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Abstract 

 

The Digital Twin based fault detection system becomes more and more popular nowadays for industry. 

It can be formalized as a behavior model for predicting the normal behaviors of monitored assets and 

an anomaly detector for triggering alarms based on residual between normal behavior and current 

behavior. However, due to the sophisticated nature of the Industrial Control Systems (ICS), the fault 

detection based on Digital Twin is still facing the challenges of dealing with nonlinear correlation, 

high dimensionality, and non-gaussian noise consisted within the physical process data. 

In this paper, a Digital Twin approach based on Hybrid Neural Network is proposed to perform fault 

detection for Cyber Physical Systems (CPS) and their assets. The proposed behavior model is a Hybrid 

Neural Network consisting two components: 1) a robust convolution auto-encoder to perform noise 

reduction and dimensionality reduction; and 2) a LSTM neural network to predict the normal behavior. 

The experimental evaluation is performed on a well-recognized CPS benchmark dataset: Secure Water 

Treatment, and the result shows that the proposed approach outperforms both classic machine learning 

approaches and existing deep learning approaches. 

In conclusion, the proposed approach utilizes advanced deep learning technique to automatically 

generate behavior model based on normal historical behavior data of monitored CPS. It is capable to 

describe normal behavior patterns of sophisticated systems and assets in real world. The major future 
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research direction is to deal with concept drift phenomenon occurred during normal operation of 

sophisticated Cyber Physical Systems. 

Keyword: Digital Twin, Fault Detection, Anomaly Detection, Deep Learning, Neural Networks  

I. Introduction 

The significant advancement of information technologies including Internet of Things, Cloud 

Computing, Big Data analytics is reforming the traditional Industrial Control Systems (IDS) as Cyber 

Physical Systems (CPS). By leveraging the power of data transmission and computation into physical 

control, Cyber Physical Systems aim to realize autonomous, intelligent, real-time and robust 

interactions between cyber space (e.g. cloud computing systems, edge computing systems, human 

machine interface) and physical space (e.g. controllers, sensors, actuators, workers, customers). 

Specifically, CPS collect the information which can explicitly describe the contexts of physical world 

from the physical space and deliver it to the cyber space. In the cyber space, the collected information 

is processes, managed, abstracted, analyzed and visualized so that decisions can be generated in a data-

driven manner. Based on these decisions, commands and information are delivered to physical space 

to control the physical systems. These interactions are operated in a real-time loop of “monitor, 

influence and feedback”.  

Figure 1. The architecture of Digital Twin based CPS for fault detection and diagnosis 

As a core technology for CPS, Digital Twin is an organized collection of physics-based methods and 

advanced analytics that are used to model the operational behaviors of physical assets (e.g. controllers, 
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sensors, actuators) [1]. The Digital Twin is proved effective since the behaviors of physical assets are 

inherently following the configurations, designs, and physical constraints. By utilizing the models 

generated by Digital Twin technology, decisions are generated to influence the physical assets.  

One major application for Digital Twin is fault detection and diagnosis in ICS. Figure 1 shows the 

architecture of Digital Twin based CPS for fault detection and diagnosis. In the model generation 

phase, Digital Twin model is generated based on the historical behavioral data collected from the 

physical assets. In the real-time analysis phase, the generated Digital Twin model predicts the normal 

operational behaviors (or states) of physical assets based on their previous behaviors (or states), so 

that the deviation between the normal behaviors and current behaviors can be utilized to evaluate the 

health condition of physical assets. Currently, the Digital Twin model is generated through either 

specification based methods [2-3] or machine learning based methods [4-9]. However, due to the 

sophisticated nature of the ICS, the fault detection based on Digital Twin is still facing the following 

challenges: 

• Nonlinear operational patterns: Although the traditional methods (e.g. specification based 

methods and machine learning based methods) perform well to model Linear Time Invariant 

(LTI) systems, they perform poorly on modeling sophisticated correlation patterns in nonlinear 

systems.  

• High dimensional “big” data: In a medium-scale or large-scale ICS with a large amount of 

assets deployed, the operational data being collected are high dimensional and the data 

attributes are auto-correlated and self-correlated between each other. The traditional methods 

perform poorly for analyzing high dimensional data. Moreover, specification based methods 

require integrating enormous expert knowledges at modeling normal behaviors of 

sophisticated systems (even assets). 

• Non-gaussian noise and disturbance: Since a majority of data collected from the physical 

assets are from sensor readings, they usually contain noises for many reasons. Moreover, 

acceptable disturbance (e.g. unstable environment, normal asset degradation) may occur during 
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normal operations of ICS assets. Detection performance of traditional methods are highly 

affected by these noise and disturbance, especially when the data bias of the noise and 

disturbance does not follow Gaussian distribution. 

As an advanced machine learning technology, deep neural network is featured for its ability of 

modeling nonlinear patterns in high-dimensional data. To meet the existing challenges, a Digital Twin 

approach based on Hybrid Neural Network (DTHNN) is proposed in this paper to perform fault 

detection and diagnosis. In order to predict the future normal behavior of physical assets accurately, 

the proposed hybrid neural network model integrates three types of neural networks in an end-to-end 

fashion. It includes an autoencoder for dimension reduction, a convolution network for describing 

cross-correlation (namely spatial correlation) and recurrent network for describing auto-correlation 

(namely temporal correlation). Specifically, the proposed model contains two components: 1) an 

autoencoder with convolutional neural layers which can map the high dimensional physical process 

data into low dimensional latent vector with highly abstracted spatial-correlation features of the 

original data; and 2) a Long Short-Term Memory (LSTM) network which can perform accurate 

prediction of the assets’ normal behaviors based on the latent variables. The convolutional autoencoder 

and the LSTM network are integrated in an end-to-end fashion, so that the parameters of the two sub-

networks are trained together to reach the global optimum. Moreover, a noise reduction mechanism is 

integrated into the convolutional autoencoder to reduce the interference on prediction caused by sensor 

noise and normal disturbance, so that the noise and disturbance bias data is removed from the original 

data during encoding process. To summarize, the contribution of this paper are as follows: 

1. A Hybrid Neural Network based Digital Twin model is proposed to predict the normal 

behaviors of sophisticated Industry Control Systems and their assets. The proposed model 

integrates autoencoder, convolution network, and recurrent network together to capture the 

temporal-spatial correlations within high dimensional physical process data. 
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2. A noise reduction mechanism is proposed to remove noise and normal disturbance from the 

physical process data. The mechanism is integrated into the convolutional auto-encoder to 

make it more robust and further improve the prediction performance. 

3. A Digital Twin based fault detection framework which utilizes Digital Twin model to perform 

accurate fault detection, as proved in the experimental evaluation. 

The rest of the paper is organized as follows. In section II, the proposed DTHNN approach is 

introduced in detail. In section III, an experimental evaluation on benchmark dataset is performed. The 

paper is concluded in section IV. 

II. Digital Twin for Fault Detection Based on Hybrid Neural Networks 

 

General Architecture 

By following the framework architecture of Digital Twin based fault detection system in Figure 1, the 

DTHNN approach consists of two components: a neural network based Digital Twin model for 

predicting the current normal behavior of monitored assets and a nonparametric anomaly detector to 

trigger alarms based on residual of predicted behaviors and current behaviors. Specifically, the Digital 

Twin model consist of two components: 1) a robust convolutional auto-encoder which performs 

dimensionality reduction and noise reduction on collected physical process data and generates the 

corresponding latent vector; 2) a recurrent neural network which predicts normal behavior of 

monitored assets based on latent vector provided by auto-encoder. The operation of DTHNN approach 

consists of two phases: training phase and detection phase. During the training phase, the physical 

process dataset is collected to describe the normal historical behaviors of the monitored ICS assets. 

The dataset is then used to train the Digital Twin model to describe the normal behavior patterns of 

the monitored asset precisely. During the detection phase, the Digital Twin model predicts the normal 

current behavior of monitored assets continuously based on their previous behaviors. The anomaly 

detector triggers alarms based on the residual of predicted behavior and assets’ current behaviors being 

monitored. 
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Training Phase 

i). Convolutional Deep Autoencoder 

The convolutional deep autoencoder can well retain the temporal correlation information of multi-

dimensional time series data. In the real industrial scenario, the data inevitably have large outliers and 

universal noise, which affects the cleanliness of the training set. We proposed a robust convolutional 

deep autoencoder to represent and reconstruct the input data in the real industrial environment and 

discover the nonlinear features of time series data effectively.  

In particular, the autoencoder architecture allows the model to obtain a low-dimensional representation 

of the input data through reconstruction. 

 �̃� = 𝑔𝜓
𝐷𝑒𝑐𝑜𝑑𝑒 (𝑓𝜓

𝐸𝑛𝑐𝑜𝑑𝑒 (𝑥)) (1) 

where 𝒙  denotes the input data, 𝒇𝝍
𝑬𝒏𝒄𝒐𝒅𝒆(·)  denotes an encoder, 𝒈𝝍

𝑫𝒆𝒄𝒐𝒅𝒆(·)  denotes a decoder,  𝝍 

denotes the parameters of encoder and decoder, and �̃� is reconstructed version of 𝒙. 

In general, an autoencoder problem can be mathematically expressed as the following optimization 

problem. 

 𝑚𝑖𝑛
𝜓

‖𝑥 − �̃�‖ (2) 

where ‖·‖ is usually selected as L2-norm. For computationally efficiency, the specific express is 

written  as below. 

 
𝑚𝑖𝑛

𝜓
‖�̂� − 𝑔𝜓

𝐷𝑒𝑐𝑜𝑛𝑣 (𝑓𝜓
𝐶𝑜𝑛𝑣(�̂�))‖

2

2

 (3) 

ii). Robust Autoencoder. 

In order to improve the robustness of the model, the following constraint is added to the optimization 

training process. 

 𝑥 = �̂� + 𝑥𝑠 (4) 
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where 𝒙 is the input data, �̂� denotes the part that can be reconstructed well by the autoencoder, and 𝒙𝒔 

is one that contains noise and outliers that are hard to represent. 

Compared with the traditional autoencoder structure with 𝒙 as input, the robust autoencoder can 

recover �̂�  better by removing noise and outliers from the input data. Using �̂�  instead of 𝒙  for 

optimization under the robust constraint (4), we have the following specific mathematical expression. 

 𝑚𝑖𝑛
𝜓

‖�̂� − 𝑔𝜓
𝐷𝑒𝑐𝑜𝑑𝑒 (𝑓𝜓

𝐸𝑛𝑐𝑜𝑑𝑒(�̂�))‖
2

+ ‖𝑥𝑠‖0 (5) 

 𝑠. 𝑡.  𝑥 − �̂� − 𝑥𝑠 = 0 (6) 

where,  ‖·‖𝟎 is the number of non-zero elements in the matrix which can well reflect the sparsity of 

the matrix. Unfortunately, L0-norm is theoretically perfect but computationally impossible, so we use 

L1-norm instead of L0-norm. 𝝀 is a parameter that controls the sparsity of the 𝒙𝒔. Notice that for the 

first item in (5), we can use the back-propagation (BP) algorithm to train by minimizing the 

reconstruction error. 

 𝑚𝑖𝑛
𝜓

‖�̂� − 𝑔𝜓
𝐷𝑒𝑐𝑜𝑑𝑒 (𝑓𝜓

𝐸𝑛𝑐𝑜𝑑𝑒(�̂�))‖
2

+ 𝜆‖𝑥𝑠‖1 (7) 

 𝑠. 𝑡.  𝑥 − �̂� − 𝑥𝑠 = 0 (8) 

We show the implementation of the composite architecture in Algorithm I. 

 

 

 

 

 

 

 

Algorithm I. Implementation of Robust Autoencoder 

Where, the f function is implemented as below. 

Input: 𝒙 

Initialize �̂�, 𝒙𝒔 to be zero matrices, 𝒚𝒙𝒔 = 𝒙. Randomly initialize the 𝝍 

While (True): 

1. Remove 𝒙𝒔 from 𝒙, i.e. �̂�: = 𝒙 − 𝒙𝒔 

2. Minimize the first term in (7) using BP algorithm. 

3. Set �̂� to be the reconstructed data �̃�. 

4. Set S to be the difference between 𝒙 and  �̂�, i.e. 𝒙𝒔: = 𝒙 −  �̂� 

5. Optimize 𝒙𝒔 using f function. 

If  
‖𝒙−�̂�−𝒙𝒔‖𝟐

‖𝒙‖𝟐
< 𝜺 or 

‖𝒚𝒙𝒔−�̂�−𝒙𝒔‖𝟐

‖𝒙‖𝟐
< 𝜺: 

  Break 

6. Update 𝒚𝒙𝒔, i.e. 𝒚𝒙𝒔 = �̂� + 𝒙𝒔 

Return 𝝍,  �̂�,  𝒙𝒔 
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𝒇(𝒙𝒔(ⅈ)) = {

𝒙𝒔(ⅈ) − 𝝀,         𝒙𝒔(ⅈ) > 𝝀

𝒙𝒔(ⅈ) + 𝝀,         𝒙𝒔(ⅈ) < 𝝀

𝟎,     − 𝝀 ≤ 𝒙𝒔(ⅈ) ≤ 𝝀

 (9) 

iii). Convolutional Long Short-Term Memory Networks with Attention Mechanism 

LSTM model performs well at processing time series data. It is a kind of recurrent neural network 

which can ensure the persistence of previous information by continuously circulating input data. 

 

Figure 2. Cell Unit of LSTM 

For the convenience of description, we make a symbolic convention as shown in Table I. The input, 

forget, cell, output, and hidden state of each timestep are denoted by I, F, C, O and H respectively, 

the activation by σ, and the weighted connections between states by a set of weights, W.  

 

 

 

 

 

Symbol Meaning Symbol Meaning 

I Input Gate W Weights 

F Forget Gate 𝜎 Activate function 

C Cell State �̃� Transition Cell State 

O Output Gate · Normal Product 

H Hidden State ∗ Convolution 

Table 1. Symbolic Convention 
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The LSTM cell unit is mathematically described as follows. 

 𝐼𝑡 = 𝜎(𝑊𝐼 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐼) (10) 

 𝐹𝑡 = 𝜎(𝑊𝐹 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐹) (11) 

 𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (12) 

 𝑂𝑡 = 𝜎(𝑊𝑂 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) (13) 

 𝐶𝑡 = 𝐹𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ 𝐶�̃� (14) 

 𝐻𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (15) 

For the traditional model, the weight of each input of the context vector is consistent, which leads to 

the insensitivity of the entire training model to important parts of the data, that is, the model is 

"distracted". Based on that, we introduced the attention mechanism into the LSTM model.  

 

𝐶𝑡 = ∑ 𝑤𝑡𝑗ℎ𝑗

𝑇

𝑗=1

 (16) 

 
𝑤𝑡𝑗 =

𝑒𝑥𝑝(ℎ𝑗𝐻𝑐
𝑇 ∕ 𝑘)

𝛴𝑘=1
𝑇 𝑒𝑥𝑝(ℎ𝑡𝐻𝑐

𝑇 ∕ 𝑘)
 (17) 

where, 𝒘𝒕𝒋 is the attention weight. 

iv). Joint Training Loss Function with L1 Regular Term 

In order to realize the end-to-end training in accordance with the above composite model, we give the 

following specific computational loss function of its joint optimization training. 

 𝐿(𝜓) = 𝐸𝑃 + 𝛽𝐸𝑅 + 𝜆‖𝑥 − �̂�‖1 + 𝛼‖𝜓‖1 (18) 

where, 𝜶  and  𝜷  are the weight coefficient parameters, 𝑬𝑷  and 𝑬𝑹  are prediction error and 

reconstruction error respectively. 

By the joint loss function (18), we can carry out joint optimization training for the composite model 

mentioned in this paper, which is suitable for time series data in real industrial scenarios. The model 

architecture is shown in Figure 3. 
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Figure 3. Composite Model 

 

Detection Phase 

During the detection phase, the physical process data describing the behaviors of monitored ICS 

physical assets are collected in real-time. They can be presented as 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁} ∈ ℝ𝑚×𝑁where 

𝑚 is the number of sensors, and 𝑁 is the number of time points. First, we generate sequence segments 

by sliding window of size 2𝑇. Next, we divide the 2𝑇 subsegments with the width of 𝑇. The first 𝑇 

subsegments 𝑿𝑃 = {𝒙1, 𝒙2, … , 𝒙𝑇} are input into the Digital Twin model for prediction. The 

subsequent 𝑇  subsegments 𝑿𝐶 = {𝒙𝑇+1, 𝒙𝑇+2, … , 𝒙2𝑇} are used as the current behavior set of the 

monitored ICS assets.  

By taking  𝑿𝑃 = {𝒙1, 𝒙2, … , 𝒙𝑇} as input, the Digital Twin model outputs the predicted normal 

behavior 𝑿𝑪
′ = {𝒙𝑇+1

′ , 𝒙𝑇+2
′ , … , 𝒙2𝑇

′ }. To further alleviate the predict fluctuation caused by process data 

noise and model bias, the Exponentially Weighted Smoothing method is applied to smooth the 

prediction result 𝑿𝑪
′

 [10]. The residual between 𝑿𝑪
′

 and 𝑿𝐶  are regarded as the anomaly score: 

𝑬 = 𝑿𝑪
′ − 𝑿𝐶 . The alarm is triggered based a predefined threshold 𝜏 so that if the anomaly score 

exceeds the value of 𝜏, an alarm indicating the occurrence of fault will be triggered.  
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III. Experimental Evaluation 

     

A. Experimental Setup 

Secure Water Treatment (SWaT) dataset is used as the experimental dataset to evaluate the 

performance of the DTHNN approach. It is a CPS benchmark dataset and open-accessed to research 

academy [11]. The dataset is collected from a realistic hardware-based CPS testbed created by Center 

for Research in Cyber Security of Singapore University of Technology and Design. The data collected 

from the testbed consists of 11 days of continuous operation. The normal data was collected under 

normal operation lasting for 7 days, while anomalous data was collected under 36 fault scenarios 

lasting for 4 days.  The testbed is a water treatment system formalized as a SCADA system with 51 

sensors and actuators and 3 controllers. The sensor and actuator data were collected as physical process 

data during data collection. The data are formatted as a matrix with 51 attributes. Unlike other 

simulated dataset such as dataset collected from Tennessee Eastman Process software testbed, the 

SWaT dataset consists of non-Gaussian noise and disturbance as well as data distribution variation 

(namely concept drift). Hence the dataset is more similar to the data of CPS in real world. 

The performance evaluation metrics include Precision, Recall, and F1 values, which are calculated as 

follows: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (20) 

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (21) 

where TP, FP, FN are true positive rate, false positive rate and false negative rate, respectively.  

Experimental Results 

The Digital Twin approaches based on traditional machine learning algorithm for comparisons include 

Principle Component Analysis (PCA) [4], One-class Support Vector Machine (OCSVM) [5], Isolation 

Forest (IForest) [6]. The Digital Twin approaches based on deep learning algorithm for comparisons 
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include traditional Auto-encoder (AE) [7], One-Dimensional Convolutional Neural Network (1DCNN) 

[8] and LSTM based Encoder-Decoder (LSTM-ED) [9]. The experimental results shown in Table II 

indicate that the proposed DTHNN approach not only outperforms traditional machine learning 

algorithms but also outperforms existing deep learning algorithms. 

 

IV. Conclusion and Future Works 

 

In this paper, a Digital Twin approach based on Hybrid Neural Network is proposed to build the 

behavior model of sophisticated CPS and their assets. The robust convolutional autoencoder within 

the hybrid network is capable to perform dimensionality reduction and noise reduction and generate a 

latent vector which can abstract the cross correlations among process attributes. The LSTM network 

within the hybrid network is capable to capture the nonlinear temporal correlations of each process 

attribute, so that accurate prediction of normal behaviors can be performed based on latent vectors 

provided by auto-encoder. The two sub-models are integrated in an end-to-end fashion so that the 

parameters within the sub-models can be trained together to reach the global optimum.  

One of the major future works is to deal with concept drift phenomenon which is widely occurred in 

CPS operation. The concept drift phenomenon is that the distribution of physical process data may 

vary with time due to asset degradation, change of configuration, modification of manufacturing 

 SWaT Dataset 

Pre Rec F1 

PCA [4] 0.2492 0.2163 0.23 

OCSVM [5] 0.9250 0.6990 0.7963 

IForest [6] 0.1924 0.8347 0.3127 

1DCNN [8] 0.867 0.754 0.7958 

LSTM-ED [9] 0.9585 0.7151 0.8191 

AE [7] 0.967 0.696 0.812 

DTHNN 0.9406 0.7524 0.8378 

Table II. Experimental Results 
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process, etc. As a result, the Digital Twin models generated offline may not be suitable when concept 

drift occurs. A promising research direction is to apply incremental learning technique to the Digital 

Twin approach. 
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