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Abstract 

 

In this work, we adapt and apply Explainable AI (XAI) methods to conduct an assessment of the 

relative effectiveness of COVID-19 control measures implemented in 18 countries and regions using 

data from 23/01/2020 to 02/04/2020. Specifically, we model classification problems with the 

instantaneous reproduction number (𝑅𝑡 ) as the prediction target and non-pharmaceutical control 

measures as model features; we then apply two XAI techniques, SHAP and ECPI, to analyze feature 

importance in our models. Our results show that city lockdown and contact tracing are the two most 

effective measures for reducing 𝑅𝑡, while measures such as mass testing, school closure, and public 

wearing face masks all have some effect in reducing 𝑅𝑡 . Warm temperature also contributes to 

reducing the transmission. These results suggest that to prevent resurgent disease after countries or 

regions lift city lockdown, effort should be put to develop privacy preserving, practical and effective 

contact tracing techniques.  
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I. Introduction 

 

Since COVID-19 was first identified in December 2019, various public health interventions have been 

implemented across the world. For example, Wuhan was locked down on January 23, 2020; France 

closed its schools on March 16, 2020; South Korea banned international travelers from Hubei on 

February 02, 2020; Singapore started contact tracing on January 23, 2020, etc. Though countries who 

have implemented these measures are seeing a reduced rate of number of confirmed cases growth, 

different countermeasures implemented by different countries at different time still pose the question: 

which control measures are effective? One way to answer this question is by looking at impact of 

control measures on 𝑅𝑡, the average number of secondary cases generated by one primary case with 

symptom onset on day 𝑡. 𝑅𝑡 is one of the most important quantities used to measure the epidemic 

spread. If 𝑅𝑡 > 1, then the epidemic is expanding at time 𝑡, whereas if 𝑅𝑡 < 1, then it is shrinking at 

time 𝑡. Thus, factors that are most influential for controlling 𝑅𝑡 are effective. 

 

This paper presents an Explainable AI (XAI) study on understanding the relation between COVID-19 

control measures and 𝑅𝑡 , using Shapley additive explanations (SHAP) [1] and Explainable 

Classification with Probabilistic Inferences (ECPI) [2]. XAI is a rising field in AI. In addition to 

developing AI systems that make accurate predictions, XAI systems “explain” their predictions [3, 4, 

5, 6, 7, 8]. The development of XAI is motivated by building trustworthy systems and revealing 

insights from data. Both SHAP and ECPI are designed to identify decisive features in prediction tasks. 

They are both data-driven; and they both can “explain” a prediction by pinpointing factors that are 

most important for the prediction based on the data provided. They are based on different underlying 

computation mechanisms with SHAP being a model-agnostic method that only computes feature 

importance and ECPI both making predictions as well as explanations. 

 



International Journal of Information Technology     Vol. 26   No. 1 2020 

                                                                                                                                                               3 

 

Our study takes a two-step approach. In the first step, we estimate 𝑅𝑡 from time series data (daily 

confirmed cases), then we produce a dataset containing both estimated 𝑅𝑡 and control measures. In the 

second step, we build classification models from the constructed dataset for predicting 𝑅𝑡  and 

explaining the predictions. In this way, the constructed classification models serve as surrogates to the 

real world; and identifying effective factors in controlling 𝑅𝑡 becomes explaining the classifications. 

 

From our results, we identify city lockdown and contact tracing as the two most effective 

countermeasures. Mass testing, mask use by the public, and warm weather are also useful for 

controlling transmission. For countries that are implementing city lockdown, once that is lifted, 

alternative measures should be in place to combat any possible resurgent spread. Contact tracing has 

been most successfully implemented with technology-based approaches such as tracking mobile 

phones, developing policies and technologies that enable contact tracing while providing privacy 

protection should be considered; promoting mask use and ensuring its supplies should also be 

considered. 

 

The article is structured as follows. Section II presents several existing research on impact of non-

pharmaceutical control measures. Section III presents our methods. Section IV presents the two XAI 

techniques used in this study and our results. We conclude in Section V.  

II. Related Work 

 

Intense effort has been put to study the effectiveness of control measures in containing the COVID-

19 pandemic. In [9], the authors estimated the instantaneous reproduction number (𝑅𝑡) of COVID-19 

in 4 Chinese cities and 10 provinces, and the confirmed case-fatality risk (cCFR) in 4 Chinese cities 

and 31 Chinese provinces. They found that though aggressive non-pharmaceutical interventions (e.g., 

city lockdown) have made the first wave of COVID-19 outside of Hubei abated, control measures 
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should be relaxed gradually. Close monitoring of 𝑅𝑡 and cCFR is needed to achieve an optimal balance 

between health and economic protection. 

 

A quantitative analysis was carried out in [10] to study the effectiveness of travel restrictions and 

transmission control measures in preventing the spread of infection during the period from 31 

December 2019 to 19 February 2020 in China. It was found that Wuhan travel ban and a few elements 

of national emergency response, e.g., suspending intracity public transport, closing entertainment 

venues, and banning public gatherings, were strongly associated with a delay in epidemic growth and 

a reduction in case numbers during the first 50 days of the COVID-19 epidemic in China. The impact 

of other factors as parts of national emergency response, such as the isolation of suspected and 

confirmed patients and their contact, is not yet clear. In addition, the analysis provided no evidence 

with respect to impact of the prohibition of travel between cities on reducing the number of cases in 

other cities across China. Another quantitative analysis to explore the contribution of travel restrictions 

on limiting the spread of COVID-19 in China was conducted in [11]. It was suggested that travel 

restrictions are particularly useful in the early stage of an outbreak, while it may be less effective once 

the outbreak is more widespread. The roles of each of other control measures, such as improved rates 

of diagnostic testing; clinical management; rapid isolation of suspected cases, confirmed cases, and 

contacts are yet not determined although the combination of them was successful in mitigating spread 

and reducing local transmission of COVID-19. The impact of lockdown (i.e., travel restriction, closing 

of public places as well as schools and universities, and limiting people's outside activities) in Wuhan 

was further investigated [12] through exploring the China domestic air traffic and passenger 

throughput data and the number of confirmed cases of COVID-19. The analysis suggested that 

stringent containment measures should be taken in seriously affected regions. In [13], a cohort study 

was conducted to investigate the of impact of the control measures (i.e., cordons sanitaire, traffic 

restriction, social distancing, home quarantine, centralized quarantine, and universal symptom survey) 

on the disease transmission in Wuhan. It was found that the institutions of the control measures were 
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associated with reduced effective reproduction number, suggesting that the measures were effective 

in improving control of the COVID-19 outbreak in Wuhan. It was also found that there was a short 

period of the increase of reproduction number although implementing the control measures, which 

may be due to a shortage of medical resources. 

 

The effect of physical distancing measures, such as extended school closures and workplace 

distancing, on the progression of the COVID-19 epidemic was explored in [14]. An extensive 

simulation based on age-structured susceptible-exposed-infected-removed (SEIR) model [15, 16] was 

carried out. The simulation results show that sustained physical distancing measures have a potential 

in reducing the magnitude of the epidemic peak of COVID-19, while the timing to lift interventions is 

particularly important. Premature and sudden lifting could lead to secondary peak. 

 

A stochastic transmission model was developed to assess the effect of isolation of cases and contact 

tracing in controlling onwards transmission from imported cases of COVID-19 in [17]. Through 

simulations parameterized by initial number of cases, the basic reproduction number, the delay from 

symptom onset to isolation, and the proportion of subclinical infections, it was found that case isolation 

or contact tracing alone is insufficient to control outbreaks, suggesting that further interventions would 

be required to achieve control. 

 

The effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 

in Singapore was evaluated in [18]. The multipronged surveillance strategy adopted in Singapore 

includes applying the case definition at medical consults, tracing contacts of patients with laboratory-

confirmed COVID-19, enhancing surveillance among different patient groups and allowing clinician 

discretion. The containment measures include patient isolation and quarantine, active monitoring of 

contacts, border controls, and community education and precautions. It was found that rapid 
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identification and isolation of cases, quarantine of close contacts, and active monitoring of other 

contacts have been effective in suppressing expansion of the outbreak. 

 

A statistical analysis was conducted to assess the effect of community-wide mask usage to control 

COVID-19 in Hong Kong [19]. Based on sampling result, the compliance of face usage by HK general 

public was 96.6%. Given the situation that the incidence of COVID-19 cases in Hong Kong were 

significantly less than that of the counties that are with well-established health-care system and having 

over 100 confirmed cases, it was suggested that community-wide mask wearing may contribute to 

contain COVID-19 transmission in a densely populated city like HK. 

 

The impact of physical distance measures in the UK was evaluated through comparing the contact 

patterns during the ''lockdown" to patterns of social contact made before the epidemic period [20]. It 

was found that the estimated change in reproduction number significantly decrease, suggesting that 

the physical distancing measures adopted by the UK public will probably lead to a decline in cases 

though the decline will not happen immediately. 

 

A raid review was conducted to assess the effects of quarantine of individuals [21]. The review 

suggested the existing modelling studies consistently showed the simulated quarantine measures alone 

are effective in containing COVID-19. When combining quarantine with other control measures, such 

as school closures, travel restrictions, and social distancing, more effects will be achieved in reducing 

new cases, transmissions and deaths. 

 

The effect of different containment measures for mobility restrictions and contact reduction (e.g., mass 

testing and lockdown) in Italy was assessed through a spatially explicit SEIR -like transmission model 

[22]. The simulation resulted suggested that the restrictions posed to mobility and human-to-human 

interactions are effective in reducing disease transmission. 
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The effect of an individual of the control measures (i.e., case isolation in the home, voluntary home 

quarantine, social distancing of those over 70 years of age, social distancing of entire population, 

closure of schools and universities) and the combinations of them was simulated in [23]. It was found 

that the most effective combination to achieve epidemic suppression is population-wide social 

distancing combined with home isolation of cases and school and university closure. To achieve 

epidemic mitigation, an optimal policy combination will be case isolation, household quarantine, and 

social distancing of those at the higher risk. 

 

An analysis about the necessities of wearing face marks as precautionary principle to contain COVID-

19 was conducted in [24]. Some literatures (including preprints) were reviewed. Though these 

literatures did not present explicit results on whether wearing face masks will contain the transmission 

of COVID-19, the authors suggested that wearing face masks in the home and outside the home could 

have a substantial impact on containing COVID-19. 

 

A list of the non-pharmaceutical control factors studied by the existing literatures is summarized in 

Table 1.  

Table 1. Summary of the literatures studying the non- pharmaceutical control factors. GA = Government Advocation, MU 

= Mask Use, SC = School Closure, CL = City Lockdown, MT = Mass Testing, ITB = International Travel Ban, CT = 

Contact Tracing, T = Temperature, and H = Humidity. 

Measures & Factors GA  MU  SC  CL MT ITB CT T H 

Leung et al. [9]    ✓      

Tian et al. [10]   ✓ ✓   ✓   

Kraemer et al. [11]    ✓ ✓  ✓   

Lau et al. [12]   ✓ ✓  ✓    

Pan et al. [13]    ✓ ✓ ✓    

Prem et al. [14]   ✓       

Hellewell et al. [17]       ✓   
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Ng et al. [18]      ✓ ✓   

Cheng et al. [19]  ✓        

Jarvis et al. [20]    ✓      

Nussbaumer-Streit et al. [21]   ✓ ✓  ✓ ✓   

Gatto et al. [22]    ✓ ✓     

Ferguson et al. [23]   ✓ ✓      

Greenhalgh et al. [24]  ✓        

 

III. Methodology 

 

Our XAI-COVID framework is shown in Figure 1. A pre-processor is used to remove noise from data, 

estimate daily 𝑅𝑡, and discretize the data set. Outputs of the pre-processor are sent to several standard 

classifiers, ECPI and SHAP for prediction and explanation computation. Our XAI-COVID framework 

builds a model for COVID spreading factors in that it contains components to predict 𝑅𝑡 as well as 

explains its prediction. We use the prediction results to validate the model and so that explanation 

results from ECPI and SHAP can be trusted.  

 

Figure 1. Our XAI framework for analyzing COVID spreading factors. 

 

Our analysis is based on the following information: 

• Implementation dates of control measures as shown in Table 2. 

• The daily number of confirmed cases from 23/01/2020 to 02/04/2020 in countries and regions 

shown in Table 2. 
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• Temperature and humidity during our study period at these countries and regions. 

Table 2.  Implementation dates of control measures at 18 countries and regions. GA = Government Advocation, MU = 

Mask Use, SC = School Closure, CL = City Lockdown, MT = Mass Testing, ITB = International Travel Ban, CT = Contact 

Tracing. 

Countries 

and Regions 

GA MU SC CL MT ITB CT 

Australia 13/03/2020     01/02/2020  

France 12/03/2020  16/03/2020 17/03/2020  16/03/2020  

Germany 28/01/2020  26/02/2020 16/03/2020  28/01/2020  

Italy 31/01/2020   04/03/2020 08/03/2020  31/01/2020  

Japan 24/01/2020 22/01/2020 02/03/2020   01/02/2020 25/02/2020 

Singapore 22/01/2020 01/02/2020    29/01/2020 23/01/2020 

South Korea 22/01/2020 22/01/2020 22/01/2020  31/01/2020 02/02/2020 22/01/2020 

Spain 14/03/2020  12/03/2020 14/03/2020  10/03/2020  

United 

Kingdom 

01/03/2020  20/03/2020 21/03/2020    

Beijing 24/01/2020 07/02/2020 22/01/2020 24/01/2020 24/01/2020 28/03/2020 24/01/2020 

California 04/03/2020  13/03/2020 19/03/2020  02/02/2020  

Gurangdong 23/01/2020 26/01/2020 22/01/2020 24/01/2020 23/01/2020 28/03/2020 23/01/2020 

Hong Kong 04/01/2020 08/01/2020 22/01/2020  04/01/2020 27/01/2020 04/01/2020 

Hubei 20/01/2020 22/01/2020 22/01/2020 23/01/2020 05/02/2020 23/01/2020 03/02/2020 

Macua 31/12/2019 03/02/2020 22/01/2020  20/02/2020 28/01/2020  

New York 07/03/2020  15/03/2020 20/03/2020 13/03/2020 02/02/2020  

Taiwan 20/01/2020 31/01/2020 22/01/2020  01/02/2020 23/01/2020 27/01/2020 

Washington 29/02/2020  13/03/2020 23/03/2020 17/03/2020 02/02/2020  

 

Estimate 𝑹𝒕 from Data  

From daily number of confirmed cases, we estimate 𝑅𝑡 . As presented in [25]. A serial interval 

distribution is used to model the time between a person getting infected and he/she subsequently 

infecting another person. Following the research in [25] and [26], we let this distribution be a Gamma 

distribution 𝑔 with mean 7 and standard deviation 4.5 for all countries at all time. A plot of this 

function is shown in Figure 2. 
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Figure 2. Plots of the Gamma PDF and CDF. 

 

The number of new infections 𝑐𝑡  on a given day 𝑡 is given by the following discrete convolution 

function:  

 

𝑐𝑡 = 𝑅𝑡 ∑ 𝑐𝜏𝑔𝑡−𝜏

𝑡−1

𝜏=0

, (1) 

where 𝑐𝜏 is the number of new infections on day 𝜏, 

𝑔𝑠 = ∫ 𝑔(𝜏)𝑑𝜏
𝑠+0.5

𝜏=𝑠−0.5

, 

for 𝑠 = 2, 3, … and 

𝑔1 = ∫ 𝑔(𝜏)𝑑𝜏
1.5

0

. 

We can see that new infections identified on day 𝑡 depend on the number of new infections in days 

prior to 𝑡, weighted by the discretized serial interval distribution. 

 

From Equation 1, solving for 𝑅𝑡, we have: 

 𝑅𝑡 =
𝑐𝑡

∑ 𝑐𝜏𝑔𝑡−𝜏
𝑡−1
𝜏=0

  (2) 

𝑐𝑡 and 𝑐𝜏 are available from our data directly. For 𝑥 = 𝑡, 𝜏, 𝑐𝑥 is the difference between the confirmed 

case on day 𝑥  and the confirmed case on day 𝑥 − 1. 𝑔𝑡−𝜏  is obtained by integrating the Gamma 

distribution. Figure 3 illustrates the estimated 𝑅𝑡 for Japan, Singapore, Australia and Hubei. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Daily new cases and computed 𝑅𝑡 for selected countries and regions: (a) Japan; (b) Singapore; (c) Australia; (d) 

Hubei. We can see that 𝑅𝑡 is a function of both the number of new infections on day 𝑡, and the numbers of new infections 

on the days prior to 𝑡. 
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A. Data Pre-Processing for Noise Removal  

Since 𝑅𝑡 is sensitive to noise in the number of new infection cases and the data set we use contains 

imperfection, e.g., for the United Kingdom, both 14/03/2020 and 15/03/2020 have 1140 confirmed 

cases so there is no increase on 15/03/2020, we thus run a sliding-window mean filter with radius 1 

on the data to remove noise. , i.e., for a day 𝑡, let its confirmed case and filtered confirmed case be 𝐶𝑡 

and 𝐹𝑡, respectively, then 𝐹𝑡 = (𝐶𝑡−1 + 𝐶𝑡 + 𝐶𝑡+1)/3. 

 

We then compose a data set in a tabular form where each row describes information for one 

country/region on a day, containing the number of new confirmed cases on that day, days since each 

of the control measures that have been implemented, and the temperature as well as humidity of that 

day. 𝑅𝑡 is added to every row in the data set and later used as the target for prediction. 

 

As 𝑅𝑡 calculated in Equation 2 assumes a reasonably large 𝑡, (otherwise both 𝑐𝜏 and 𝑔𝑡−𝜏 would be 

too small, resulting in an artificially large 𝑅𝑡, which is unlikely to be correct), we drop entries with 

confirmed case less than 20. In other words, we only use data where there are more than 20 

accumulated confirmed cases in that country/region; and as the number of confirmed cases is 

monotonically increasing, there is no “skipped” date. For instance, our Singapore cases start on 

03/02/2020 and Japan cases start on 02/02/2020. The full starting dates used for all countries and 

regions are shown in Table 3. 

 

A fraction of this data set is shown in Table 4 for illustration. The data in the first row records that 𝑅𝑡 

is 0.31, with 78 new confirmed cases on that day, 55 days after government advocation, 55 days after 

mass use of face mask, school closure, and city lockdown not implemented, 46 days after mass testing, 

44 days after international travel ban, 55 days after contact tracing, as well as temperature and humidity 

being 3.73 and 48.47, respectively. The data set contains 800 entries in total. 



International Journal of Information Technology     Vol. 26   No. 1 2020 

                                                                                                                                                               

13 

 

Table 3. Case starting dates for countries and regions used in this study. 

Countries Dates Regions Dates 

Australia 03/03/2020 Beijing 23/01/2020 

France 26/02/2020 California 03/03/2020 

Germany 25/02/2020 Guangdong 23/01/2020 

Italy 21/02/2020 Hong Kong 05/02/2020 

Japan 02/02/2020 Hubei 23/01/2020 

Singapore 03/02/2020 Macau 22/03/2020 

South Korea 06/02/2020 New York 05/03/2020 

Spain 27/02/2020 Taiwan 16/02/2020 

United Kingdom 29/02/2020 Washington 03/03/2020 

 

Table 4. An illustration of the data set with four data entries (Singapore, 12/02/2020, Japan, 26/03/2020, Germany, 

26/03/2020, South Korea, 16/03/2020, and Guangdong, 08/02/2020).   NC = New Case, GA = Government Advocation, 

MU = Mask Use, SC = School Closure, CL = City Lockdown, MT = Mass Testing, ITB = International Travel Ban, CT = 

Contact Tracing, T = Temperature, and H = Humidity. 

𝑹𝒕 NC GA MU SC CL MT ITB CT T H 

0.31 78 55 55 55 0 46 44 55 3.73 48.47 

0.72 53 17 14 18 16 17 0 18 15.89 62.66 

1.34 4 22 12 0 0 20 15 21 27.86 83.86 

1.91 92 63 65 25 0 0 55 31 17.375 32.75 

2.14 5962 59 0 30 11 0 12 0 6.19 39.35 

 

B. Data Discretization  

To obtain interpretable qualitative results and to further mask noises in data, we discretize our data 

into the following intervals.  

• NC (Number of New Cases): [0,10), [10, 100), [100, ∞). 

o The number of new cases is put into 3 intervals, represented with integers 0, 1, and 2, 

respectively. For instance, given a record with NC = 78, since 10 ≤ 78 < 100 and 

[10, 100) is the second interval for discretizing NC, NC = 78 is mapped to 1; given 
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another record withNC = 4, since 0 ≤ 4 < 10, and [0, 10) is the first interval, NC = 4 

is mapped to 0. 

• GA (Government Advocation), MU (Mask Use), SC (School Closure), CL (City Lockdown), 

MT (Massive Testing), ITB (International Travel Ban), CT (Contact Tracing): 

[0,1), [1, 5), [5, 10), [10,15), [15, ∞). 

o Each of GA, MU, SC, CL, MT, ITB and CT is discretized into 5 intervals, represented 

by integers 0, 1, 2, 3, and 4, respectively. For instance, with GA = 55, since 15 ≤ 55 <

∞, GA = 55 is mapped to 4; and with CL = 0, since0 ≤ 0 < 1, CL = 0 is mapped to 

0. 

• T: (−∞, 0), [0, 10), [10, 20), [20, ∞). 

o Temperature is discretized into 4 intervals. 

• H: [0, 40), [40, 80), [80, ∞) 

o Humidity are discretized into 3 intervals. 

Table 5 shows the result of discretization from data shown in Table 4. Discretization is a key step in 

our process, as shown by our sensitivity analysis in Section IV, where results from two different sets 

of discretization boundaries are presented, the specific choices of interval boundaries do not affect the 

conclusions. 

Table 5. Five data entries in Table 4 after discretization. NC = New Case, GA = Government Advocation, MU = Mask 

Use, SC = School Closure, CL = City Lockdown, MT = Mass Testing, ITB = International Travel Ban, CT = Contact 

Tracing, T = Temperature, and H = Humidity. For the first row of Table 4, with 𝑅𝑡 = 0.31, 𝑁𝐶 = 78, 𝐺𝐴 = 55, 𝑀𝑈 =

−55, 𝑆𝐶 = 55, 𝐶𝐿 = 0, 𝑀𝑇 = 46, 𝐼𝑇𝐵 = 44, 𝐶𝑇 = 55, 𝑇 = 3.73, 𝐻 = 48.47, it is discretized as shown in the first row of 

this table, with 𝑅𝑡 = 0.31, 𝑁𝐶 = 1, 𝐺𝐴 = 4, 𝑀𝑈 = 4, 𝑆𝐶 = 4, 𝐶𝐿 = 0, 𝑀𝑇 = 4, 𝐼𝑇𝐵 = 4, 𝐶𝑇 = 4, 𝑇 = 1, 𝐻 = 1. 

𝑹𝒕 NC GA MU SC CL MT ITB CT T H 

0.31 1 4 4 4 0 4 4 4 1 1 

0.72 1 4 3 4 4 0 0 4 2 1 

1.34 0 4 3 0 0 3 3 4 3 2 

1.91 1 4 4 4 0 4 4 4 2 0 

2.14 2 4 0 4 3 3 3 0 1 0 
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IV. XAI Techniques 

 

With data presented in the form shown in Table 5, we pose 𝑅𝑡  prediction as an explainable 

classification task: given a data entry (row), (1) classify whether the 𝑅𝑡 (for that row) is greater than 

some threshold 𝜃, and (2) identify the features that are most influential to the classification. 

A. Methods for 𝑹𝒕 Classification 

Three methods are used for classification: random forest, neural network and ECPI. Since the 

reliability of our explanation results depends on the quality of data and the discretization process, the 

classification step with performance evaluation not only makes a prediction about 𝑅𝑡, but also helps 

us to verify the correctness of discretization. Standard implementations for random forest and neural 

networks are used. 

 

ECPI is an explainable classification algorithm based on probabilistic logic[27]. Roughly speaking, 

ECPI maps a dataset into a knowledge-base (KB) in probabilistic logic and performs classification 

with probabilistic logic inferences. Rules in an ECPI KB are Horn clauses with associated 

probabilities, such as  

[𝑝] 𝐶𝑙𝑎𝑠𝑠𝑥 ← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒1, … , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒𝑛, 

which is read as: with feature values 1 to 𝑛, the probability of class 𝑥 is 𝑝. For instance, 

[0.167] 𝑅𝑡 ≥ 1 ←  MU = 2, ITB = 2, H = 1.  

is a rule in the KB and it is read as: with MU = 2, ITB = 2,  H = 1, the probability of 𝑅𝑡 ≥ 1 is 

𝑃(𝑅𝑡 ≥ 1) = 0.167. The probability p of each rule 

ℎ ← 𝑏1, … , 𝑏𝑛 

is 𝑝 = 𝑃(ℎ|𝑏1, … , 𝑏𝑏). For a dataset with m features, its corresponding KB contains rules over a subset 

of k-combination (𝑘 = 1, . . , 𝑚) of features. 
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With the KB constructed, ECPI solves classification by computing probabilities of all classes with 

feature values in the query “appended” to the KB. The class with the highest probability is the resulting 

class. For instance, suppose we want to know whether 𝑅𝑡 ≥ 1 under the query NC = 2, GA = 4, MU =

4, SC = 4, CL = 4, MT = 4, ITB = 4, CT = 4, T = 1, H = 1, we append the lines in Table 6 to the 

KB, and then estimate 𝑃(𝑅𝑡 ≥ 1) and 𝑃(𝑅𝑡 < 1), respectively. We return the class with the higher 

probability. We use the linear programming optimization approach introduced in [2] for the required 

probability estimation.  

Table 6. A query example. 

[1] NC = 2, [1] GA = 4, [1] MU = 4,  [1] SC = 4,  [1] CL = 4, 

[1] MT = 4,  [1] ITB = 4, [1] CT = 4, [1] T = 1,  [1] H = 1. 

 

B. Methods for Explanation 

We use two different XAI methods for identifying decisive features in this study: ECPI and Shapley 

additive explanations. Both methods give “local'” explanations in that for a given query, they identify 

the decisive features for that query. Thus, with both methods, we first perform classification, then 

identify the features that are most influential to the classification. We do this analysis to all individual 

entries in our dataset, and then aggregate the results to form global interpretations. 

 

Generally speaking, ECPI computes explanations by identifying the subset of features that gives the 

same classification result as the full set. For a dataset with p features, suppose that a query (with p 

feature values) gives class c, to find the top k features explaining the classification, we compute 𝑃(𝑐) 

with (
𝑝
𝑘

) “partial queries'”. For instance, for the query shown in Table 6,  we compute 𝑃(𝑅𝑡 < 1) =

0.66  and 𝑃(𝑅𝑡 ≥ 1) = 0.34  thus conclude 𝑅𝑡 < 1 . To find a 1-feature explanation for this 

classification, we compute 𝑃(𝑅𝑡 < 1) with 10 individual features (these are the 1-combinations 

from the set of 10 features) shown in Table 6. The result is shown in Figure 4. We can see that 
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𝑃(𝑅𝑡 < 1) > 0.5 for CT = 4, MT = 4, CL = 4 with its highest value obtained with 𝐶𝐿 = 4. Thus 

𝐶𝐿 = 4 is the one-feature explanation for this query. 

 

Figure 4. 𝑃(𝑅𝑡 < 1) with each of the 10 individual features in the set of features values in Table 6. 

 

SHAP is based on Shapley value [28], a game theory concept that assigns a unique distribution of a 

total surplus generated by the coalition of all players in a cooperative game. In our context, each 

feature with its value, e.g., NC = 0 or MU = 3, are viewed as “players” in the game where the outcome 

is in one of the two classes (𝑅𝑡 being either greater than 1 or not). Shapley value 𝜑 for each feature-

value describes its “contribution” to the outcome classification. Formally, 

𝜑𝑗(𝑣) = ∑
|𝑆|! (𝑝 − |𝑆| − 1))!

𝑝!
(𝑣(𝑆 ∪ {𝑥𝑗}) − 𝑣(𝑆))

𝑆⊆{𝑥1,…,𝑥𝑝}{𝑥𝑗}

 

where S is set of the features used in the model, x is the vector of feature values of the instance to be 

explained and p is the number of features. 𝑣(𝑆) is the prediction for feature values in set S that are 

marginalized over features that are not included in set S. We use the TreeSHAP method presented 

in [29] to calculate the Shapley values and features with the highest Shapley values are deemed as 

the most influential ones. For instance, given the query shown in Table 6, the calculated Shapley 
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values are shown in Figure 5. Here, we see that CL = 4 is the most decisive feature, followed by 

𝐶𝑇 = 4. 

 

Figure 5. Shapley values for the 10 features values in Table 6. 

 

Results  

With SHAP and ECPI, we study the two classification cases for 0 ≤ 𝑅𝑡 < 1 and 0 ≤ 𝑅𝑡 < 2. For 

each case, we compute the top feature that is the most influential. There are 228 and 435 entries with 

0 ≤ 𝑅𝑡 < 1 and 0 ≤ 𝑅𝑡 < 2, respectively. The results are shown in Figure 6.  

 

From Figures 6, several qualitative interpretations can be obtained. We can see that for 𝑅𝑡 ≤ 1, City 

Lockdown (CL) and Contact Tracing (CT) are most influential for 𝑘 = 1, 2. Both measures are 

effective when they take value 4, meaning they are implemented for more than 15 days. For 𝑅𝑡 ≤ 2, 

City Lockdown (CL), Contact Tracing (CT), Mask Use (MU), Mass Testing (MT), School Closure 

(SC) are most influential. Humidity plays no role completely whereas warm temperature could be 

helpful. The bars shown on New Cases (NC) might be interpreted as: when NC is sufficiently small 

(<10), it is likely to stay in that way. 

 

Figure 7 shows influential factors for daily new cases in three ranges: 0-10, 10-100, and >100 for 

𝑅𝑡 ≤ 1 and 𝑅𝑡 ≤ 2, respectively. For 𝑅𝑡 ≤ 1 we see that CL is the most effective single measure, 
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when there are more than 10 cases per day. For 𝑅𝑡 ≤ 2, the top effective measures are CL, CT, MT 

and MU. 

 

 

Figure 6.  Top influential factors for 𝑅𝑡 ≤ 1 and 𝑅𝑡 ≤ 2.  The x-axis is the control measures together with temperature 

and humidity, and the y-axis is the number of entries in the dataset identified by SHAP or ECPI as the explanations. A 

measure with more entry occurrences is considered to be more effective. The top figure shows the most effective measure 

to achieve 𝑅𝑡 ≤ 1. SHAP considers 𝐶𝑇 = 4 (implementing contact tracing for 15 days or more) as the most effective 

for achieving 𝑅𝑡 ≤ 1; and ECPI identifies 𝐶𝐿 = 4 (implementing city lockdown for 15 days or more) as the most 

effective. SHAP considers 𝐶𝐿 = 4 influential as well, but not to the same level as CT. The bottom figure shows the most 

effective measure to achieve 𝑅𝑡 ≤ 2. SHAP considers 𝐶𝐿 = 4 (implementing city lockdown for 15 days or more) as the 

most effective measure for achieving 𝑅𝑡 ≤ 2, and 𝑀𝑇 = 4 and  𝑀𝑈 = 4 (implementing massive testing and mask use 

for 15 days  or more) influential as well, but not to the level of CL. ECPI considers 𝐶𝑇 = 4 (implementing contact  

tracing for 15 days or more) as the most effective measure; and  𝐶𝐿 = 4 being almost as effective as CT.  

 

V. Discussion and Conclusion 

 

As a data-driven modeling approach, our work is limited by a number of factors. Firstly, all results are 

based on data collected from the selected 18 countries and regions during the period of 23/01/2020 to 

03/04/2020. We select these countries and regions to cover wide ranges of implemented non-

pharmaceutical control measures as well as temperature and humidity conditions. For instance, South 

Korea, Hong Kong, Macau, and Taiwan are included and they have not implemented city lockdown 

during the studied period; Singapore and Australia are included and they both have higher 

temperatures than other places. Although results obtained might not be generalizable, they are about 
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these regions during the said period. Thus, when applying these results to other regions and other time, 

they should be viewed as indicative. 

   

                                         (a)                                                                        (b) 

   

                                         (c)                                                                        (c) 

   

                                         (e)                                                                        (f) 

Figure 7.  Influential factors for daily new cases in different ranges. The x-axis is the control measures; and the y-axis is 

the number of entries in the dataset identified by SHAP or ECPI as the explanations. A measure with more entry 

occurrences is considered to be more effective. (a) shows the most influential measure to achieve 𝑅𝑡 ≤ 1when the 

number of daily new cases is in the range of 0-10. SHAP and ECPI consider CT (contact tracing) and CL (city lockdown) 

as the most influential measure, respectively; (b) shows the most influential measure when the number of daily new 

cases is in the range of 10-100. SHAP and ECPI consider CT and CL as the most influential measures. (c) shows the 

most influential measure to achieve 𝑅𝑡 ≤ 1 when the number of daily new cases is greater than 100. Again, SHAP and 

ECPI consider CT and CL as the most influential measure. (d-f) show results under the same conditions for 𝑅𝑡 ≤ 2.  

 

Secondly, the data used is inherently ambiguous, e.g., “contact tracing'” and “mass testing'” have been 

implemented at different countries, but it is unlikely the same standard has been applied. The exact 

definition of “city lockdown” is ambiguous as well. We have loosely taken it as various measures 

aimed at people staying at home to various degrees, with closure of leisure and recreation facilities. 

Consequentially, although our methods are quantitative, due to the qualitative nature of the data, one 

should read our results qualitatively. 



International Journal of Information Technology     Vol. 26   No. 1 2020 

                                                                                                                                                               

21 

 

 

Thirdly, we rely on the calculated 𝑅𝑡 to label our data into different classes (e.g., 𝑅𝑡 ≤ 1 vs. 𝑅𝑡 > 1), 

which are then used to construct our models. The calculation method is reported in [25] with 

parameters found in [26]. These are the core assumptions in this work. Namely, we assume the 

underlying serial interval distribution can be modelled with a Gamma function and this function is the 

same for all countries and regions studied. These are the assumptions also made in [25] and [26]. 

Moreover, we are aware that 𝑅𝑡 is an estimate that can be approximated with more than one method, 

some authors such as [9] gives a much smaller estimate of 𝑅𝑡 for Beijing in January (they estimate 𝑅𝑡 

being close to 0.5 whereas our calculation shows it is greater than 2; although ours drops to below 0.5 

after February 10, same as theirs), different results might be obtained if 𝑅𝑡 is estimated differently. 

 

Lastly, we have ignored the consideration where as COVID-19 progresses, case reporting mechanisms 

have been evolved. Thus, there might be some discrepancy when comparing numbers of newly 

reported cases at different times. Although we acknowledge such discrepancy may exist, we believe 

it does not invalidate our results due to our discretization and classification approach, where values 

are mapped to classes with small discrepancies “masked” in this process. Alternatively, we can pose 

this analysis as a regression/XAI problem - instead of constructing classification models, we can build 

regression models that predict 𝑅𝑡 and then identify key factors in such predictions. This approach 

potentially requires more and higher quality data and asks for different machine learning models. We 

plan to explore this direction in future work. 

 

In conclusion, we applied two explainable AI methods in studying the importance of factors affecting 

the spread of COVID-19. We find city lockdown and contact tracing being the two most effective 

control measures, surpassing mass testing, school closure, international travel ban and mask use. As 

countries are considering lifting city lockdown, to prevent resurgent disease, effort should be put to 

developing privacy preserving, practical and effective contact tracing techniques. 
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