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Abstract. Lattice-based cryptography had recently acquired much attention due to 

many potential advantages: their resistance so far to cryptanalysis by quantum 

algorithms, their asymptotic efficiency and conceptual simplicity, and the guarantee 

that their random instances are as hard as the hardness of lattice problems in worst 

case. In this paper, we propose a public key encryption with keyword search (PEKS) 

using lattices. PEKS is a mechanism for searching on encrypted data. It enables user 

Alice to send a secret value Tw to a server that will enable the server to locate all 

encrypted messages containing the keyword w , but learn nothing else. The scheme 

can be proven secure with the hardness of the standard Learning With Errors (LWE) 

problem in the random oracle model.  

Keywords: lattice-based cryptography, public key encryption with keyword search, 

provable secure. 

 

1. Introduction 

Recently, lattices have emerged as a powerful mathematical platform on which to 

build a rich variety of cryptographic primitives. Starting from the work of Ajtai
[1]

, 

many new constructions with lattices have been proposed, such as one-way functions 

and hash functions
[1,2]

, trapdoor functions
[3]

, public-key encryption schemes
[4]

, 

ID-based encryption schemes
[5-7]

, fully homomorphic encryption schemes
[8,9]

, and so 

on. Lattice-based schemes are attractive due to many potential advantages: their 

asymptotic efficiency and conceptual simplicity; their resistance so far to 

cryptanalysis by quantum algorithms (as opposed to schemes based on factoring or 

discrete log); and the guarantee that their random instances are as hard as the hardness 

of lattice problems in worst case. X. Boyen 
[10]

 said that “all those factors conspire to 

make lattices a prime choice, if not the primary one yet, for mathematical crypto 

design looking out into the future.”  

Keyword-based search technique allows users to selectively retrieve files of 

interest and has been widely applied in plaintext search scenarios, such as Google 

search. However, for privacy, data encryption may also demands the protection of 

keyword since keywords usually contain important information related to the data 

files. This leads to the traditional plaintext search techniques useless in this scenario. 

To securely search over encrypted data, some searchable encryption techniques have 

been developed 
[11-18]

.  

Public-key encryption with keyword search (PEKS) was first proposed by Boneh 

et.al 
[12]

 in 2004. The mechanism enables one to search encrypted keywords without 

compromising the security of the original data. Suppose Bob wants to send Alice a 

message m  with keywords nww ,...1 . Let Apk  be Alice's public key. Bob encrypts 
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m  using a standard public key encryption (.)E  and appends to the resulting 

ciphertext a list of PEKS ciphertext of each keyword. That is 

),(||...||),(||),( 1 AnAA pkwPEKSpkwPEKSpkME . This kind of encrypted messages 

may be stored in a server. Alice can give the server a certain trapdoor wT  through a 

secure channel that enables the server to test whether one of the keywords associated 

with the message is equal to the word w  of Alice's choice. Given ),'( ApkwPEKS  

and wT , the server can test whether 'ww  . If 'ww   the server learns nothing 

more about 'w . PEKS mechanism can be widely used in many practical applications, 

such as encrypted emails extraction
[12]

, encrypted and searchable audit logs
[13]

, and 

encrypted files extraction in Cloud
[16]

.  

We should note that the proposed PEKS schemes are mainly using pairings
[12,17]

 

and some traditional cryptography tools (such as RSA)
 [11]

. In this paper, we propose a 

public-key encryption with keyword search scheme using lattices. The basic 

construction only gets probabilistic consistency, so we further propose a method to 

make up the shortfall. The scheme can be proven secure with the hardness of the 

standard Learning With Errors (LWE) problem in the random oracle model.   

The rest of this paper is organized as follows: In Section 2, we recall some 

preliminary works. In Section 3 and 4, we describe the details of our new schemes and 

their security proofs. Finally, we conclude in Section 5. 

 

2. Preliminaries 

2.1 Public-key Encryption with Keyword Search 

Recall that a PEKS scheme consists of four polynomial-time algorithms
[12]

: 

KeyGen, PEKS, Trapdoor, and Test. The KeyGen algorithm generates a public/private 

key pair ),( skpk . The PEKS algorithm produces a searchable encryption of keyword 

w  with receiver’s public key. The Trapdoor algorithm generates a trapdoor wT  for 

keyword w  with receiver’s private key, and the Test algorithm verifies whether a 

cipher-text matches a trapdoor.  

The general notion of security of PEKS scheme is indistinguishability against 

chosen keyword attack 
[12]

. A PEKS scheme is semantic security if no polynomial 

time adversary A has a non-negligible advantage against a challenger C in the 

following game. 

Security Game: 

KeyGen. C runs KeyGen algorithm to generate a key pair ),( skpk , and gives 

pk  to A . 

Phase 1. A can adaptively ask the challenger for the trapdoor wT  for any 

keyword *}1,0{w  of his choice. 

Challenge. At some point, A sends the challenger two words 10 , ww  on which it 

wishes to be challenged. The only restriction is that A did not previously ask for the 
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trapdoors 
0wT  or 

1wT . The challenger picks a random }1,0{b  and gives the 

attacker ),( bwpkPEKSC   as the challenge PEKS cipher-text. 

Phase 2. A can continue to adaptively ask the challenger for the trapdoor wT  for 

any keyword w  of his choice as long as 10 , www  . 

Guess. Eventually, the attacker A outputs }1,0{'b  and wins the game if 

'bb  . 

The advantage of A in this game is defined as |]'Pr[|
2
1 bb . 

2.2 Lattices and hardness assumption 

Definition 1. Given n  linearly independent vectors m

n Rbbb ,...,, 21 , the 

lattice   generated by them is denoted ),...,,( 21 nbbbL  and define as:  





m

i

iiin ZxbxbbbL
1

21 }|{),...,,(  

The vectors nbbb ,...,, 21 are called the basis of the lattice. Let },...,,{ 21 nbbbB  , 

we let B
~

 denote its Gram-Scahmidt orthogonalization of the vectors nbbb ,...,, 21  

taken in that order, and we let |||| S  denote the length of the longest vector in B for 

the Euclidean norm. 

Definition 2. For q  prime and mn

qZA   and n

qZu , define: 

}mod0|{)( qeAZeA m

q   

}mod|{)( queAZeA mu

q   

Ajtai 
[1]

 and later Alwen and Peikert
[19]

 showed how to sample an essentially uniform 

matrix mn

qZA   with an associated basis AT  of )(Aq

  with low Gram-Scahmidt 

norm.  

Proposition 1
[20]

. For any prime 2q  and qnm log5 , there exists a 

probabilistic polynomial-time algorithm TrapGen that outputs a pair mn

qZA   and 

AT  such that A is statistically close to uniform and AT  is a basis for )(Aq

  with 

length )log(||
~

|| mmTL A   with all but )1(n  probability. 

We further review Gaussian functions used in lattice based cryptographic 

constructions. 

Definition 3. Let m  be a positive integer and 
mR  be a m  dimensional 

lattice. For any vector mRc  and any positive parameter 0R , we define: 

)/||||exp()( 22

,  cxxc   and  


x cc x)()( ,,    

The discrete Gaussian distribution over   with center c  and parameter   is 
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For notational convenience, 0,,  and 0,,D  are abbreviated as   and ,D . 

Gentry et.al. 
[3]

 construct the following algorithm for sampling from the discrete 

Gaussian cD ,, , given a basis AT  for the m-dimensional lattice  with 

)log(||
~

|| mTA   . Specialized to the case of random lattices, they show an 

algorithm: 

SamplePre( ,,, uTA A ): On input a matrix mn

qZA   with ‘short’ trapdoor basis 

AT  for )(Aq

 , a target image n

qZu  and a Gaussian parameter 

)log(||
~

|| mTA   , outputs a sample m

qZe  from a distribution that is within 

negligible statistical distance of 
),( Au

q

D


. 

Security of all our construction reduces to the LWE problem, a classic hard 

problem on lattices defined by Regev
[4]

. 

Definition 4. Consider a prime q , a positive integer n , and a distribution   

over qZ , all public. An ),,( nZq -LWE problem instance consists of access to an 

unspecified challenge oracle  , being either, a noisy pseudo-random sampler s  

carrying some constant random secret key n

qZs , or, a truly random sampler  , 

whose behaviors are respectively as follows: 

-- s : output noisy pseudo-random sample of the form 

q

n

qi

T

iiii ZZxsuuvu  ),(),( , where n

qZs  is a uniformly distributed 

persistent value invariant across invocations, qi Zx   is a fresh sample from  , and 

iu  is uniform in n

qZ . 

--  : output truly uniform random sample from q

n

q ZZ  . 

The ),,( nZq -LWE problem allows repeated queries to the challenge oracle  . 

We say that an algorithm A decides the ),,( nZq -LWE problem if 

|]1Pr[]1Pr[| 
 AA s  is non-negligible for a random n

qZs . 
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Regev has showed that for certain noise distributions  , the LWE problem is as 

hard as the worst-case SIVP and GapsSVP under a quantum reduction. 

Proposition 2
[4]

. For an )1,0(  and a prime /2 nq  , let   denote the 

distribution over qZ  of the random variable   qqX mod
2
1 where X  is a normal 

random variable with mean 0 and standard deviation  2/ . Then, if there exists 

an efficient, possibly quantum, algorithm for deciding the ),,( nZq -LWE problem, 

there exists a quantum poly-time algorithm for approximating the SIVP and GapSVP 

problems, to within )/(
~

nO  factors in the 2l  norm, in the worst case. 

3. A PEKS Scheme from Lattice 

3.1 The Basic Construction 

Let mn,  be positive integers, q be prime, with 2q  and qnm log5 , 

n

qZH *}1,0{:  be a hash function. The scheme is described as follows: 

 )1( nKeyGen : On input a security parameter n , invoke TrapGen(q,n) to 

generate a uniformly random matrix mn

qZA   along with a short basis AT for 

)(Aq

 , and output the public key Apk  and secret key ATsk  . 

 ),( wAPEKS : Compute )(wHu  , select n

qZs   uniformly and compute 

m

q

T ZxsAp   and q

T Zysuc  , where mx  and y  are 

noise vectors. Output the cipher-text (p,c). 

 ),,( wTATrapdoor A : Compute )(wHu   and choose a m

qZe  satisfying 

ueA   by ),,,(Pr uTAeSamplee A , where  is a Gaussian parameter. 

Output e  as the trapdoor.  

 )),,(( ecpTest : Compute pecb T  . If 4|| qb  , output 1 (“yes”); 

otherwise, output 0 (“no”). 

Suppose ),(),( wAPEKScp   and )',,( wTATrapdoore A , then 

xeyseAuxsAeysupecb TTTTTTT  ))(()(  
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It is easy to see that if 'ww  , then |||| xeyb T  , just as discussion in [3], with 

parameters rmq 5 , ))log(/(1 nmr   , and   , with overwhelming 

probability we have 4|| qb  , where r is a Gaussian parameter. 

However, if 'ww  , with the randomness of u  and e , TT eAu )(  can be 

seen as a random vector in n

qZ . That is || b  is a random in ],0[ q  (over the random 

choices of u  and e ). Hence, the probability of 4|| qb   is 
4
1 . This means that 

there is probability 
4
1  that the Test algorithm output 1 when 'ww  , and so the 

consistency of the scheme can not be ensured. We will deal with this problem in the 

following subsection. 

3.2 Improvement for consistency  
In order to decrease the possibility that the Test algorithm output 1 when 'ww  , 

we can modified the basic construction as follows.  

Let )(npolyk  , for n

qi ZHki  *}1,0{:,,...,1  be k  different hash 

functions. The KeyGen algorithm is the same as before. 

 ),( wAPEKS : Select n

qZs   uniformly and compute m

q

T ZxsAp  . For 

ki ,...,1 ,compute )(wHu ii  ,  and qi

T

ii Zysuc  , where 

mx  and iy  are noise vectors. Output the cipher-text )}{,( ,...,1 kiicp  . 

 ),,( wTATrapdoor A : For ki ,...,1 , compute )(wHu ii   and choose a 

m

qi Ze   satisfying ii ueA   by ),,,(Pr iAi uTAeSamplee  , where  is 

a Gaussian parameter. Output )}({ ,...,1 kiie   as the trapdoor.  

 )}{),}{,(( ,...,1,...,1 kiikii ecpTest  : For ki ,...,1 , compute pecb
T

iii  . If for 

all ki ,...,1 , 4|| q
ib  , output 1 (“yes”); otherwise, output 0 (“no”). 

Just as above discussion, if 'ww  , then the Test algorithm output 1 with 

overwhelming probability. And if 'ww  , the Test algorithm output 0 with 

probability 1-
k22
. When k  is large enough, we can ensure the consistency of the 

scheme. 
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3.3 Efficiency analysis 

To guarantee the security from LWE problem, we select the parameters of our 

scheme following [21]: with the security parameter k, the public key is the matrix 

mn

qZA  , where 3kn  , 
5.1

22 knq  and )(2log2 5.4kOnnqnm  . We now 

analyze the computation of the basic construction. The computation of p and c in the 

PKES algorithm are qmqnm log)(log 2   and qqn log)(log 2   respectively. 

Hence the total computation is qmqnm log)1()(log)1( 2  . The computation of 

the Test algorithm is qqm log)(log 2  .  

We also implemented the algorithms of our scheme with Maple.14, on an Intel 

2.9 GHz Core i7 system. With 2321,125,2796,5  qnmk , the size of public 

key is about 0.5MB, and the time of a PEKS algorithm is about 0.3 seconds.  

Since its first introduction by Boneh et.al 
[12]

, the proposed PEKS schemes are 

mainly using pairings
[12,17]

 and some traditional cryptography tools (such as RSA)
 [11]

. 

Recently, due to the potential advantages, many lattices-based public key encryption 

schemes have been proposed
[4-7]

. But to the best of our knowledge, this is the first 

lattices-based public-key encryption with keyword search scheme. 

 

3.4 Security Proof 

We present the security proof for the basic construction. The security proof of 

improvement version is obviously almost the same. 

Proposition 3. In the random oracle mode, suppose there is an polynomial-time 

adversary F that have non-negligible advantage   in attacking the scheme, then we 

can construct a polynomial-time algorithm S that can solve the LWE problem with 

probability 
2

)1(2

H

H

Q

Q 
, where HQ  denotes the number of queries that F can query 

to the random oracle (.)H .  

Proof. With the adversary F , we construct the algorithm S as follows:  

S requests from   and receives, for each mi ,...,0 , a fresh pair 

q

n

qii ZZvu ),( , and selects a random integer ],1[*

HQQ  . 

KeyGen. S assemble the random matrix mn

qZA   from m  of given LWE 

samples by letting the i _th column of A  be the vector iu  for all mi ,...,1 , and 

gives the public key A  to F .  

Phase 1. S answers queries of F as follows: 
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-- (.)H  query: For the Q _th query input *}1,0{w , if this is query number 

*Q (i.e. *QQ  , S defines 0)( uwH   and return )(wH . Otherwise, S chooses 

rZ mDe
,

 , and computes eAu  , saves the tuple ),,( euw  in listH _  for future 

use, and returns uwH )( . 

-- (.)Trapdoor  query: For input *}1,0{w , if 0)( uwH  , S aborts and fails. 

Otherwise, S retrieves the saved tuple ),,( euw  from the listH _  (w.l.o.g., we can 

assume that an Trapdoor query on w  is preceded by a (.)H  query with w ). By 

construction, e  is the trapdoor for keyword w . Return e  as the trapdoor to the 

adversary. 

Challenge. Once F decides that Phase 1 is over it outputs two keywords 

10 , ww on which it wishes to be challenged. S runs the above algorithm for responding 

to (.)H  queries twice with input 10 , ww . If both 00 )( uwH   and 01)( uwH  , 

then S aborts. Otherwise, suppose 0)( uwH b  S retrieves qm Zvv ,...,0  from the 

LWE instance, and sets m

q

T

m Zvvc  ],...,[ 10 , qZvc  01 . S responds with the 

challenge cipher-text ),( 10 cc . (Note: When   is a pseudo-random LWE oracle then 

xsAc T 0 and ysuc
T

 01  for some random n

qZs  and noise values 

mx   and y . In this case ),( 10 cc  is a valid encryption for bw . When O is a 

random oracle then ),( 10 cc  is uniform in q

m

q ZZ  . 

Phase 2. S answers queries of F  the same way it does in Phase 1 with the only 

restriction that 10 , www   for Trapdoor queries.  

Guess. Eventually F  outputs }1,0{'b . 

Finally, if 'bb   S outputs 1, otherwise S outputs 0. The distribution of the 

public parameters is identical to its distribution in the real system as are responses to 

private key queries. If S does not abort then the challenge cipher-text is distributed 

either as in the real system or is independently random in q

m

q ZZ  . Hence, if S does 

not abort then its advantage in solving LWE is the same as F's advantage in attacking 
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the system. 

Because *Q  is chosen randomly in 1 and 
1HQ , S does not abort in the 

simulation of (.)Trapdoor  with probability HQ/11 . The probability that  

00 )( uwH   or 01)( uwH   is HQ/2 . So we conclude that the advantage of S in 

solving LWE is 
2

)1(2

H

H

Q

Q 
. 

4. Conclusion 

Lattice-based cryptosystems are becoming increasingly popular in the research 

community. In this paper, we propose a PEKS scheme using lattices. Although fruitful 

lattices-based cryptographic schemes have been proposed, but to the best of our 

knowledge, this is the first lattices-based public-key encryption with keyword search 

scheme. The scheme can be proven secure with the hardness of the standard LWE 

problem in the random oracle model. We should note that it may be not a difficult task 

to modify this scheme to obtain a version secure in the standard model.  
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