
International Journal of Information Technology Vol. 21 No. 2 2015

 1

Abstract

With the rapid development of mobile Internet and increasing amount of smart devices, Internet

services have been integrated into peoples’ daily lives. Due to the features of end-user-oriented

mashups in pervasive environments, new challenges have been presented to conventional mashup

approaches, including the complexity of user behaviors, the difficulty of predicting real-time user

preference and other dynamic contexts. In this paper, we propose a new paradigm for behavioral

context-based personalized mashup provision in pervasive environments by integrating mashup

construction and execution into user natural behaviors. In the proposed paradigm, users with similar

behavior patterns are identified and then probability distributions of potential behavior selection for

user clusters are discovered from historical mashup logs, which provide supports for predicting and

recommending user activities for future mashup constructions. Analysis and experiments indicate

that our approach can effectively simplify personalized mashup composition, as well as improve the

quality of mashup composition and recommendation based on behavioral contexts and

personalization in pervasive environments.

Keyword: Pervasive computing; Behavioral context; Mashup; Personalization; Service

User Behavioral Context-Aware Service

Recommendation for Personalized Mashups in Pervasive

Environments

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

School of Computer Science and Technology,

Shandong University, Jinan, China

hewei@sdu.edu.cn

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

Recommendation

I. Introduction

With the rapid development of mobile Internet and the increasing growth of smart devices, more and

more Internet-based services are being closely integrated into end-users’ daily behaviors, which

definitely bring better experiences for users than traditional desktop environments. Analogously, in

such pervasive scenarios, the construction and execution processes of end-user-oriented mashups are

also integrated into user’s natural behaviors with procedure and interaction features [1, 2]. Therefore,

user behavior patterns should be considered during the process of constructing and selecting mashup

solutions in order to improve user experiences. Together with personalized service provisions and

dynamic contexts, these new features have presented great challenges to conventional mashup

approaches.

The biggest challenge is the complexity of user behavior processes in pervasive environments.

Different users always show various behavior patterns and preferences and it is difficult to perceive

and predict real-time user behavior patterns in dynamic contexts. Personalized factors, including user

habit and preference, have much impact on the selection of user behaviors. Even in the same context,

different users have various preferences for activities and services. Furthermore, mobility of user

devices and dynamic contexts increase the difficulties of user preference awareness. Let’s consider

an example of service mashups for dining out based on available web-based APIs, in which user

activities probably include finding restaurant, reserving seats, locating and going to destination,

parking and ordering, involving potential services such as LBS, map service, navigation service,

reservation service and dish order service etc. Actually, there are multiple potential mashup solutions

to meet the requirement and it is important to select a suitable one for the particular user. In

conventional approaches, the mashup schema with involved activities is required to be defined and

constructed in a mashup tool before it can be executed. However, it is both difficult and unrealistic

International Journal of Information Technology Vol. 21 No. 2 2015

 3

for unprofessional users to schedule such a complete model in advance due to their limitations of

professional knowledge and available information. Even though a mashup solution is pre-defined

manually or automatically, probably it cannot achieve satisfactory results during the following

execution period. Current context-based approaches for service composition and recommendation

rarely consider the influence of user behavioral patterns and service relationships. Therefore, in order

to improve user’s experience, it is more crucial to help user planning a satisfying personalized

mashup solution based on user behavioral contexts and preference, rather than only recommending

independent services.

In this paper, we focus on the integrated cycle of both user behavior and mashup execution, instead

of only recommending services. We propose a construction approach for personalized mashups

based on user behavioral contexts. The main idea of this paper is as follows. First, potential

preference-based user behavior patterns are discovered by applying pattern mining tasks to historical

mashup logs. Then, based on the probabilistic distribution of user behaviors, according to user goal,

user behavior traces and behavior patterns of similar users, target user’s upcoming behaviors are

predicted and the next activity is recommended. Next, the selected activity will be grounded to

concrete Web-based APIs followed by executing the grounded service. By repeating the last two

steps of the process, a personalized mashup schema is composed progressively until the final goal is

achieved. In this proposed paradigm, mashup composition is simplified and end-user is not required

to construct a schema in advance from scratch with necessary professional knowledge.

The rest of this paper is organized as follows: Section 2 gives problem definitions and the proposed

system model; In section 3, we describe the detailed pattern mining approach based on historical

logs. Section 4 depicts the iterative construction algorithm for end-user-oriented personalized

mashups; In section 5, simulation experiments are illustrated; Section 6 gives related work; section 7

summarizes the main contributions of the paper.

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

II. Problem definitions and system model

A mashup instance represents a historical execution of mashup, which involves multiple components

with specific context and execution sequence. The mashup log is the set of finite discrete mashup

instances, each of which records a particular execution trace with component invocations and user

contexts.

Definition 1 (Mashup Instance). A Mashup Instance is expressed as a tuple: mi = <u, g, ts>, with u

denoting the end-user, g denoting user goal: g = <In, Out, Desc>, where In = {in1, in2, ...} is the set

of all input parameters, Out = {out1, out2, ...} is the set of all output parameters of the mashup, and

Desc = {kw1, kw2, ...} is the set of keywords describing the mashup functionalities. The third

attribute ts denotes task sequence: ts = <t1, t2, . . ., tn>, where each task ti (1≤i≤n) is a tuple:

ti=<mci, ctxi> with mci denoting mashup component and ctxi denoting the context of current task.

In the task sequence, the parameters required by component mci come from the outputs generated by

one or more precursor components mci-1, mci-2, …mc1 (1≤i≤n).

In the scenario of pervasive mashups, conventional context is extended with user behavior

information. User behavioral context records the behavior trace (or activity sequence) he/she has

performed during the period of mashup execution.

Definition 2 (Behavioral Context). A Mashup Context is a prefix subset of the task sequence mi.ts

of a mashup instance, which is expressed as: bc = <t1, t2, . . ., tm>, m≤n, where each task ti is a

tuple: ti=<mci, ctxi> with mci denoting mashup component and ctxi denoting the context of current

task.

International Journal of Information Technology Vol. 21 No. 2 2015

 5

Fig. 1. System structure

The architecture of user behavioral context-based mashup construction and service recommendation

is illustrated in figure 1, with multiple components including behavior pattern mining module,

context awareness module, knowledgebase of behavior patterns and mashup composer & executer.

Historical logs record users’ mashup activities, including behavior traces, involved web resources

and the related contexts during the execution period, from which quite a few valuable information

for future mashup construction can be discovered. User behavior pattern extractor generates the

probability distribution for user activity selection. Based on the activity traces in which different

users are involved, user behavior similarity computing module evaluates user preferences to

candidate activities in particular contexts and partial activity traces, so that users with similar

behaviors are identified. Component clustering module generates activities by clustering actual web-

based components with similar functionalities.

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

Context awareness module is responsible for capturing and updating user behavioral contexts in

current mashup execution, as well as other real-time contexts which may affect the selection of user

activities, such as location and time.

Mashup composer and executer are the core parts of the system including activity recommendation

engine, schema composing engine and service execution engine. According to user goal and user’s

previous behavior traces, activity recommendation engine computes user’s preference values for

candidate activities based on the extracted probability distribution of user behavior and recommend

the next activity. Then, composition engine enhances current mashup schema by combining the

recommended activity. Execution engine grounds the activity with available web-based component

and perform execution. The result of execution engine will feed back to composition engine as one

of the conditions to generate the next steps of the mashup.

The above framework provides an effective approach for constructing a preference-based mashup

instance using an iterative paradigm. In the following sections, we will discuss some key issues in

the proposed system.

III. Log-based behavior pattern mining for mashups

A mashup instance records a historical execution trace involving user, services with a running

sequence and contexts. Note that the mashup instances are independent and isolated with each other

in historical logs, even for similar mashup goals and contexts.

Definition 3 (Mashup Activity). A Mashup Activity, also called abstract component, describing the

common attributes of a set of concrete web-based components with similar functionalities, which is

expressed using a tupole: ma = <Op, In, Out, Desc>, with Op denoting operation name, In = {in1,

in2, ...}, Out = {out1, out2, ...} denoting input and output parameters respectively, and each of the

parameters is a tuple: p = <name, Desc>, where 𝑝 ∈ 𝐼𝑛 ∪ 𝑂𝑢𝑡, Desc is the keyword set of parameter

annotations: Desc={anno1, anno2, …}.

International Journal of Information Technology Vol. 21 No. 2 2015

 7

Definition 4 (Mashup Schema). Assuming A is a set of activities, C is a set of contexts and B is the

Cartesian product of A and C: B= A × C. Let B* denotes the set of finite sequences of B. A Mashup

Schema σ is a finite sequence of activities in B*,σ∈ B*, which can be expressed as: σ = <(a1,c1),

(a2,c2),……, (an,cn)>, σ[i]= (ai,ci), |σ|=n is length of the sequence, 1≤i≤n.

A mashup schema is an abstract template describing multiple mashup instances with similar contexts

and behavior patterns. As the basic component of mashup schema, activity extraction becomes one

of the fundamental tasks in mashup pattern mining. At present, there have been quite a few

researches on service clustering and classification. We adopt a component clustering approach based

on functionality similarity and interface compatibility, which is described in detail in our previous

works [11].

A. Similarity of user activity traces

Let σ be a complete mashup instance in historical logs, σt denotes the activity sequence of σ. We

define the activity adjacency relation of σt as: AAR(σt) = {<ti,ti+1>}. Also, Let ADR(σt) denotes

the activity dependence relation: ADR(σt) = {<ti,tj>}, i<j. Therefore, the activity adjacency relation

and activity dependence relation are two types of decomposition for an activity sequence with

different rigorous levels.

Definition 5 (Activity Trace Similarity). Letσ1, σ2 represent two arbitrary activity sequences:

σ1=<t1, t2, . . ., tn>,σ2=<ť1, ť2, . . ., ťm>, the Activity Trace Similarity ofσ1 and σ2 is defined as

𝑆𝑖𝑚𝑡(𝜎1, 𝜎2) =
|𝐴𝑁𝑅(𝜎1) ∩ 𝐴𝑁𝑅(𝜎2)|

|𝐴𝑁𝑅(𝜎1) ∪ 𝐴𝑁𝑅(𝜎2)|
∗ 𝑤 +

|𝐴𝐷𝑅(𝜎1) ∩ 𝐴𝐷𝑅(𝜎2)|

|𝐴𝐷𝑅(𝜎1) ∪ 𝐴𝐷𝑅(𝜎2)|
∗ (1 − 𝑤) (1)

Where 0≤w≤ 1, is a weight value for measuring the importance of activity adjacency relation and

activity dependence relation.

B. Similarity of user behavior patterns

Collaborative filtering recommendation approaches based on similar users have been proven

significant effectiveness in multiple domains. Similarly, introducing the factor of user preference in

personalized mashup construction will definitely improve the quality of activity recommendation for

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

end-users. In this scenario, users are considered similar if they have similar behavior patterns for the

same goal.

Definition 6 (User Preference for Activity Trace). The preference of user U for an activity trace is

expressed as a tuple: EP=(P, δ) with P={P1, ……,Pn} denoting the finite set of the activity traces

that user U has selected, δ(Pi) denoting the preference value for activity trace Pi which is the times

that U has performed Pi in historical logs.

Based on the matrix of user preference for activity traces, the behavior pattern similarity between

any users can be measured. Among current approaches for measuring user similarity, Pearson

correlation coefficient [4] has been proved to be effective enough in multiple domains. In our

approach, Pearson correlation coefficient is used to measure the preference similarity for activity

traces between user u and v:

=

Where ruv denotes the preference similarity of user u and v, Iuv means the common activities in the

traces they selected, Pu,i, Pv,i is the preference value of user u, v for activity trace Pi, andPu,Pv

denotes the average preference value of user u, v for their common activities Iuv.

Definition 8 (Behavior Pattern Similarity). Assuming the preferences of user Ui and Uj for activity

traces are EPi=(Pi,δi) and EPj=(Pj,δj) respectively, the behavior pattern similarity between user Ui

and Uj is defined as

𝐴𝑢𝑖⇔𝑢𝑗 = {
𝑟𝑖𝑗, 𝑟𝑖𝑗 ≥ 0

0, 𝑒𝑙𝑠𝑒
 (2)

Where rij is the Pearson correlation coefficient of the preference value for the common activity

traces of user Ui and Uj.

IV. Incremental construction algorithm for mashup schema

uvr
2

,
2

,

,,

)()(

)()(

vivuviuiuuvi

vivuiuuvi

PPIPPI

PPPPI





International Journal of Information Technology Vol. 21 No. 2 2015

 9

The mashup construction is a progressive procedure involving two phases in each iteration: schema

construction phase and service execution phase.

A. Support Function for activity trace

Based on user partial activity traces, historical mashup instances provide different supports for

recommendation of the user’s future activities. That is, the more similar the trace fragment and the

historical mashup instances are, the more valuable the historical patterns are to support the

construction of current mashup.

Let σ be the activity trace of a mashup instance in historical logs, σp denotes the prefix sub-sequence

of σ, ρ is a partial execution trace (i.e. mashup fragment), G(σ) and G(ρ) denote the goal of σ and ρ

respectively. Then we define the Support Function of mashup instance σ for partial execution trace

ρ, i.e. the probability that activity trace evolves into mashup instance σ:

𝑆(𝜌, 𝜎) = 𝑆𝑖𝑚𝑡(𝜌, 𝜎) ∗ 𝑤 + 𝑆g(𝜌, 𝜎) ∗ (1 − 𝑤) (3)

Where 𝑆𝑖𝑚𝑡(𝜌, 𝜎) is the activity trace similarity defined in formula (1), and Sg(ρ, σ) denotes mashup

goal similarity which is defined as

𝑆g(𝜌, 𝜎) =
|𝑔(𝜎). Out ∩ 𝑔(𝜌). Out|

|𝑔(𝜎). Out ∪ 𝑔(𝜌). Out|

The support function for activity trace is used to filter the historical mashup logs, so that the

instances supporting the partial execution trace can be identified and the other unrelated mashup

instances are excluded.

B. Mashup construction algorithm

In the following we describe the schema construction phase of the iterative mashup composing

process, i.e. the algorithm for activity recommendation based on user past behavior trace.

Algorithm : Behavioral context-based activity recommendation
Input: mashup fragment f, mashup goal g, user u, threshold of mashup similarity h

Output: enhanced mashup fragment 𝑓.

Let f = (<s1, c1>, <s2, c2>, <s3, c3> ……, <sk, ck>);
ssi = {}; //Initialize the set of similar mashup instances of f;
For each mashup instance mi in the historical logs
 Compute similarity 𝑆(𝑓, 𝑚𝑖) using formula (4);
 If (𝑆(𝑓, 𝑚𝑖) ≥ h)

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

 ssi = ssi ∪{mi};
 End if
End for

Identify user cluster o for user u based on formula (2); //𝑢 ∈ 𝑜
r[0..c]=0; //The selection times of candidate activities by users in o;
For each user û in user cluster o
 For each candidate activity ca[i]
 r[i] = r[i] + the times of ca[i] that user û has selected in logs;

 End for
End for

 Assign ca[k] to na where r[k] is the greatest value in r[0..c];

𝑓 = f ∪ <na>;

Return 𝑓;

The algorithm describes schema construction phase of the iterative mashup composition process,

which aims to enhance the mashup fragment by computing and recommending the next activity. The

complete mashup can be constructed progressively by performing the algorithm repeatedly. Once the

recommended activity is confirmed, it should be grounded to a particular Web-API based component

registered in the repository. Currently, there have been quite a few researches focusing on mashup

service selection and recommendation.

V. Simulation Experiments

According to the effectiveness and efficiency of the mashup composition approach, an application

scenario of service mashups are constructed, in which dining-out related services are provided for

end-users. In this application scenario, a user goal may be described as “Finding a restaurant within

10 miles, getting there, parking and having dinner with my friends” with probably multiple web-

based services.

A. Experimenting data

1. Web-based components

The detailed construction process involve 2 steps. In the first step, real-world services on Internet are

searched and extracted to generate the primary components in the registry from the sources of

general service providers (such as Google Place APIs, Baidu mapping APIs etc.) and specific

platforms(such as Yelp APIs, Dianping.com APIs etc.). The descriptive information for both

International Journal of Information Technology Vol. 21 No. 2 2015

11

functionalities and interfaces of these public services are extracted, and then annotations are

generated for each component based on its native descriptions. Besides, some QoS attributes are

randomly generated, including usability, performance and reliability etc. In the second step, we also

created and annotated virtual services with a random number for each primary component based on

its meta-data, so that the registered components come to a certain quantity. The basic statistic info of

the constructed components is listed in table 2.

Table 1. The statistics of components

Total number 372
Clusters based on functionality similarity 15
Number of annotations 1, 3, 5

Component classification Number of

components

Primary

components

Virtual

components

Total 372 51 321
LBS-based service 19 3 16
Navigating service 18 3 15
Restaurant finding 44 9 36
Reservation service 26 5 21

 ………… …… …… ……

2. Historical mashup instances

Based on the meta-data of generated components, we constructed simulation data for historical user

behavior traces, i.e. mashup instances. The mashup instances were created by randomly selecting

components following the constraints of compatible interfaces and functionalities. Then, the

generated instances were adjusted from two aspects. One adjustment is to increase clustering

property for the behavior traces of similar users. On the other side, a percentage value measuring

component popularity was introduced for each component and let the appearance frequency of

components in the generated logs roughly follow their popularity distribution, so that the actual

situation could be reflected as much as possible. The statistics of generated mashup instances is

listed in table 3.

Table 2. The statistics of generated mashup instances

Set of mashup instances
 Number of mashup instances 3500
 Number of involved users 60
 Number of involved components 317

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

 Estimated number of activities 29
 Number of mashup goals 12
 Number of contexts 5

B. Experimental Results

First, experiments are performed to verify the component clustering approach based on functionality

similarity and interface compatibility. The experimental results of component clustering in different

conditions are described in our previous works [11]. In this paper, we also compared our component

clustering approach, referred to “FSandIC-based clustering” with other popular clustering

algorithms. In literature [6], the authors proposed two service similarity computing approaches:

Euclidean-distance and Cosine-distance measurement based on vector space for multi-dimensional

properties, which is referred to “ED-based clustering” and “CD-based clustering” respectively. For

similar purpose, Literature [7] proposed functionality-based and process-based similarity

measurements for component clustering which is referred to “FS-based clustering”. The difference

degree between our clustering method and the other 3 approaches were computed based on service

similarity matrices generated by the 4 methods, including difference value for service pair <𝑠𝑖 , 𝑠𝑗>

defined as:

𝐷(𝑠𝑖, 𝑠𝑗) = 𝑑1(𝑠𝑖, 𝑠𝑗) − 𝑑2(𝑠𝑖, 𝑠𝑗),

and the overall difference value define as

𝐷(𝑀1, 𝑀2) = √
∑ ∑ (𝑑1(𝑠𝑖, 𝑠𝑗) − 𝑑2(𝑠𝑖, 𝑠𝑗))𝑛

𝑗=𝑖+1
2𝑛

𝑖=1

𝑛(𝑛 − 1) 2⁄

where 𝑑1(𝑠𝑖, 𝑠𝑗) ∈ 𝑀1, 𝑑2(𝑠𝑖, 𝑠𝑗) ∈ 𝑀2 denotes the similarity value between service s1 and s2 in

matrix M1 and M2 respectively. The difference degrees of clustering between our method and the

other 3 approaches, as well as the combined comparison, are shown in figure 2. The results indicate

that the clustering result of our method is close to FC-based clustering with an overall difference of

1.9, and has much bigger difference with the other approaches. This is because the two closer

clustering methods considered both functionality and interface compatibility, and the other 2

International Journal of Information Technology Vol. 21 No. 2 2015

13

methods focus on multi-dimensional spaces including functional semantic, location info and QoS

attributes.

The next experiment was performed to verify the effect of mashup construction. The generated

mashup instances were divided into 2 parts: sample instances and benchmark instances. Experiments

were carried based on sample data to generate recommended mashups, then the results were

compared with the benchmark part of mashup instances with similar goal and contexts.

Fig. 1. Clustering differences among the approaches

In order to measure the results of mashup construction, we define matching rate according to

benchmark data with mashup goal g and user u:

𝑚𝑟(𝑔, 𝑢) =
∑ |𝑆𝑏(𝑔, 𝑟, 𝑐𝑖) ∩ 𝑆𝑟(𝑔, 𝑟, 𝑐𝑖)|𝑐𝑖∈𝐶

∑ |𝑆𝑏(𝑔, 𝑟, 𝑐𝑖)|𝑐𝑖∈𝐶
 ,

where Sr(g, r, c) denotes the set of recommended components generated in the experiments, Sb(g, r,

c) is the components in the benchmark instances.

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

Fig. 2. Matching rate of mashup constructions

Based on the definition of matching rate, we compared our algorithm with other service composition

approaches according to different numbers of mashup instances. We investigated some

representative approaches of service composition, including context-awareness based [5], pervasive-

environments based [3] and planning-based[8] composition. We simplified these methods and

implemented the core ideas, then compared the results with our algorithm. Figure 3(a) illustrates the

matching rate of the algorithms with different number of generated mashups. With the increasing

number of generated mashup instances to be evaluated, the matching rate with benchmark data

becomes stable. Another experiment in figure 3(b) shows the average matching rate for different

approaches.

VI. Related Work

In recent years, context-based service recommendation for mashup provisions have been attracted

much attention. Some researchers performed role mining and service recommendation based on

users’ historical selection records in various physical environments [9]. Hussein et al. capture a

service's requirements as two sets of scenarios, and then deal with the dynamic changes of contexts

using adaptation requirement [10]. Due to the successful effects in many other domains,

International Journal of Information Technology Vol. 21 No. 2 2015

15

personalized recommendation was widely introduced into service discovery and selection. Meng et

al. proposed a similar user-based CF approach to recommend services by annotating users’

preferences with keywords [12]. Chen et al. adopted a visualized technology to improve

recommendation comprehensibility and implemented personalized recommendation based on a CF

algorithm [13]. To improve recommendation qualities in pervasive environments, quite a few

researches combine contexts into collaborative filtering methods. Shin et al. proposed a CF-based

recommendation approach with aggregated contexts [14]. Karatzoglou et al. constructed a multi-

dimensional matrix of “user-item-context” by extending conventional “user-item” matrix for a

context-aware recommendation approach [15].

VII. Conclusion

In this paper, we propose a new paradigm for behavioral context-based personalized mashup

provision in pervasive environments by combing user behavior and mashup instance execution into

an integrated process. Analysis and experiments indicate that our approach can effectively simplify

personalized mashup composition without depending on end-users’ professional knowledge, as well

as improve the quality of mashup composition and recommendation based on behavioral contexts

and personalization in pervasive environments.

VIII. Acknowledgement

This work is partially supported by NSFC (No.61572295), the Innovation Method Fund of China

(No.2015IM010200), SDNSFC (No.ZR2014FM031), the Science and Technology Development

Plan Project of Shandong Province (No.2014GGX101019, 2014GGX101047, 2015GGX101007,

2015GGX101015), the Shandong Province Independent Innovation Major Special Project

(No.2015ZDXX0201B03), the Fundamental Research Funds of Shandong University

(No.2015JC031).

Wei He, Guozhen Ren, Hui Li and Lizhen Cui

References

[1] Daniel F, Koschmider A, et al. Toward process mashups: key ingredients and open research

challenges. Proceedings of the 3rd and 4th International Workshop on Web APIs and

Services Mashups, p.1-8, 2010

[2] Fisichella M, Matera M. Process flexibility through customizable activities: A mashup-

based approach. 2011 IEEE 27th International Conference on Data Engineering Workshops,

2011:226 - 231.

[3] Zhou J, Gilman E, Palola J, et al. Context-aware pervasive service composition and its

implementation. Personal and Ubiquitous Computing, 2011, 15(3):291-303

[4] Good N, Schafer JB, Konstan JA, et al. Combining collaborative filtering with personal

agents for better recommendations. In: Proc. of the 16th National Conf. on Artificial

Intelligence. Menlo Park: AAAI Press, 1999. 439−446

[5] Medjahed B, Atif Y. Context-based matching for Web service composition. Distributed and

Parallel Databases, 2007, 21:5-37

[6] Platzer C, Rosenberg F, Dustdar S. Web service clustering using multidimensional angles as

proximity measures. ACM Transactions on Internet Technology. 2009, 9(3): 1-26

[7] Sun P, Jiang C. Using service clustering to facilitate process-oriented semantic web service

discovery. Chinese Journal of Computers, 2008, 31(8): 1340-1353

[8] Hatzi O, Vrakas D, Nikolaidou M, et al. An Integrated Approach to Automated Semantic

Web Service Composition through Planning[J]. Services Computing, IEEE Transactions on,

2012, 5(3):319 - 332.

[9] Wang J, Zeng C, He C, et al. Context-aware role mining for mobile service

recommendation. In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing. New York: ACM, 2012. 173-178

International Journal of Information Technology Vol. 21 No. 2 2015

17

[10] Hussein M, Han J, Yu J, et al. Scenario-Based Validation of Requirements for Context-

Aware Adaptive Services. In: Proceedings of the IEEE International Conference on Web

Services. New York: IEEE Press, 2013. 348-355

[11] He W, Li Q, Cui L, et al. A Context-Based Autonomous Construction Approach for

Procedural Mashups[C]. //Web Services (ICWS), 2014 IEEE International Conference on.

IEEE, 2014:487 - 494.

[12] Meng, S, Dou W, Zhang X, et al. KASR: A Keyword-Aware Service Recommendation

Method on MapReduce for Big Data Application. IEEE Transactions on Parallel and

Distributed Systems, 2014

[13] Chen X, Zheng Z, Liu X, et al. Personalized QoS-aware web service recommendation and

visualization. IEEE Transactions on Services Computing. 2013, 6(1): 35-47

[14] Shin D, Lee J, Yeon J, et al. Context-aware recommendation by aggregating user context.

In: IEEE Conference on Commerce and Enterprise Computing. New York: IEEE, 2009. 423

- 430

[15] Karatzoglou A, Amatriain X, Baltrunas L, et al. Multiverse recommendation: n-dimensional

tensor factorization for context-aware collaborative filtering. In: Proceedings of the fourth

ACM conference on Recommender systems. New York: ACM, 2010. 79-86

