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Abstract 

 

With the rapid development of mobile Internet and increasing amount of smart devices, Internet 

services have been integrated into peoples’ daily lives. Due to the features of end-user-oriented 

mashups in pervasive environments, new challenges have been presented to conventional mashup 

approaches, including the complexity of user behaviors, the difficulty of predicting real-time user 

preference and other dynamic contexts. In this paper, we propose a new paradigm for behavioral 

context-based personalized mashup provision in pervasive environments by integrating mashup 

construction and execution into user natural behaviors. In the proposed paradigm, users with similar 

behavior patterns are identified and then probability distributions of potential behavior selection for 

user clusters are discovered from historical mashup logs, which provide supports for predicting and 

recommending user activities for future mashup constructions. Analysis and experiments indicate 

that our approach can effectively simplify personalized mashup composition, as well as improve the 

quality of mashup composition and recommendation based on behavioral contexts and 

personalization in pervasive environments.  
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I. Introduction 

 

With the rapid development of mobile Internet and the increasing growth of smart devices, more and 

more Internet-based services are being closely integrated into end-users’ daily behaviors, which 

definitely bring better experiences for users than traditional desktop environments. Analogously, in 

such pervasive scenarios, the construction and execution processes of end-user-oriented mashups are 

also integrated into user’s natural behaviors with procedure and interaction features [1, 2]. Therefore, 

user behavior patterns should be considered during the process of constructing and selecting mashup 

solutions in order to improve user experiences. Together with personalized service provisions and 

dynamic contexts, these new features have presented great challenges to conventional mashup 

approaches. 

The biggest challenge is the complexity of user behavior processes in pervasive environments. 

Different users always show various behavior patterns and preferences and it is difficult to perceive 

and predict real-time user behavior patterns in dynamic contexts. Personalized factors, including user 

habit and preference, have much impact on the selection of user behaviors. Even in the same context, 

different users have various preferences for activities and services. Furthermore, mobility of user 

devices and dynamic contexts increase the difficulties of user preference awareness. Let’s consider 

an example of service mashups for dining out based on available web-based APIs, in which user 

activities probably include finding restaurant, reserving seats, locating and going to destination, 

parking and ordering, involving potential services such as LBS, map service, navigation service, 

reservation service and dish order service etc. Actually, there are multiple potential mashup solutions 

to meet the requirement and it is important to select a suitable one for the particular user. In 

conventional approaches, the mashup schema with involved activities is required to be defined and 

constructed in a mashup tool before it can be executed. However, it is both difficult and unrealistic 
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for unprofessional users to schedule such a complete model in advance due to their limitations of 

professional knowledge and available information. Even though a mashup solution is pre-defined 

manually or automatically, probably it cannot achieve satisfactory results during the following 

execution period. Current context-based approaches for service composition and recommendation 

rarely consider the influence of user behavioral patterns and service relationships. Therefore, in order 

to improve user’s experience, it is more crucial to help user planning a satisfying personalized 

mashup solution based on user behavioral contexts and preference, rather than only recommending 

independent services. 

In this paper, we focus on the integrated cycle of both user behavior and mashup execution, instead 

of only recommending services. We propose a construction approach for personalized mashups 

based on user behavioral contexts. The main idea of this paper is as follows. First, potential 

preference-based user behavior patterns are discovered by applying pattern mining tasks to historical 

mashup logs. Then, based on the probabilistic distribution of user behaviors, according to user goal, 

user behavior traces and behavior patterns of similar users, target user’s upcoming behaviors are 

predicted and the next activity is recommended. Next, the selected activity will be grounded to 

concrete Web-based APIs followed by executing the grounded service. By repeating the last two 

steps of the process, a personalized mashup schema is composed progressively until the final goal is 

achieved. In this proposed paradigm, mashup composition is simplified and end-user is not required 

to construct a schema in advance from scratch with necessary professional knowledge.  

The rest of this paper is organized as follows: Section 2 gives problem definitions and the proposed 

system model; In section 3, we describe the detailed pattern mining approach based on historical 

logs. Section 4 depicts the iterative construction algorithm for end-user-oriented personalized 

mashups; In section 5, simulation experiments are illustrated; Section 6 gives related work; section 7 

summarizes the main contributions of the paper. 
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II. Problem definitions and system model 

 

A mashup instance represents a historical execution of mashup, which involves multiple components 

with specific context and execution sequence. The mashup log is the set of finite discrete mashup 

instances, each of which records a particular execution trace with component invocations and user 

contexts.  

Definition 1 (Mashup Instance). A Mashup Instance is expressed as a tuple: mi = <u, g, ts>, with u 

denoting the end-user, g denoting user goal: g = <In, Out, Desc>, where In = {in1, in2, ...} is the set 

of all input parameters, Out = {out1, out2, ...} is the set of all output parameters of the mashup, and 

Desc = {kw1, kw2, ...} is the set of keywords describing the mashup functionalities. The third 

attribute ts denotes task sequence: ts = <t1, t2, . . ., tn>, where each task ti (1≤i≤n) is a tuple: 

ti=<mci, ctxi> with mci denoting mashup component and ctxi denoting the context of current task. 

In the task sequence, the parameters required by component mci come from the outputs generated by 

one or more precursor components mci-1, mci-2, …mc1 (1≤i≤n). 

In the scenario of pervasive mashups, conventional context is extended with user behavior 

information. User behavioral context records the behavior trace (or activity sequence) he/she has 

performed during the period of mashup execution. 

Definition 2 (Behavioral Context). A Mashup Context is a prefix subset of the task sequence mi.ts 

of a mashup instance, which is expressed as: bc = <t1, t2, . . ., tm>, m≤n, where each task ti is a 

tuple: ti=<mci, ctxi> with mci denoting mashup component and ctxi denoting the context of current 

task. 
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Fig. 1. System structure 

The architecture of user behavioral context-based mashup construction and service recommendation 

is illustrated in figure 1, with multiple components including behavior pattern mining module, 

context awareness module, knowledgebase of behavior patterns and mashup composer & executer. 

Historical logs record users’ mashup activities, including behavior traces, involved web resources 

and the related contexts during the execution period, from which quite a few valuable information 

for future mashup construction can be discovered. User behavior pattern extractor generates the 

probability distribution for user activity selection. Based on the activity traces in which different 

users are involved, user behavior similarity computing module evaluates user preferences to 

candidate activities in particular contexts and partial activity traces, so that users with similar 

behaviors are identified. Component clustering module generates activities by clustering actual web-

based components with similar functionalities. 
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Context awareness module is responsible for capturing and updating user behavioral contexts in 

current mashup execution, as well as other real-time contexts which may affect the selection of user 

activities, such as location and time. 

Mashup composer and executer are the core parts of the system including activity recommendation 

engine, schema composing engine and service execution engine. According to user goal and user’s 

previous behavior traces, activity recommendation engine computes user’s preference values for 

candidate activities based on the extracted probability distribution of user behavior and recommend 

the next activity. Then, composition engine enhances current mashup schema by combining the 

recommended activity. Execution engine grounds the activity with available web-based component 

and perform execution. The result of execution engine will feed back to composition engine as one 

of the conditions to generate the next steps of the mashup. 

The above framework provides an effective approach for constructing a preference-based mashup 

instance using an iterative paradigm. In the following sections, we will discuss some key issues in 

the proposed system. 

III. Log-based behavior pattern mining for mashups 

 

A mashup instance records a historical execution trace involving user, services with a running 

sequence and contexts. Note that the mashup instances are independent and isolated with each other 

in historical logs, even for similar mashup goals and contexts. 

Definition 3 (Mashup Activity). A Mashup Activity, also called abstract component, describing the 

common attributes of a set of concrete web-based components with similar functionalities, which is 

expressed using a tupole: ma = <Op, In, Out, Desc>, with Op denoting operation name, In = {in1, 

in2, ...}, Out = {out1, out2, ...} denoting input and output parameters respectively, and each of the 

parameters is a tuple: p = <name, Desc>, where 𝑝 ∈ 𝐼𝑛 ∪ 𝑂𝑢𝑡, Desc is the keyword set of parameter 

annotations: Desc={anno1, anno2, …}. 
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Definition 4 (Mashup Schema). Assuming A is a set of activities, C is a set of contexts and B is the 

Cartesian product of A and C: B= A × C. Let B* denotes the set of finite sequences of B. A Mashup 

Schema σ is a finite sequence of activities in B*,σ∈ B*, which can be expressed as: σ = <(a1,c1), 

(a2,c2),……, (an,cn)>, σ[i]= (ai,ci), |σ|=n is length of the sequence, 1≤i≤n.  

A mashup schema is an abstract template describing multiple mashup instances with similar contexts 

and behavior patterns. As the basic component of mashup schema, activity extraction becomes one 

of the fundamental tasks in mashup pattern mining. At present, there have been quite a few 

researches on service clustering and classification. We adopt a component clustering approach based 

on functionality similarity and interface compatibility, which is described in detail in our previous 

works [11]. 

A. Similarity of user activity traces 

Let σ be a complete mashup instance in historical logs, σt denotes the activity sequence of σ. We 

define the activity adjacency relation of σt as: AAR(σt) = {<ti,ti+1>}. Also, Let ADR(σt) denotes 

the activity dependence relation: ADR(σt) = {<ti,tj>}, i<j. Therefore, the activity adjacency relation 

and activity dependence relation are two types of decomposition for an activity sequence with 

different rigorous levels. 

Definition 5 (Activity Trace Similarity). Letσ1, σ2 represent two arbitrary activity sequences: 

σ1=<t1, t2, . . ., tn>,σ2=<ť1, ť2, . . ., ťm>, the Activity Trace Similarity ofσ1  and σ2 is defined as 

𝑆𝑖𝑚𝑡(𝜎1, 𝜎2) =
|𝐴𝑁𝑅(𝜎1) ∩ 𝐴𝑁𝑅(𝜎2)|

|𝐴𝑁𝑅(𝜎1) ∪ 𝐴𝑁𝑅(𝜎2)|
∗ 𝑤 +   

|𝐴𝐷𝑅(𝜎1) ∩ 𝐴𝐷𝑅(𝜎2)|

|𝐴𝐷𝑅(𝜎1) ∪ 𝐴𝐷𝑅(𝜎2)|
∗ (1 − 𝑤)     (1) 

Where 0≤w≤ 1, is a weight value for measuring the importance of activity adjacency relation and 

activity dependence relation. 

B. Similarity of user behavior patterns 

Collaborative filtering recommendation approaches based on similar users have been proven 

significant effectiveness in multiple domains. Similarly, introducing the factor of user preference in 

personalized mashup construction will definitely improve the quality of activity recommendation for 
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end-users. In this scenario, users are considered similar if they have similar behavior patterns for the 

same goal.  

Definition 6 (User Preference for Activity Trace). The preference of user U for an activity trace is 

expressed as a tuple: EP=(P, δ) with P={P1, ……,Pn} denoting the finite set of the activity traces 

that user U has selected, δ(Pi) denoting the preference value for activity trace Pi which is the times 

that U has performed Pi in historical logs.  

Based on the matrix of user preference for activity traces, the behavior pattern similarity between 

any users can be measured. Among current approaches for measuring user similarity, Pearson 

correlation coefficient [4] has been proved to be effective enough in multiple domains. In our 

approach, Pearson correlation coefficient is used to measure the preference similarity for activity 

traces between user u and v: 

=  

Where ruv denotes the preference similarity of user u and v, Iuv means the common activities in the 

traces they selected, Pu,i, Pv,i is the preference value of user u, v for activity trace Pi, andPu,Pv 

denotes the average preference value of user u, v for their common activities Iuv. 

Definition 8 (Behavior Pattern Similarity). Assuming the preferences of user Ui and Uj for activity 

traces are EPi=(Pi,δi) and EPj=(Pj,δj) respectively, the behavior pattern similarity between user Ui 

and Uj is defined as 

𝐴𝑢𝑖⇔𝑢𝑗 = {
𝑟𝑖𝑗, 𝑟𝑖𝑗 ≥ 0 

0,           𝑒𝑙𝑠𝑒
               (2) 

Where rij is the Pearson correlation coefficient of the preference value for the common activity 

traces of user Ui and Uj. 

IV. Incremental construction algorithm for mashup schema 
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The mashup construction is a progressive procedure involving two phases in each iteration: schema 

construction phase and service execution phase. 

A. Support Function for activity trace 

Based on user partial activity traces, historical mashup instances provide different supports for 

recommendation of the user’s future activities. That is, the more similar the trace fragment and the 

historical mashup instances are, the more valuable the historical patterns are to support the 

construction of current mashup. 

Let σ be the activity trace of a mashup instance in historical logs, σp denotes the prefix sub-sequence 

of σ, ρ is a partial execution trace (i.e. mashup fragment), G(σ) and G(ρ) denote the goal of σ and ρ 

respectively. Then we define the Support Function of mashup instance σ for partial execution trace 

ρ, i.e. the probability that activity trace evolves into mashup instance σ: 

𝑆(𝜌, 𝜎) =  𝑆𝑖𝑚𝑡(𝜌, 𝜎) ∗ 𝑤 +  𝑆g(𝜌, 𝜎) ∗ (1 − 𝑤)      (3) 

Where 𝑆𝑖𝑚𝑡(𝜌, 𝜎) is the activity trace similarity defined in formula (1), and Sg(ρ, σ) denotes mashup 

goal similarity which is defined as 

𝑆g(𝜌, 𝜎) =
|𝑔(𝜎). Out ∩ 𝑔(𝜌). Out|

|𝑔(𝜎). Out ∪ 𝑔(𝜌). Out|
 

The support function for activity trace is used to filter the historical mashup logs, so that the 

instances supporting the partial execution trace can be identified and the other unrelated mashup 

instances are excluded. 

B. Mashup construction algorithm 

In the following we describe the schema construction phase of the iterative mashup composing 

process, i.e. the algorithm for activity recommendation based on user past behavior trace. 

Algorithm : Behavioral context-based activity recommendation 
Input: mashup fragment f, mashup goal g, user u, threshold of mashup similarity h 

Output: enhanced mashup fragment 𝑓.  

Let f = (<s1, c1>, <s2, c2>, <s3, c3> ……, <sk, ck>); 
ssi = {}; //Initialize the set of similar mashup instances of f; 
For each mashup instance mi in the historical logs 
   Compute similarity 𝑆(𝑓, 𝑚𝑖) using formula (4); 
   If (𝑆(𝑓, 𝑚𝑖) ≥ h) 



Wei He, Guozhen Ren, Hui Li and Lizhen Cui 

     ssi = ssi ∪{mi}; 
   End if 
End for 

Identify user cluster o for user u based on formula (2); //𝑢 ∈ 𝑜 
r[0..c]=0; //The selection times of candidate activities by users in o; 
For each user û in user cluster o 
  For each candidate activity ca[i] 
    r[i] = r[i] + the times of ca[i] that user û has selected in logs; 

  End for 
End for 

 Assign ca[k] to na where r[k] is the greatest value in r[0..c]; 

𝑓 = f ∪ <na>; 

Return 𝑓; 

 

The algorithm describes schema construction phase of the iterative mashup composition process, 

which aims to enhance the mashup fragment by computing and recommending the next activity. The 

complete mashup can be constructed progressively by performing the algorithm repeatedly. Once the 

recommended activity is confirmed, it should be grounded to a particular Web-API based component 

registered in the repository. Currently, there have been quite a few researches focusing on mashup 

service selection and recommendation. 

V. Simulation Experiments 

 

According to the effectiveness and efficiency of the mashup composition approach, an application 

scenario of service mashups are constructed, in which dining-out related services are provided for 

end-users. In this application scenario, a user goal may be described as “Finding a restaurant within 

10 miles, getting there, parking and having dinner with my friends” with probably multiple web-

based services. 

A. Experimenting data 

1. Web-based components 

The detailed construction process involve 2 steps. In the first step, real-world services on Internet are 

searched and extracted to generate the primary components in the registry from the sources of 

general service providers (such as Google Place APIs, Baidu mapping APIs etc.) and specific 

platforms(such as Yelp APIs, Dianping.com APIs etc.). The descriptive information for both 
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functionalities and interfaces of these public services are extracted, and then annotations are 

generated for each component based on its native descriptions. Besides, some QoS attributes are 

randomly generated, including usability, performance and reliability etc. In the second step, we also 

created and annotated virtual services with a random number for each primary component based on 

its meta-data, so that the registered components come to a certain quantity. The basic statistic info of 

the constructed components is listed in table 2. 

Table 1. The statistics of components 

Total number 372 
Clusters based on functionality similarity 15 
Number of annotations 1, 3, 5 

Component classification Number of 

components 

Primary 

components 

Virtual 

components 

Total 372 51 321 
LBS-based service 19 3 16 
Navigating service 18 3 15 
Restaurant finding 44 9 36 
Reservation service 26 5 21 

    ………… …… …… …… 

 

2. Historical mashup instances 

Based on the meta-data of generated components, we constructed simulation data for historical user 

behavior traces, i.e. mashup instances. The mashup instances were created by randomly selecting 

components following the constraints of compatible interfaces and functionalities. Then, the 

generated instances were adjusted from two aspects. One adjustment is to increase clustering 

property for the behavior traces of similar users. On the other side, a percentage value measuring 

component popularity was introduced for each component and let the appearance frequency of 

components in the generated logs roughly follow their popularity distribution, so that the actual 

situation could be reflected as much as possible. The statistics of generated mashup instances is 

listed in table 3. 

Table 2. The statistics of generated mashup instances 

Set of mashup instances  
   Number of mashup instances 3500 
   Number of involved users 60 
   Number of involved components 317 
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   Estimated number of activities 29 
   Number of mashup goals 12 
   Number of contexts 5 

 

B. Experimental Results 

First, experiments are performed to verify the component clustering approach based on functionality 

similarity and interface compatibility. The experimental results of component clustering in different 

conditions are described in our previous works [11]. In this paper, we also compared our component 

clustering approach, referred to “FSandIC-based clustering” with other popular clustering 

algorithms. In literature [6], the authors proposed two service similarity computing approaches: 

Euclidean-distance and Cosine-distance measurement based on vector space for multi-dimensional 

properties, which is referred to “ED-based clustering” and “CD-based clustering” respectively. For 

similar purpose, Literature [7] proposed functionality-based and process-based similarity 

measurements for component clustering which is referred to “FS-based clustering”. The difference 

degree between our clustering method and the other 3 approaches were computed based on service 

similarity matrices generated by the 4 methods, including difference value for service pair <𝑠𝑖 , 𝑠𝑗> 

defined as: 

𝐷(𝑠𝑖, 𝑠𝑗) = 𝑑1(𝑠𝑖, 𝑠𝑗) − 𝑑2(𝑠𝑖, 𝑠𝑗), 

and the overall difference value define as 

𝐷(𝑀1, 𝑀2)  = √
∑ ∑ (𝑑1(𝑠𝑖, 𝑠𝑗) − 𝑑2(𝑠𝑖, 𝑠𝑗))𝑛

𝑗=𝑖+1
2𝑛

𝑖=1

𝑛(𝑛 − 1) 2⁄
 

where 𝑑1(𝑠𝑖, 𝑠𝑗) ∈ 𝑀1, 𝑑2(𝑠𝑖, 𝑠𝑗) ∈ 𝑀2  denotes the similarity value between service s1 and s2 in 

matrix M1 and M2 respectively. The difference degrees of clustering between our method and the 

other 3 approaches, as well as the combined comparison, are shown in figure 2. The results indicate 

that the clustering result of our method is close to FC-based clustering with an overall difference of 

1.9, and has much bigger difference with the other approaches. This is because the two closer 

clustering methods considered both functionality and interface compatibility, and the other 2 
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methods focus on multi-dimensional spaces including functional semantic, location info and QoS 

attributes. 

The next experiment was performed to verify the effect of mashup construction. The generated 

mashup instances were divided into 2 parts: sample instances and benchmark instances. Experiments 

were carried based on sample data to generate recommended mashups, then the results were 

compared with the benchmark part of mashup instances with similar goal and contexts. 

 

Fig. 1. Clustering differences among the approaches 

In order to measure the results of mashup construction, we define matching rate according to 

benchmark data with mashup goal g and user u: 

𝑚𝑟(𝑔, 𝑢) =
∑ |𝑆𝑏(𝑔, 𝑟, 𝑐𝑖) ∩ 𝑆𝑟(𝑔, 𝑟, 𝑐𝑖)|𝑐𝑖∈𝐶

∑ |𝑆𝑏(𝑔, 𝑟, 𝑐𝑖)|𝑐𝑖∈𝐶
 , 

where Sr(g, r, c) denotes the set of recommended components generated in the experiments, Sb(g, r, 

c) is the components in the benchmark instances.  
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Fig. 2. Matching rate of mashup constructions 

Based on the definition of matching rate, we compared our algorithm with other service composition 

approaches according to different numbers of mashup instances. We investigated some 

representative approaches of service composition, including context-awareness based [5], pervasive-

environments based [3] and planning-based[8] composition. We simplified these methods and 

implemented the core ideas, then compared the results with our algorithm. Figure 3(a) illustrates the 

matching rate of the algorithms with different number of generated mashups. With the increasing 

number of generated mashup instances to be evaluated, the matching rate with benchmark data 

becomes stable. Another experiment in figure 3(b) shows the average matching rate for different 

approaches. 

VI. Related Work 

 

In recent years, context-based service recommendation for mashup provisions have been attracted 

much attention. Some researchers performed role mining and service recommendation based on 

users’ historical selection records in various physical environments [9]. Hussein et al. capture a 

service's requirements as two sets of scenarios, and then deal with the dynamic changes of contexts 

using adaptation requirement [10]. Due to the successful effects in many other domains, 
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personalized recommendation was widely introduced into service discovery and selection. Meng et 

al. proposed a similar user-based CF approach to recommend services by annotating users’ 

preferences with keywords [12]. Chen et al. adopted a visualized technology to improve 

recommendation comprehensibility and implemented personalized recommendation based on a CF 

algorithm [13]. To improve recommendation qualities in pervasive environments, quite a few 

researches combine contexts into collaborative filtering methods. Shin et al. proposed a CF-based 

recommendation approach with aggregated contexts [14]. Karatzoglou et al. constructed a multi-

dimensional matrix of “user-item-context” by extending conventional “user-item” matrix for a 

context-aware recommendation approach [15]. 

VII. Conclusion 

 

In this paper, we propose a new paradigm for behavioral context-based personalized mashup 

provision in pervasive environments by combing user behavior and mashup instance execution into 

an integrated process. Analysis and experiments indicate that our approach can effectively simplify 

personalized mashup composition without depending on end-users’ professional knowledge, as well 

as improve the quality of mashup composition and recommendation based on behavioral contexts 

and personalization in pervasive environments. 
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