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Abstract

Recently, AI has achieved remarkable success in several applications. However, its conventional

focus on leveraging big data on large models, trained in powerful cloud servers is not environ-

mentally sustainable. In this paper, we will discuss a multi-level framework comprising four com-

ponents to achieve Green AI through a comprehensive end-to-end framework built on interdisci-

plinary foundations.
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I. Introduction

In recent years, the effects of climate change have disrupted natural habitats and adversely im-

pacted human societies at an alarming rate [4]. At present, the approaches adopted to improve Ar-

tificial Intelligence (AI) applications in academia and industry have been centered on training large

models on big data. While this has led to significant progress in AI research, the ever-growing car-

bon footprints of AI model training, model parameters exchange, and model inferences have placed

a significant burden on the environment. For example, the cloud computation cost to train a large

Transformer model with neural architecture search may reach up to US$3 million and emits five
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times as much greenhouse gases as that of the lifetime usage of a vehicle [25]. This conventional

school of thought has been classified as “Red AI” [23].

Given the rapid degradation of the environment, there exists an urgent need to introduce a new

paradigm known as “Green AI” that aims to make all stages of AI model development environmen-

tally sustainable, from data collection to model training and deployment. In this paper, we review

the literature to address the question: How can the sustainable development of AI be promoted? We

introduce an end-to-end Green AI framework built on interdisciplinary foundations that will aim

to greenify AI through the “Reduce, Reuse, Recycle” philosophy applied to multi-level enablers.

Fig 1 A multi-level Green AI framework.

II. Data Level

The training data required for the state-of-the-art AI models today can involve terabytes of text

data or billions of images [5]. However, data is environmentally expensive to collect and pre-

process. Moreover, the size of the training dataset is directly proportional to the environmental

cost that model training imposes on the environment [23]. Despite this, the rapid growth of AI has

been credited to the access to vast amounts of data and powerful computing resources. Fortunately,

numerous studies have investigated how to train AI models with limited data, albeit for motivations

unrelated to the environment, e.g., due to training data scarcity in the healthcare [24] and low-

resource natural language processing (NLP) domains [7].
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One emerging method is the increasing use of models that have been pre-trained on extensive

data. These are widely known as foundation models such as BERT [9], CLIP [16], and GPT-3

[1]. Using small data or learnable prompts that are domain-specific to downstream tasks, the foun-

dation models can be adapted through techniques such as zero-shot inference with hand-crafted

prompts, prompt tuning, and fine-tuning [30]. This mitigates the need to implement training or

data collection/pre-processing from scratch.

Learning paradigms to reduce the number of annotated training samples required can also

reduce the environmental cost of sensing and pre-processing. This group of techniques, one of

which is known as active learning [3, 15], seeks the input of an “oracle” (i.e., human-in-the-loop)

to label influential data samples that are algorithmically singled out in iterations, rather than rely on

a completely labeled dataset right from the beginning. This approach can significantly reduce the

number of annotated training data required and therefore, the environmental cost of pre-processing.

To reduce the environmental impact of data collection and processing, the reuse of training

samples is a viable option. This can be achieved through participating in data marketplaces, which

are platforms for transactions to obtain related data to enrich the buyer’s internal dataset. The

efficient facilitation of data trading has been well-studied [22], with the literature addressing topics

such as efficient pricing of data from the crowdsourcing and network economics perspective [2].

With the advent of blockchain, the necessity of a central platform has been challenged, leading to

the proposal of decentralized marketplaces that leverage blockchains for peer-to-peer transactions

[17]. However, with privacy concerns and the introduction of stringent privacy laws such as the

General Data Protection Regulation (GDPR), the trading of data has come under scrutiny. To

enable the reuse of data without direct sharing, techniques such as Federated and Split Learning

[14, 12] have been proposed to exchange model parameters towards the development of a global
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AI model. Through these means, the value of data is unlocked and the environmental cost incurred

by an over-reliance on big data is reduced.

III. Model Level

State-of-the-art models today tend to be large to the extent of being over-parametrized [28]. For

example, GPT-3 has about 175 billion parameters and requires 800GB of storage. Large models

are costly to train, store, and infer. In response, early research [8, 21] has focused on design-

ing more efficient model architectures, particularly for their implementation on mobile devices.

Besides taking up less storage, streamlined models offer important benefits such as reduced envi-

ronmental impact and quicker inference times, though they may result in some loss of accuracy.

However, these trade-offs between accuracy and model size can be adjusted to optimize the overall

performance of the model, depending on various user-centric factors.

Retraining deep learning models from scratch can be both time-consuming and resource-intensive.

To address this issue, the reuse of model parameters has been explored in the field, including the

use of parameter sharing [18]. This technique involves sharing the same weights/filters across

multiple layers in the network, reducing the number of parameters that need to be learned and

potentially leading to improved learning performance. Parameter sharing has been applied across

various tasks from translation [20] and vision models [18] to reinforcement learning [26]. A re-

lated concept is multi-task learning [29] in which parameter sharing is utilized to reuse parameters

for multiple separate tasks, in order to allow for task generalization.

For the recycle dimension, learning algorithms such as leveraging knowledge distillation [6]

techniques to fine-tune pre-trained models instead of starting from scratch, can lead to improved

task generalization and reduction of the environmental cost of model training. Moreover, the uti-
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lization of foundation models for fine-tuning to accomplish downstream tasks can achieve the best

of both worlds of low-resource training data requirements and lower computation costs.

IV. Distributed Computation Level

Inefficient model training in the cloud can have a significant impact on the environment due to high

energy consumption. Processes such as data shuffling and server communication during training

consume a large amount of energy, resulting in a significant carbon footprint. As such, energy-

efficient algorithms to reduce the amount of data that has to be transferred will offset carbon emis-

sions. Moreover, the optimized scheduling of workloads among data centers with varying carbon

intensities can lead to reduced emissions as well as cost savings in the carbon market [11].

While cloud computing is still the dominant approach for model training, edge computing has

emerged as a viable alternative due to growing privacy concerns [13]. Edge computing utilizes the

resources of end devices and edge servers for edge caching, training, and inference, bringing the

computation closer to where the data is generated. A key enabling technology of edge computing is

Federated Learning (FL), in which data owners carry out model training locally before transmitting

the model parameters or gradient updates, rather than the raw data, to a model owner for aggre-

gation [14]. This enables privacy-preserving collaborative machine learning while leveraging the

computation capabilities of workers. As with cloud computing, FL faces the issues of redundant

parameter updates to the parameter server and surplus local computations, all of which result in

carbon emissions that can be reduced. It follows that research on importance-aware updating (i.e.,

that selectively chooses key updates to be communicated with the server) [19], energy-aware client

selection (i.e., of which protocol selects clients that emits least carbon emissions during training)

[12], and the utilization of ambient energy or green sources of energy for distributed model training
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can be most impactful to reduce the carbon footprint in edge AI.

V. Ecosystem Level

At present, red AI is prevalent given that the conventional AI ecosystem rewards “red” prac-

tices. Through developing ecosystem level enablers, we are able to empower green AI. Incor-

porating carbon footprint costs as a penalty in AI model training is a key enabler for promoting

environmentally-friendly AI. Considering the tradeoff between performance and environmental

cost will encourage researchers and practitioners to work towards a greener AI. This can be feasi-

bly accomplished, given that tools to quantify the carbon emissions of AI now widely exist [10].

Applying economic principles to govern the AI domain is another promising direction for

Green AI. To effectively implement the ”reduce, reuse, recycle” philosophy using pre-trained

models or public datasets, these models/datasets must be readily available for sharing. Yet, with-

out incentives to share, it is unlikely that these models/datasets will be fully made public. In fact,

premium/paid versions of large language models now exist. Just as cloud computing provides com-

putations or functions as a service [27], economic tools can be utilized to model the interactions of

buyers and sellers in the data market/model-as-a-service market. Similarly, reputation systems can

be introduced to consolidate the opinions of participants in the ecosystem into quantifiable ratings,

thereby improving the valuation of each participant’s data/model resources.

VI. Lessons Learned and Conclusion

In this paper, we highlight four key levels in which Green AI can be realized. We provide a high

level summary of enablers within these levels, and in the process, provide readers with insights on
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the way forward towards realizing Green AI. The lessons learned from our survey can be summa-

rized in the following:

1. The lack of incentives to greenify AI is a pressing concern: This paper primarily exam-

ines techniques aimed at addressing other challenges, such as utilizing small data learning

paradigms to overcome data scarcity in AI. Although these techniques have the potential

to decrease the carbon impact of AI, they are rarely positioned as such due to the lack of

academic incentives or interests to make AI more environmentally friendly.

2. Benchmarks and standards for Green AI have to be established: At present, there is a

widespread focus on creating leaderboards that showcase the highest model accuracies, as

research groups compete to outperform current state-of-the-art results. Unfortunately, this is

not the case for Green AI, where there are no established benchmarks. Although there are

online resources that can calculate the carbon footprint of machine learning models, there

has not been enough research conducted to determine how to achieve optimal performance

while minimizing carbon impact. As a result, a set of standards to promote and guide green

practices during AI development is absent.

3. The trajectory towards large models can both benefit and hinder the effort to create environ-

mentally sustainable AI: The rise of large models have transformed AI. However, the trend

toward using large models presents a dilemma. On one hand, even though large models have

shown superior results, training these models demand considerable amounts of computing

power and energy, which results in a larger carbon footprint and exacerbates climate change.

On the other hand, large models (particularly foundation models) can be effectively utilized

and applied to various downstream tasks, providing more energy-efficient solutions. Moving
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forward, research on how ecosystem mechanisms such as green premium pricing and green

AI regulations to encourage green practices will be most beneficial.
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