is a positive integer, 

{ }m can be defined in three groups, 

 

2

2

2

10 , ( 10 ) ;

20 , ( 20 ) ;

30 , ( 30 ) ;

m

m

m

f m h h m

if m h h m

if m h h m







    

    

    

 (17) 

The value of   is used to control the Signal to Noise Ratio (SNR). Two values 1 and 5 are used 

for h . For 1h  , there are 3 strong nonzero coefficients, and for 5h   there are 23 weak 

nonzero coefficients. For Breiman's linear regression, 60 observations are generated. 

DC motor system identification is simulated in Matlab by constructing a state-space model of 

DC motor. The model of the DC motor driving an inertial load shows the angular rate of the 

load as output and applied voltage as input. By varying the applied voltage, we can control the 

angular rate, and this kind of system is also known as single-input single-output (SISO) linear 

systems. 

We generate a square wave as the input, and feed it into the DC system. The output is 

simulated and observed. Additional noise is added to the observations. The noise variance is 

used to control the SNR. 

In this experiment the purpose of system identification is to use neural networks to learn the 

dynamic behavior of the DC motor system from the observed input and system output. For this 
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system, the generation of identification models are well known, and the system equation can be 

written as, [5] 

 
1 21 1

0 0

( 1) ( ) ( )
k k

i j

i j

y k y k i u k j 
 

 

       (18) 

where
i and j are constant unknown parameters. The above equation indicates the output of 

system at time 1k  is a linear combination of its past system outputs as well as those of the 

inputs. Motivated by (18), we rearrange the raw data by allowing each data sample to 

constitute 1k past input values and 2k  past output values, labeled with current system output. 

For DC motor system identification, 400 observations are generated. 

For all experiments, a level of noise is applied to original data to simulate data perturbation, 

and the noise level is defined by SNR. Throughout the experiments, the SNR for the noise 

level equals to 0.1 (-10 dB). 

B. Experiment Results 

The performance is evaluated in terms of Root Mean Square Error (RMSE) and size of 

condition number for accuracy and robustness respectively. Condition number of coefficient 

matrix H , 2 ( ) H , is calculated using Matlab function cond(). 

In order to show the effectiveness of proposed input weight selection, the proposed well-

conditioned ELM and original ELM use the same number of hidden neurons, unless otherwise 

specified. 

Figure 2 present the comparison of the size of condition numbers between original random and 

robust input weight selection for ELM networks with 10 and 20 hidden neurons. 1h   is set for 

Breiman's linear regression in this case. For 10 hidden neurons, the proposed algorithm 

achieves perfect conditioning with 2 ( ) 1 H for all trials, while the ELM with random input 

weight selection has much larger 2 ( ) H  around 260. If 25 hidden neurons are used for the 

same data, the figure indicates that ELM with random input weights increases its condition 
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number to 4000, while the proposed ELM maintains its perfect conditioning at 
2 ( ) 1 H for 

all trials. 

 

 

(a) 

 

 

(b) 

Figure 2. Comparison between random (solid line) and proposed (dashed line) 

input weight selection in terms of the size of condition number, for Breiman's linear 

regression ( 1h  ), with (a) 10 hidden neurons and (b) 25 hidden neurons 



International Journal of Information Technology     Vol. 17   No. 1 2011 

                                                                                                                                                              15 

 

 

The averaged results for 80 trials are presented in Table 2 in different problem settings. As we 

can see from this table, proposed algorithm achieves similar training results with original ELM 

algorithm in terms of training RMSE and standard derivation (SD). However, as the 

improvement in stability, testing performances of well-conditioned ELM outperform those of 

original ELM in terms of both RMSE and standard derivation. In cases of using larger number 

of hidden neurons (for example 30 neurons), more than 37% improvement is found in the 

experiment. 

However, the proposed algorithm required more training time than random selection. Table 2 

shows that training time for proposed algorithm was around ten times larger than that for 

original ELM. It is because for this experiment N was not much larger than d . Therefore, 

Table 2. Comparison between proposed well-conditioned ELM and original ELM 

Data 
Algorithm # Neurons

 
RMSE or accuracy 

 
SD  

Training 

Time (s) 

 
 Training Testing 

 
Training Testing 

 
 

Breiman's 

Linear 

Regression 

 

1h   ELM 5 0.8862 1.0518 
 

0.0906 0.1272 
 

<1.0e-3 

 Proposed  0.8988 1.0201 0.0944 0.1043 0.0016 

 ELM 10 0.9096 1.4388  0.1329 0.2011  0.0010 
 Proposed  0.8996 1.3596  0.1208 0.1797  0.0035 

 ELM 20 0.5673 1.8879  0.1290 0.4887  0.0016 

 Proposed  0.5753 1.6827  0.1439 0.3005  0.0113 

 ELM 30 0.1935 4.6081  0.1008 9.8393  0.0012 

 Proposed  0.1947 3.0146  0.0883 1.2186  0.0259 

5h   ELM 5 1.1916 1.8851  0.1528 0.2853  <1.0e-3 

 Proposed  1.1768 1.7529  0.1806 0.2672  0.0018 

 ELM 10 1.3096 1.5848  0.1429 0.1896  <1.0e-3 

 Proposed  1.3148 1.5273  0.1559 0.1844  0.0058 

 ELM 20 0.5472 1.7847  0.0961 0.4408  0.0011 

 Proposed  0.5481 1.6073  0.1134 0.3295  0.0138 

 ELM 30 0.2077 5.1687  0.1154 5.9266  0.0035 

 Proposed  0.2174 3.2329  0.1245 1.4221  0.0226 

           

DC Motor 

1 2( , )k k  

(2,3)  ELM 3 4.731e-3 4.783e-3  1.795e-3 1.873e-3  <1.0e-3 

 Proposed  3.567e-3 3.615e-3  1.583e-3 1.530e-3  0.0015 

 ELM 5 1.125e-3 1.598e-3  0.578e-3 0.587e-3  <1.0e-3 

 Proposed  0.787e-3 1.527e-3  0.452e-3 0.465e-3  0.0018 

(8,9)  ELM 10 1.747e-3 1.783e-3  0.844e-3 0.859e-3  0.0012 

 Proposed  1.633e-3 1.708e-3  0.648e-3 0.716e-3  0.0025 

 ELM 15 0.612e-3 2.656e-3  1.595e-3 1.371e-3  0.0015 

 Proposed  0.602e-3 2.463e-3  1.638e-3 1.333e-3  0.0047 
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additional complexity posed by the proposed algorithm cannot be neglected. Nevertheless, the 

actual cost of time was still acceptable which was just about a few milliseconds. 

Interestingly, for DC motor system identification in Figure 3, ELM can approximate the system 

step response with small errors without the presence of noise. If a small noise is added to the 

system, ELM has large glitches in its output. In contrast, proposed algorithm consistently 

learns the step response with small errors, no matter whether a level of noise is introduced to 

the system. 

 

 
(a) 

 

 
(b) 

Figure 3. Comparison between original and proposed algorithms in terms of square 

response for DC motor system identification ( 1 2( 2, 3)k k  ) (a) without noise and 

(b) with noise. 
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VI. Conclusion 

 

This paper first discussed the numerical stability issue of ELM, and argued that random input 

selection may lead to an ill-conditioned system and thus the solutions may be sensitive to 

perturbations in the data. In order to improve the conditioning of ELM, this paper proposed an input 

selection algorithm based on null space calculation. It has been proved that the proposed algorithm 

can provide perfectly robust solutions up to   linear hidden neurons. This paper also compared ELM 

of random input selection and ELM of proposed input selection though experiment results. It is 

noticeable that the proposed ELM outperformed original ELM in terms of robustness, and has 

similar training accuracy in terms of RMSE. It indicates that by applying the proposed algorithm 

stability is significantly improved. To the contrast, generalization/testing performance is improved 

especially when noise is presented. 
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