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Abstract 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder that threatens the 

living quality of the older adults. Though there is no known cure for PD currently, identification of 

the disease in its earlier stages is crucial for delivering effective treatments, providing symptomatic 

benefits and sustaining patients to live in a healthier state longer. Besides, the daily condition of a 

patient needs to be monitored in an objective and convenient way, since the doses for PD medication 

may need to be adjusted over time based on the patient’s response to the medication. 

To achieve early identification and frequent monitoring of PD, we proposed a home-based self-

assessment and early risk analytics platform for Parkinson’s Disease. Using sensors embedded in the 

smartphones, the platform collects patient’s testing behaviors for 9 mini-tests, each of which detects 

a representative symptom of PD. The data collected is in a standardized format, and hence can be 
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used conveniently for generating analytical insights, such as risk predictions and condition reports. 

Features characterizing the symptoms of PD are extracted from the patient’s test behavioral data. A 

support-vector machine ensemble with bagging is applied to the extracted features to predict the risk 

of developing PD. The platform users only need to complete the mini-tests at home and the gener-

ated insights can be directed sent to users’ smartphones or accessed online, helping the users to bet-

ter understand their conditions and risk profiles. 

Keyword: Parkinson’s disease, home-based assessments, data analytics 

I. Introduction 
 
Parkinson’s disease (PD) is a progressive nervous system disorder that is primarily characterized by 

motor symptoms[26]. In 2015, PD afflicted 6.2 million people and resulted in about 117,400 deaths 

globally [31, 32]. Evidence from studies suggests an increasing prevalence of PD with older age and 

its global prevalence increases from 1% among people aged 60 and above to 4% among people aged 

80 and above [6]. In early stages, PD patients may suffer from shaking, rigidity, bradykinesia, diffi-

culty with walking, and other motor symptoms [13]. As the disease progresses, PD patients may ex-

hibit non-motor symptoms due to the degeneration of the nervous system, which may greatly deterio-

rate their quality of life [6, 13]. There is consistent evidence across studies that older adults with PD 

are more prone to depression and dementia [4, 13]. Besides, the PD patients may also experience 

problems with sleep, sensory and emotion [28], which greatly threatens their living quality. 

Although there is no existing treatment that can stop or reverse the progression of Parkinson’s dis-

ease [28], some treatments, such as the antiparkinson medication levodopa (L-DOPA), can help to 

alleviate the symptoms [33]. In early stages of PD, medications can help patients to control the symp-

toms and live a normal life longer. As the disease progresses and degeneration in nervous system 

accumulates, patients tend to become less responsive to medications [28]. Therefore, the identification 

of patients at risk and in earlier stages of the disease appears to be essential for devising any successful 
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neuroprotection, providing symptomatic benefits and sustaining patients to live normally longer. How-

ever, early and accurate diagnosis of the PD can be challenging because there are no biomarkers or 

neuroimaging or other clinical tests available currently to confirm the diagnosis. PD diagnosis is cur-

rently based on the presence or absence of various clinical features and the experience of the treating 

physician [19]. Due to the mildness of many early signs, patients may not undergo clinical examina-

tions for PD during early stages and therefore, the best stage for treatment may have been missed when 

symptoms become noticeable. Besides, in order to help patients to sustain normal motor function over 

the day, the doses for PD medication may need to be adjusted over time based on the patients’ response 

to the medication [1]. Therefore, continuous and frequent assessments are crucial for detecting possi-

ble PD signs early, evaluating the medication’s effectiveness, and monitoring the disease progress. 

Traditionally, the assessments and diagnosis of PD are performed by an expert, e.g., a movement 

disorder specialist, in a clinical setting. Typical procedures involve the evaluation of subject’s overall 

condition according to standardized scales and questionnaires. Due to various cost and resource limi-

tations, long-term and frequent monitoring of PD symptoms is impractical under the traditional ap-

proach. Home-based computerized tests provide new opportunities for self-administered assessments 

and remote monitoring of early PD signs, which can lead to timely diagnosis, early intervention, and 

consequent improvement of patients’ quality of life. Without the need of a trained assessor and the 

presence of the subject at the clinic, the computerized mini-tests can be distributed over the Internet 

and self-administered. Compared to traditional scales and questionnaires which are often subjective 

as they rely on expert’s judgments or subject’s self-reports, computerized tests are more objective, 

more repeatable, and most importantly, more accessible. In this paper, we propose a self-assessment 

platform on smartphones to facilitate patients and caregivers to objectively screen PD symptoms and 

monitor the effectiveness of treatments in a home-based environment. This platform provides objec-

tive and convenient measurements to continuously capture the severity of PD symptoms and fluctua-

tions, together with an effective and reliable way to analyze the testing result. There are 9 mini-tests 

in our platform. Each mini-test is designed in the light of a task for motor assessment in the Unified 



Parkinson Disease Rating Scale (UPDRS) [10]. The users only need to complete the mini-tests at home 

rather than physically visiting the clinics and going through lengthy questionnaires. Using sensors 

embedded in the smartphones, the platform collects patient’s testing behaviors. The data collected is 

standardized and can be used conveniently for generating analytical insights, such as risk predictions 

and condition reports, using machine leaning methods. Besides, generated insights can be directed sent 

to users’ smartphones or accessed online, helping the users to better understand their conditions and 

risk profiles. 

The rest of the paper is organized as follows. Section 2 reviews the relevant background on Parkin-

son’s disease, its assessment and early detection, and existing computerized batteries. Section 3 pre-

sents the overall design concepts and each mini-test of mobile platform for PD assessment. Then, 

section 4 focuses on the feature extraction and data analytics. Section 5 describes the SVM ensembles 

with bagging used and presents the results of simulations conducted on the proposed platform. Using 

simulated patient data, the process from collecting data, analyzing data, to producing risk prediction 

is exemplified. Finally, section 6 concludes the paper. 

II. Background 
A.  Parkinson’s Disease 

Parkinson’s disease (PD) is a common geriatric disease, which may lead to a series of motion 

disorders such as hands shaking, rigidity, slowness of movement and walking [7, 17]. Many risk 

factors for PD have been identified, however, most of them have not been conclusively proven 

[6]. The most frequently studied relationships are an increased risk of PD with exposures to 

pesticides, and a reduced risk in smokers [3, 6]. There is also a potential linkage between PD and 

H. pylori infection that can prevent the absorption of some drugs including levodopa [5, 18]. The 

pathophysiology of Parkinson’s disease is the death of dopaminergic neurons as a result of changes 

in biological activity in the brain with respect to PD [25]. There are several proposed mechanisms 
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for neuronal death; however, not all of them are well understood. Five proposed major mecha-

nisms for neuronal death in Parkinson’s Disease include protein aggregation in Lewy bodies, 

disruption of autophagy, changes in cell metabolism or mitochondrial function, neuroinflamma-

tion, and blood-brain barrier breakdown resulting in vascular leakiness [29] 

B. Symptoms and Traditional PD Assessment 

Symptoms of Parkinson’s disease typically manifest in three aspects, motor, neuropsychiatric 

and other [13]. Four motor symptoms are considered cardinal in PD: tremor, slowness of move-

ment (bradykinesia), rigidity, and postural instability[22]. Other recognized motor signs and 

symptoms include gait and posture disturbances such as festination (rapid shuffling steps and a 

forward-flexed posture when walking with no flexed arm swing). Freezing of gait (brief arrests 

when the feet seem to get stuck to the floor, especially on turning or changing direction), a slurred 

monotonous quiet voice, mask-like facial expression, and handwriting that gets smaller and 

smaller are also common signs [20]. The neuropsychiatric disturbances, which include disorders 

of cognition, mood, behavior, and thought, can range from mild to severe [4]. In addition to 

neuropsychiatric and motor symptoms, PD can impair other functions and lead to non-motor 

symptoms, such as sleep disorders, orthostatic hypotension (low blood pressure upon standing), 

oily skin, excessive sweating, urinary incontinence, and altered sexual function [13]. 

Currently, clinicians use Unified Parkinson Disease Rating Scale (UPDRS) [10] to gauge the 

course of Parkinson’s Disease in patients. The UPDRS scale includes series of ratings for typical 

Parkinson’s symptoms that cover all of the movement hindrances of Parkinson’s disease. The 

UPDRS scale consists of the following five segments: 1) Mentation, Behavior, and Mood, 2) 

ADL, 3) Motor sections, 4) Modified Hoehn and Yahr Scale, and 5) Schwab and England ADL 

scale. Each answer to the scale is evaluated by a medical professional that specializes in Parkin-

son’s disease during patient interviews. 

Though exhaustive and highly agreed, UPDRS still has several flaws. Firstly, the testing re-

sults is subjective and corporal, especially for the Mentation, Behavior, and Mood part, due to 



the fact that they are reported by patients and caregivers themselves. Secondly, the process of 

sitting through a test itself is intrusive for the patients, laying the burden to the test subjects 

mentally. Moreover, there are more than 40 questions in UPDRS, making the assessments very 

time consuming, highly labor and resource intensive, and hence, impractical in daily early diag-

nose and condition tracking. 

C. Technology-assisted PD Assessment 

Eyeing on the disadvantages of the traditional PD assessment approach, researchers have de-

signed various more accessible tools to measure the severity of PD symptoms quantitatively and 

objectively. To this end, there are mainly three ways for detecting PD motor symptoms, aiming 

at electronic devices interaction, tremor and gait separately. 

The research of typing pattern begins with daily interaction with a computer keyboard [9], 

which can be employed as means to observe and potentially quantify psychomotor impairment. 

With the development of mobile devices, the focus has shifted to touchscreen smartphones. Anal-

ysis of patterns emerging from finger interaction with touchscreen devices during natural typing 

[12] and computer vision (CV) method for quantification of tapping symptoms through motion 

analysis of index-fingers [15] are also applied to interaction with electronic devices. 

Besides, tremor research is a vital part in PD diagnosis. At first, the focus is only on classifying 

the Parkinson disease’s rest tremor between high or low frequencies [21], which shows the in-

tensity of Parkinson’s motor symptom. Then, it spreads to investigating the properties of oscil-

latory movement, at rest and in posture, in both the upper and lower limbs [24]. There is also 

research on analyzing tremor characteristics under resting-state and stress-state conditions, using 

an accelerometer on the finger [16], which focuses on normal people under two different states 

but contributes to PD tremor detecting. Moreover, an application named iSeismo uses the in-

built accelerometer of the iPhone for rapid measurement of tremor frequency [14], closely 

matching the more sophisticated EMG analysis during tremor. 
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Isolated research on gait is also applied to PD diagnosis. Data captured from phones embedded 

accelerometer sensors can be used to recognize users based only on the characteristics of their 

walking gait [8, 27]. Instead of sensors embedded in mobile devices, independent accelerometers 

placed on the foot, ankle, shank or waist are also used to analyze gait features [2]. Besides, the 

continuous wavelet transform (CWT) is also employed to define an index for correctly identify-

ing Freezing of gait (FOG) [23], which improves the accuracy of FOG detection significantly. 

However, most of the existing works focused on one symptom only and ignore the correlations 

among symptoms, which may lead to incomplete evaluation outcomes for PD patients. To im-

prove it, we propose an integrated home-based self-assessments and early risk analytics platform 

for Parkinson’s Disease which turning the important part of the motion section in UPDRS into 

an easy-operating computerized system and with the features listed below: 

• home-based and convenient for operation 

• suitable for long-term self-assessments 

• able to generate an effective early risk analytics result 

(a)    (b)       (c)          (d)    (e)     (f) 

Figure 1: Screenshots of the mini-test in the PD assessment App: (a) single Finger Tapping, (b) alternate Finger 

Tapping, (c) tremor (rest, postural, kinetic), (d) micrographia, (e) Coordination, and (f) finger tapping (scissors) 

III. Mobile Platform for PD Assessment 
 



We designed 9 mini-tests to evaluate the PD risk of the test subject. By analysing the data col-

lected from the test subjects using machine learning method, we can categorize the test subjects 

into different types. 

A. Single Finger Tapping 

As shown in Figure 1(a), there is one circle on the screen and the test subject is supposed to tap 

the screen within the range of the circle as fast as he can.  

B. Alternative Tapping 

As shown in Figure 1(b), there are two circles on the screen, the test subject should alternatively 

tap the screen at the position of the two circles as many times as he can. 

C. Rest Tremor 

In the Rest Tremor task, the test subject is supposed to sit still, rest the most affected hand on the 

leg of the same side, and hold the phone flat with the screen facing up on the palm of the hand. 

The test screen in shown in Figure 1(c), the appearance of which is the same for Rest Tremor, 

Postural Tremor, and Kinetic Tremor. The orientation of the tree on the screen changes to reflect 

the movement of the test subject’s hand. 

D. Postural Tremor 

In the Postural Tremor part, the test subject should also sit still, but extend hand forward at 

shoulder height, and hold the phone with the screen facing up flat on the palm of the most affected 

hand.   

E. Kinetic Tremor  

In the Kinetic Tremor part, the test subject is required to sit still and hold the phone using the 

most affected hand. Then the subject starts from a position of outstretched arm extending side-

ways from the body at shoulder level, bends the arm at the elbow, brings his/her hand above head 

to heart in a semi-circle motion, and returns to original position using the same motion.  
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F. Micrographia 

In this task, there is a circle on the screen in the first few seconds (see Figure 1(d)). The test 

subject should trace the circle with a finger of the most affected hand. The circle will disappear 

after a few seconds but the test subject is supposed to keep tracing the original circle for another  

short period.  

G. Coordination 

In this task, there is two symmetric trails on screen as in Figure 1(e), the test subject is supposed 

to trace the two trails from the bottom of the trails using the index finger from both hands sim-

ultaneously. 

H. Finger Tapping 

In this task, there are two circles on the upper left and bottom right corners (left-hand mode) or 

on the upper right and bottom left corners (right-hand mode) as in Figure 1(f), the test subject 

should place the index finger and thumb on the two circles, respectively, and then bring the index 

finger and thumb to the center of the screen to make the two fingers contact, repeat this action 

as fast as he/she can. Besides, there is a invisible circle on the screen. Only when the two fingers 

contact inside the circle, which means that they are close enough, can the tap counts valid. 

IV. Feature Extraction 
A. Single Finger Tapping 

This test is used for detecting rigidity, early fatigue and bradykinesia. To achieve this goal, we 

extract several features of the data to analyze including: 1) total number of taps 𝑇𝑇𝑡𝑡𝑠𝑠; 2) number 

of valid taps 𝑇𝑇𝑣𝑣𝑠𝑠; 3) average tapping interval in the entire period 𝐼𝐼𝑎𝑎𝑠𝑠; 4) average tapping intervals 

in the first-half 𝐼𝐼𝑓𝑓𝑠𝑠and the second-half 𝐼𝐼𝑠𝑠𝑠𝑠.  

According to UPDRS, the Single Finger Tapping task last for 10 seconds. During the time, we 

record every tap of the test subject, and calculate the distance between the tap and the center of 

the screen. If the distance is less than the radius of the circle we designed in the center, the tap is 



noted as a valid one. By subtracting two time stamps of adjacent taps, we can get the tapping 

interval. The average tapping intervals in the first-half 𝐼𝐼𝑓𝑓𝑠𝑠and the second-half 𝐼𝐼𝑠𝑠𝑠𝑠is for detecting 

early fatigue since that Parkinson’s patients are more likely to feel tired during the test than normal 

people, and hence, 𝐼𝐼𝑠𝑠𝑠𝑠is more likely to be bigger than 𝐼𝐼𝑓𝑓𝑠𝑠. 

B. Alternative Tapping 

This task is for detecting finger coordination, rigidity, early fatigue and bradykinesia. Instead of 

collecting number of valid taps in task 1, we collect 1) number of valid alternative taps 𝑇𝑇𝑣𝑣𝑎𝑎, which 

only takes a matched left and right taps into account. Besides, we also take the following features 

Mini-test Assessed PD Symptoms Extracted Features 
 
Single Finger 
Tapping 
 

 
Rigidity, early fatigue, 
bradyskinesia 
 

Total number of taps 𝑇𝑇𝑡𝑡𝑠𝑠, number of valid taps 𝑇𝑇𝑣𝑣𝑠𝑠, 
average tapping interval in the entire period 𝐼𝐼𝑎𝑎𝑠𝑠, 
average tapping intervals in the first-half 𝐼𝐼𝑓𝑓𝑠𝑠, and 
the second-half 𝐼𝐼𝑠𝑠𝑠𝑠 

Alternative 
Tapping 

Rigidity, early fatigue, 
bradyskinesia 

Number of valid alternative taps 𝑇𝑇𝑣𝑣𝑎𝑎,total number 
of taps 𝑇𝑇𝑡𝑡𝑎𝑎, average tapping interval in the entire 
period 𝐼𝐼𝑎𝑎𝑎𝑎, average tapping intervals in the first-
half 𝐼𝐼𝑓𝑓𝑎𝑎 and the second-half 𝐼𝐼𝑠𝑠𝑎𝑎 

Rest Tremor Rest tremor 
Tremor frequency 𝑓𝑓𝑟𝑟, average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟 , 
maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟, average standard de-
viation of quaternion 

Postural 
Tremor Postural tremor 

Tremor frequency 𝑓𝑓𝑝𝑝, average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑝𝑝, 
maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑝𝑝, average standard de-
viation of quaternion 

Kinetic 
Tremor Kinetic tremor 

Kinetic tremor over the whole movement 𝑝𝑝𝑘𝑘, aver-
age amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑘𝑘 , maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘 , 
average standard deviation of quaternion 

Micrographia Micrographia 

Variation of tracking radius 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟, average drawing 
angular speed in the entire period 𝜔𝜔𝑎𝑎, average 
drawing angular speed in the first-half 𝜔𝜔𝑓𝑓 and sec-
ond-half 𝜔𝜔𝑠𝑠 

Coordination Movement coordination 
Total drawing time 𝑡𝑡𝑡𝑡𝑐𝑐 , drawing length 𝑙𝑙𝑡𝑡𝑐𝑐 and, 
drawing speed of the test subject 𝑣𝑣𝑡𝑡𝑐𝑐 , sum of the 
left and right hands deviation 𝑑𝑑𝑡𝑡𝑐𝑐  

Finger Tap-
ping (scissor) 

Rigidity, early fatigue, 
bradyskinesia, movement 
coordination 

Total number of taps 𝑇𝑇𝑡𝑡𝑓𝑓, number of valid taps 𝑇𝑇𝑣𝑣𝑓𝑓, 
average finger moving speed 𝑣𝑣𝑎𝑎𝑓𝑓  and distance 𝑑𝑑𝑎𝑎𝑓𝑓 
in the entire period, average finger moving speed 
𝑣𝑣𝑓𝑓𝑓𝑓, 𝑣𝑣𝑠𝑠𝑓𝑓 and distance 𝑑𝑑𝑓𝑓𝑓𝑓, 𝑑𝑑𝑠𝑠𝑓𝑓 in the first-half and 
the second-half 
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into account: 2) total number of taps 𝑇𝑇𝑡𝑡𝑎𝑎; 3) average tapping interval in the entire period 𝐼𝐼𝑎𝑎𝑎𝑎; 4) 

average tapping intervals in the first-half 𝐼𝐼𝑓𝑓𝑎𝑎and the second-half 𝐼𝐼𝑠𝑠𝑎𝑎. 

We also record every tap of the test subject, but instead, we only consider a pair of matched 

left tap and right tap in the range of the circle as a valid tap 𝑇𝑇𝑣𝑣𝑎𝑎. For the other features as 𝑇𝑇𝑡𝑡𝑎𝑎 , 𝐼𝐼𝑎𝑎𝑎𝑎 , 

𝐼𝐼𝑓𝑓𝑎𝑎and 𝐼𝐼𝑠𝑠𝑎𝑎, we take the same approach as Single Tapping. 

C. Rest Tremor 

There are motion sensors measuring acceleration forces such as tilts, shakes and swing. Accel-

erometer measures the raw acceleration, Gravity measures gravity only, and UserAcceleration 

measures only the acceleration applied by the user. The sensors use the physic relation 

  𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑙𝑙𝑒𝑒𝑟𝑟𝑙𝑙𝑙𝑙𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟 =  𝐺𝐺𝑟𝑟𝑣𝑣𝑣𝑣𝐺𝐺𝑡𝑡𝐺𝐺 +  𝑈𝑈𝑈𝑈𝑒𝑒𝑟𝑟 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑙𝑙𝑒𝑒𝑟𝑟𝑣𝑣𝑡𝑡𝐺𝐺𝑙𝑙𝐴𝐴 

The data captured by UserAcceleration is the main part for analysing.  

Fast Fourier Transform (FFT) is used to deal with the UserAcceleration data. FFT is an algo-

rithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). 

Fourier analysis converts a signal from its original domain (often time or space) to a representa-

tion in the frequency domain and vice versa [11]. Let x0, …, xN-1 be complex numbers. The DFT 

is defined by the formula  

𝑋𝑋𝑘𝑘 = �𝑥𝑥𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0

𝑒𝑒−𝑖𝑖2𝜋𝜋𝑘𝑘𝑛𝑛/𝑁𝑁       𝑘𝑘 = 0, … ,𝑁𝑁 − 1 

This task is mainly for detecting tremor frequency  𝑓𝑓𝑟𝑟, average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟  and maximum 

amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟 . A distribution over frequency of the tremor data is calculated by FFT. The 

tremor frequency 𝑓𝑓𝑟𝑟 is the weighted average of these frequencies. Average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟  and 

maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟 are calculated by sliding window. The window is a period of time 

twice as long as the tremor cycle. By simply moving the window from the beginning to end of 

the whole testing period, the average amplitude and maximum amplitude of the current window 

can be calculated. And when the window comes to the end, there are two lists of average ampli-

tude and maximum amplitude, the average value of the two lists are average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟  



and maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟  separately. Sliding window is a good way to reduce the effects 

of sudden changes and errors in measurement. It will not make a difference if there is a false data 

point causing a sharp increase or decrease to the wave. 

D. Postural Tremor 

This task is mainly for detecting tremor frequency 𝑓𝑓𝑝𝑝, average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑝𝑝and maximum 

amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑝𝑝. Since in Postural Tremor part, the test subject is also required to hold the 

phone still, the feature extracting method is the same way as in Rest Tremor part. 

E. Kinetic Tremor 

This task is mainly for detecting the proportion of kinetic tremor over the whole movement  𝑝𝑝𝑘𝑘, 

average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑘𝑘  and maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘.  

Different from the Rest Tremor and Postural Tremor, the test subject’s hand is not static but 

moving in a semi-circle motion in this test. So it is crucial to extract the tremor part from the 

mixes data. According to researches, the frequency of PD is 4-6 Hz. After doing FFT on the 

kinetic tremor data, if the frequency of the 4-6 Hz band accounts for a large proportion of the 

total distribution, it means that the PD kinetic tremor is severe. By doing inverse FFT over the 

frequency of the 4-6 Hz, a pure tremor wave can be obtained. Average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑘𝑘  and 

maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘 are calculated by sliding window, the same method used in the other 

two tremor tests. 

F. Micrographia 

This task is designed to detect micrographia among the test subjects. Since most patients with 

PD will write smaller letters of a sentence in the end than at the beginning, this task is an effective 

way to detect PD. To detect micrographia, we select the following features to analyse: 1) variance 

of tracking radius 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟; 2) average drawing angular speed in the entire period  𝜔𝜔𝑎𝑎; 3) average 

drawing angular speed in the first-half  𝜔𝜔𝑓𝑓 and second-half 𝜔𝜔𝑠𝑠. The first feature is for detecting 

micrographia and the others are used for bradykinesia and early fatigue separately. 
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We track the position of the test subject’s finger and record the position 30 times per second to 

ensure the fidelity of the data. A pattern between the finger’s position and time can be provided 

by calculating the distance between the finger’s position and the center of the screen. A slope 

𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 can be obtained by roughly considering the pattern as linear relationship, which represent 

the slowing up speed of the finger. If the test subject is a PD patient, 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is more likely to be 

negative because of micrographia, otherwise, 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is about 0 since that the test subject is able to 

track the original circle at the beginning and will not fluctuate a lot. The angular speed is calcu-

lated by inverse cosine theorem. 

                                                                  𝜃𝜃 = arccos 𝑣𝑣1⋅𝑣𝑣2
∥𝑣𝑣1∥∥𝑣𝑣2∥

                                               (1) 
where 𝑣𝑣1, 𝑣𝑣2 are vectors from the center of the screen to two finger positions that are close in 

time, and 𝜃𝜃 is the angle between them. 

G. Coordination 

Considering the normal subjects will complete the task faster and with less winding than the 

patients, we detect the 1) total drawing time 𝑡𝑡𝑡𝑡𝑐𝑐 , 2) drawing length 𝑙𝑙𝑡𝑡𝑐𝑐  and 3) drawing speed of 

the test subject 𝑣𝑣𝑡𝑡𝑐𝑐. Besides, we also collect 4) the sum of the left and right hands deviation 𝑑𝑑𝑡𝑡𝑐𝑐  to 

recognise coordination.  

Drawing length ltc is the total length of the test subject’s drawing trails. Base on the same trails, 

PD patient’s track is more likely to be longer than others since the tracks are more winding. 

Besides, the drawing speed of the test subject 𝑣𝑣𝑡𝑡𝑐𝑐  is also slower than others because that test 

subjects may stop a lot and have difficulties to finish the draw smoothly. The sum of the left and 

right hands deviation 𝑑𝑑𝑡𝑡𝑐𝑐  is a key point for coordination. The tracking frequency of the test sub-

ject’s finger position is 30 times per second. Assuming that (𝑥𝑥𝑖𝑖𝑙𝑙 ,𝐺𝐺𝑖𝑖𝑙𝑙) and (𝑥𝑥𝑖𝑖𝑟𝑟 ,𝐺𝐺𝑖𝑖𝑟𝑟) are at the 𝐺𝐺 th 

record, and (𝑥𝑥0,𝐺𝐺0) is the coordinate of the screen center, 

                                                𝑑𝑑𝑡𝑡𝑐𝑐 = � ��𝑥𝑥𝑖𝑖𝑙𝑙 − 𝑥𝑥0� − �𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑥𝑥0��
𝑛𝑛

𝑖𝑖=1
+ �𝐺𝐺𝑖𝑖𝑙𝑙 − 𝐺𝐺𝑖𝑖𝑟𝑟�                                    (2) 



where n is the total tracking times. �𝑥𝑥𝑖𝑖𝑙𝑙 − 𝑥𝑥0� and �𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑥𝑥0� are the distance between the fingers 

to center vertical line of the screen. So ��𝑥𝑥𝑖𝑖𝑙𝑙 − 𝑥𝑥0� − �𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑥𝑥0�� is for detecting left and right 

hands’ difference on the x-axis and �𝐺𝐺𝑖𝑖𝑙𝑙 − 𝐺𝐺𝑖𝑖𝑟𝑟� is on the y-axis. 

H. Finger Tapping 

This task is mainly for detecting rigidity, early fatigue, bradyskinesia and movement coordina-

tion. So we use the features listed as follows to analyse: 1) total number of taps 𝑇𝑇𝑡𝑡𝑓𝑓; 2) number 

of valid taps 𝑇𝑇𝑣𝑣𝑓𝑓; 3) average finger moving speed 𝑣𝑣𝑎𝑎𝑓𝑓  and distance 𝑑𝑑𝑎𝑎𝑓𝑓  in the entire period; 4) 

average finger moving speed 𝑣𝑣𝑓𝑓𝑓𝑓, 𝑣𝑣𝑠𝑠𝑓𝑓  and distance 𝑑𝑑𝑓𝑓𝑓𝑓, 𝑑𝑑𝑠𝑠𝑓𝑓 in the first-half and the second-half. 

Finger Tapping is a process that the test subject’s two fingers move from the opposite corner 

to the center of the screen, so any movement towards the center is viewed as a tap. However, 

only when the final position of two fingers are inside the invisible circle centered on the center 

of the screen and radiused by the length we designed, can the tap be valid. Assuming the total 

moving distance is 𝑑𝑑𝑡𝑡𝑓𝑓 and the total time is 𝑡𝑡𝑡𝑡𝑓𝑓, 

                                                                             𝑑𝑑𝑎𝑎𝑓𝑓 =
𝑑𝑑𝑡𝑡𝑓𝑓
𝑇𝑇𝑡𝑡𝑓𝑓

                                                        (3) 

                                                                          𝑣𝑣𝑎𝑎𝑓𝑓 =
𝑑𝑑𝑡𝑡𝑓𝑓

𝑇𝑇𝑡𝑡𝑓𝑓⋅𝑡𝑡𝑡𝑡𝑓𝑓
                                                      (4) 

𝑣𝑣𝑓𝑓𝑓𝑓, 𝑣𝑣𝑠𝑠𝑓𝑓, 𝑑𝑑𝑓𝑓𝑓𝑓 and  𝑑𝑑𝑠𝑠𝑓𝑓 are obtained by dividing the total taps equally into the first-half and the 

second-half and calculated the same way as 𝑑𝑑𝑎𝑎𝑓𝑓 and 𝑣𝑣𝑎𝑎𝑓𝑓 f. 

 

V. Data Analytics 
 
We simulated the PD patient’s testing data in order to examine and improve our classification method. 

After learning the early PD symptoms thoroughly, the test subjects in the simulation group behaved 

slower and easier to get tired than their normal time. 5 normal testing results and 5 simulated ones are 

collected for data analytics. The features extracted from the data show significant differences from the 

two groups. 
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Figure 2 shows the differences of the normal and simulated group in the test for the three kinds of 

tremor after processed by FFT. Figure 2(a) and Figure 2(b) display the frequency distribution of the 

normal and simulated group separately, Figure 2(c) and Figure 2(d) are for the postural tremor. In the 

two kinds of tremor, the frequency domain magnitude is much bigger in Figure 2(b) and Figure 2(d) 

than in Figure 2(a) and Figure 2(c) in every frequency band, which means that the simulated group  

has intenser tremor than the normal group. In the meanwhile, according to Figure 2(b) and Figure 2(d), 

the rest tremor is more severe than the postural tremor in the simulated group, which is based on the 

fact that rest tremor is the most affected symptom of PD. Besides, the features extracted from the 

testing result also show that the two group’s tremor amplitude differ a lot. In the rest tremor part, the 

average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟  is 0.008 for the normal and 0.063 for the simulated group, and the maximum 

amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟  for the normal and simulated are 0.014 and 0.191, respectively. In the postural tremor 

test, the average amplitude 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑝𝑝  is 0.014 for the normal and 0.042 for the simulated group, and the 

maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑝𝑝  for the two groups are 1.33 and 0.122, respectively. The two pairs of am-

plitude for the simulated group also indicates that the tremor is more severe in the rest part than others. 

Figure 2: Tremor testing result of normal subjects (a,c,e,g) and simulated patients (b,d,f,h) 

(a) Rest tremor frequency 
distribution (normal) 

(b) Rest tremor frequency 
distribution (simulated) 

(d) Postural tremor frequency 
distribution (simulated) 

(c) Postural tremor frequency 
distribution (normal) 

(e) Kinetic tremor frequency 
distribution (normal) 

(f) Kinetic tremor frequency 
distribution (simulated) 

(g) Actual tremor wave in 
kinetic tremor test (normal) 

(h) Actual tremor wave in kinetic 
tremor test (simulated) 



In the tests for kinetic and postural tremor, the test subjects were instructed to hold their hands still. 

Hence, the tremor frequency can be directly extracted from the raw data. However, in the test for 

kinetic tremor, the test subject’s hand moves in a semi-circle motion. Figure 2(e) and Figure 2(f)  

present the frequency distribution of the normal and simulated group. In the two figures, the frequency 

domain magnitude is larger than the ones in Figure 2(a)-(d) because of the hand movement. 

The tremor in Parkinson’s disease is characterized by a frequency of 4 to 6 Hz. By extracting the 

waves with frequency between 4 to 6 Hz, the actual tremor wave can be obtained. Figure 2(g) and 

Figure 2(h) show the pure tremor wave in the postural tremor test. In these distributions, the portion 

of frequency between 4-6 Hz is much bigger in the simulated group than in the normal group, indicat-

ing that the PD tremor is more serious. Besides, calculated by sliding windows, the average amplitude 

𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎𝑘𝑘  of the pure tremor wave for the normal and simulated group are 0.013 and 0.023 separately, and 

the maximum amplitude 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘  are 0.030 and 0.058, suggesting that the simulated group’s tremor 

amplitude is bigger regardless of the hand movement. 

Figure 3 displays the performance of the two groups in the Micrographia test and the analytics for 

it. In Figure 3(a), the circle is stable in size and the track is smooth, while in Figure 3(b), the circle is 

getting smaller and the track is winding. As consequence, the slope of the distance over time relation-

ship for the normal group is around 0, while the slope for the simulated group is negative. As shown 

in Figure 3(c), the variance of tracking radius 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is −0.311 pix/s, while in Figure 3(d), the slope 

𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟 is −20.750 pix/s, whose absolute value is way much bigger than the former, meaning that the 

(b) Drawing trail (simulated)   (c) Drawing radius over time 
and linear fitting line (normal) (a) Drawing trail (normal)   

Figure 3: Micrographia testing result of normal subjects (a,c) and simulated patients (b,d) 

(d) Drawing radius over time 
and linear fitting line (simulated) 



International Journal of Information Technology     Vol. 25   No. 1 2019 

                                                                                                                                                               
17 

 

distance from the finger position towards the center has a descending trend. Besides, the average an-

gular speed of the two groups and the angular speed of the first-half and second-half are also calculated 

to analyze the testing result. In the normal group, the average angular speed 𝜔𝜔𝑎𝑎 is 8.648 rad/s, while 

in the simulated group, 𝜔𝜔𝑎𝑎 is only 2.609 rad/s. The angular speed in the first-half and the second-half 

of the control group are 8.797 rad/s and 8.499 rad/s separately, which in the intervention group, are 

2.992 rad/s and 2.227 rad/s, meaning that the former speed drops by 3.39% while the latter one drops 

by 25.57%. 

Besides, there are a lot of differences between the two groups. For instance, in the tapping test, the 

simulated group is of lower velocity and easier to get early fatigue. Moreover, in the coordination test, 

the simulated group take longer time to finish the tracking and the sum of the left and right hands 

deviation 𝑑𝑑𝑡𝑡𝑐𝑐  is also bigger. 

In order to distinguish the normal and the PD patient, we use support-vector machine (SVM) to-

gether with bagging algorithm as our classification model, which enable to classify the dataset with 

about 25 features to high-risk group and low-risk group. SVM constructs a hyperplane or set of hy-

perplanes in a high- or infinite- dimensional space. Bagging, also called bootstrap aggregating, is a 

machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine 

learning algorithms used in statistical classification and regression. Taking advantage of the two pow-

erful machine-learning techniques, the classifier distinguishes the two groups with high accuracy. 

VI. Conclusion 
 
Parkinson’s disease is a leading neurodegenerative disorder that threatens the living quality of older 

adults. Early diagnosis and treatment are crucial for delaying the deterioration of the nervous system 

caused by PD. To achieve this goal, long-term and frequent assessments are vital. 

In this paper, we proposed a self-assessment platform on smart- phones to facilitate patients and 

caregivers to objectively screen PD symptoms and monitor the effectiveness of treatments in a home- 

based environment. This platform uses 9 mini-tests, designed in the light of the motion assessment 



tasks of the Unified Parkinson’s Disease Rating Scale (UPDRS), to evaluate the risk of developing 

PD. After studying the symptoms of PD thoroughly, we defined several features that are computed 

from data collected in each mini-test. By analyzing these features by SVM together with bagging 

algorithm, the test subjects are classified into high-risk group or low-risk group according to their test 

performance. We simulated the PD patient’s testing data in order to examine and improve our classi-

fication model. With easily accessible tests and automatic data analytics, the home-based self-assess-

ment platform can help greatly with detecting early PD signs, monitoring PD symptoms and providing 

longitudinal assessments for the users. 

In the future, we will first conduct user studies with healthy young and older adults. The results 

obtained will be used to improve the usability and classification model of the platform. After obtaining 

the ethics approval, we will then conduct a long-term user study with healthy older adults (control 

group) and PD patients (intervention group) to evaluate the effectiveness of the proposed platform and 

the accuracy of the classification algorithm. 
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