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Abstract 

 

Generative artificial intelligence (AI) models have been prevalently leveraged in a plethora of 

downstream tasks because of the recent popular large language models (LLMs). While LLMs greatly 

step forward the research progress in analyzing languages, deep generative AI models are also 

inspirative in the remaining domains, especially computer vision. Deepfake, a technique that 

manipulates facial content in a target image with the guiding information (identity, expression, pose, 

and attributes) from a source image, has brought both industrial opportunities and privacy threats to 

human lives by deriving hyper-realistic synthetic media. In this survey, we perform a comprehensive 

study on the evolution of deep generative AI models in Deepfake face synthesis research and provide 

informative discussions on the pros and cons of the Deepfake technique, concluding with the potential 

future research directions in the domain.  

Keyword: Deepfake, generative artificial intelligence model, face synthesis.  

I. Introduction 

 

Generative artificial intelligence (AI), a concept that depicts the capability of artificial intelligence in 

generating new media contents such as image, audio, and text using generative models, has 

experienced magnificent development up to the current stage. Generative AI models are designed to 

learn feature patterns from existing data corpora and produce synthetic content following similar 
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patterns. Throughout the history of generative AI models, various novel concepts and tasks have 

successively appeared. Among the new terms that are derived in the background of generative AI, 

besides the large language models (LLMs) that have caught significant public attention recently, 

Deepfake1, a facial image synthesis technique using deep generative models, has caused massive 

attraction to the public due to its impacts in both positive and negative aspects. 

Relying on the deep generative AI models, Deepfake is able to perform image manipulation by 

modifying the identities, expressions, poses, and attributes of the facial content. Consequently, along 

with the evolution of generative AI models from auto-encoder [1] to stable diffusion [2], the Deepfake 

facial manipulation technique has brought public benefits and privacy risks to human lives. For 

instance, to avoid reshooting or removing the relevant episodes, tainted celebrities banned due to 

controversial behaviors are face-swapped in the TV productions they performed before being released 

to the public2. Additionally, Marvel movie lovers may swap their faces onto movie clips and perform 

as their favorite superheroes and superheroines [3]. On the other hand, victim groups attacked by 

misusing Deepfake include politicians3,4, celebrities5,6, and even every human being7 due to easy 

access to the image forgery applications and tools. To make wise utilization of Deepfake to bring 

convenience to our lives and prevent it from causing privacy issues simultaneously, it is necessary to 

truly get to know the technique itself. 

In this paper, we conduct a comprehensive study based on the evolution of generative AI in the domain 

of Deepfake face synthesis. First, we present a detailed review of the evolution history in regard to the 

generative AI models for Deepfake face synthesis. In particular, the two representative sub-tasks, face 

swapping and face reenactment (Fig. 1), are each detailedly summarized via walking through the 

evolution experience of the auto-encoders, generative adversarial networks, and diffusion models. 

 
1 https://github.com/deepfakes 
2 http://tinyurl.com/7f5rwn67 
3 https://www.youtube.com/watch?v=cQ54GDm1eL0 
4 https://tinyurl.com/bdzyuam9 
5 https://www.bbc.com/news/technology-42905185 
6 https://www.bbc.com/news/technology-42912529 
7 https://tinyurl.com/yh82nz45 
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Then, we demonstrate the potential opportunities and risks by describing the benefits brought by 

Deepfake to society and the available countermoves regarding misusing the technique, respectively. 

In the end, we brief the future directions of generative AI models in Deepfake-related research with a 

conclusion. 

 

Fig. 1. Deepfake visualization illustrations by face swapping [4] in row 1 and face reenactment [5] in row 2. 

II. Evolution of Deepfake Face Synthesis 

 

In 2017, the Reddit user ‘deepfakes’ announced that, with the help of deep neural networks, he could 

automatically execute face identity swapping from a source person onto a target one while maintaining 

all other contents of the target image unchanged. Since then, the term ‘Deepfake’ has become popular 

and experienced explosive improvements in various domains. During the evolution of Deepfake, two 

types of face synthesis tasks with different focuses are researched individually, namely, face swapping 

and face re-enactment. 

Face Swapping  

Face swapping refers to the task that transfers a desired identity from a source face to a target 

facial image and preserves the rest image content including expression, movement, and 

background scene. Ever since the first occurrence of Deepfake face swapping was released in 

2017, the early follow-up research mainly focuses on subject-specific approaches, which swap 

fixed pairs of facial identities that the models have seen during training using an auto-encoder. 
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In specific, for a pair of facial identities, a shared encoder extracts identity-independent features 

from either identity to preserve the unchanged information, and two unique decoders each take 

the work of synthesizing faces with the desired facial identity. During the training phase, the 

faces of each identity are first encoded and then reconstructed identically via the corresponding 

decoder. This pipeline enforces the decoders’ ability to reconstruct the wanted facial identities. 

Consequently, the facial identity of the input face can be favorably modified to the other identity 

in the inference phase. 

Later approaches mainly boost the face swapping performance by calibrating the fine-grained 

feature extraction and refinement pipelines. In particular, Korshunova et al. [6] proposed the 

integral of content, style, and light loss functions that collaborate with convolutional neural 

networks (CNNs) as the core architecture within the auto-encoder for producing highly 

photorealistic results. Nirkin et al. [7] employed 3D facial features for image segmentation and 

demonstrated the high efficiency and low computation cost with merely fully connected layers. 

DeepFaceLab [8] provides two canonical types of facial landmark extraction algorithms [9][10] 

to resolve the unsatisfactory performance caused by unstable face alignment protocols. Li et al. 

[11] attempted additional restrictions on low resolution, color mismatch, inaccurate face masks, 

and temporal flickering, which helps construct one of the most challenging high-quality 

Deepfake detection datasets, Celeb-DF. 

To derive synthetic images with reasonable fidelity, researchers introduced generative 

adversarial network (GAN) [12] and adjusted the face swapping algorithms in the adversarial 

learning pipelines. Zhu et al. [13] aimed to improve the consistency in illuminations and skin 

colors, and they introduced a mix-and-segment discriminator (MSD) by randomly mixing output 

image patches for consistency verification in adversarial learning. Nirkin, Keller, and Hassner 

[14] utilized a multi-scale discriminator consisting of multiple discriminators for different levels 

of image resolution and achieved high-resolution face swapping results. Then, considering the 

high computational cost of training a new model for every pair of faces, the concept of identity-
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agnostic face swapping has been raised. Specifically, by introducing a well-trained identity 

encoder, the generative model is able to extract identity information from arbitrary source images 

and perform face swapping on the target. FaceShifter [15] adopts the well-trained face 

recognition model, ArcFace [16], as the identity encoder following the algorithms of adaptive 

instance normalization (AdaIN) [17] and spatially-adaptive normalization (SPADE) [18] for 

identity feature injection, and accomplishes high-quality face swapping in challenging cases with 

occlusions by conducting a novel heuristic error acknowledging refinement network (HEAR-

Net). Chen et al. [19] designed SimSwap with a novel ID injection module (IIM) that is based 

mainly on ArcFace, AdaIN, and a weak feature matching loss that preserves facial attributes to 

establish a balance between identity and attributes. The ID injection concept has since become 

commonplace and has been frequently adopted in subsequent face swapping techniques. 

Based on the fixed ID injection protocol, the demand for identity consistency is gradually 

satisfied by the subsequent studies. Zhu et al. introduced MegaFS [20] with a face transfer 

module (FTM) and conducted stable control toward identity-related facial attributes for high-

resolution face swapping up to 1,024 utilizing StyleGAN2 [21]. Gao et al. [22] proposed 

InfoSwap to optimize the information bottleneck trade-off to extract the most expressive identity 

information from the pre-trained face recognition model, deriving superior identity-consistent 

performance in swapped faces. Wang et al. [23] devised HifiFace with geometric supervision by 

3D morphable models (3DMM) to preserve the face shape of the source facial identities. By 

leveraging a style-based generator, StyleSwap [24] is able to maintain high output fidelity and 

optimize identity consistency concurrently. RAFSwap [25] raises the idea of region-aware face 

swapping and adopts transformer [26] for identity-relevant local and global feature interactions. 

This idea has achieved state-of-the-art identity consistency performance at a time. With the help 

of supervised contrastive learning, Smooth-Swap [27] achieves promising face swapping results 

in regard to identity preservation. Zeng et al. [28] developed FlowFace based on the pre-trained 

face masked auto-encoder [29] to capture facial appearances and identity information, and better 
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identity preservation effects are obtained with correctly reconstructed face shapes. Meanwhile, 

several studies aim to reduce the computational cost in various aspects. Shu et al. [30] attempted 

a few-shot head swapper, HeSer, and achieved reasonable in-the-wild performance while largely 

reducing the demand for data corpora. Xu et al. [31] invented a lightweight identity-aware 

dynamic network (IDN) that efficiently executes identity-agnostic face swapping by dynamically 

updating the model parameters. This method is capable of real-time face swapping on mobile 

phones with a significantly small number of parameters. Wang et al. [4] proposed AP-Swap that 

achieves the uttermost facial attribute preservation performance by completely introducing facial 

landmarks to guide target facial attribute reconstruction. This utilization of facial landmarks 

concurrently gains huge efficiency improvements. 

Recently, the mushroomed research progress in denoising diffusion probabilistic models 

(DDPMs) [32][33] has caught the attention of Deepfake researchers, and multiple face swapping 

algorithms are designed accordingly. With simple conditional inputs, conditional diffusion 

models (CDMs) can generate images with high degrees of semantic consistency. Although 

abundant applications [34][35][36][37] are released for various image generation tasks, the 

research on face swapping using CDMs has been just initialized. Kim et al. [38] proposed a dual-

condition face generator (DCFace) to reconstruct facial images with desired identities and styles 

provided by the source and target images. To ensure stable feature extraction from source 

images, a patch-wise style extractor is designed to disable the identity information in target 

images. Zhao et al. [39] trained a DDPM conditioned in an inpainting task on the identity feature 

and facial landmark for face swapping (DiffSwap), collaborating with a midpoint estimation 

method for identity feature learning at a low cost. 

Face Reenactment 

As opposed to face swapping, face reenactment refers to a task in facial synthesis that involves 

transferring facial attributes from a source face to a target one, while preserving the appearance 

and the identity of the target face. In other words, the goal for content modifying and maintaining 
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on the target face is completely opposite in regard to face swapping. In the early stages, the face 

reenactment work is mainly exploited on fixed facial identities in a one-to-one manner with the 

help of GAN architectures. In particular, Xu et al. [40] leveraged CycleGAN [41] and PatchGAN 

[42] to transfer head poses and facial expressions, devoting a preliminary effort to the face 

reenactment task. Then, ReenactGAN [43] advances the research stage to the many-to-one 

manner face reenactment. To avoid potential structural artifacts, the authors mapped the source 

faces onto a boundary latent space while collaborating with the transformer before transferring 

the facial attributes to the target images. A popular method, Neural Textures [44], being adopted 

to construct one of the most popular Deepfake datasets, FaceForensics++ (FF++) [45], combines 

the traditional graphics pipeline with learnable components to interpret high-dimensional feature 

maps for photo-realistic re-rendering even with source images that have noisy and incomplete 

surface geometries. 

Later, the goal shifts to the many-to-many face reenactment manner, and researchers are 

interested in splitting facial identities and attributes such that the attributes can be purely and 

correctly transferred even for unseen facial identities. Specifically, to resolve the identity 

preservation issue for unseen identities, Ha et al. [46] heavily adopted the core idea of the 

transformer for the source image, target image, and target facial landmarks. Since then, adopting 

facial landmarks in the face reenactment pipeline guarantees precision at some levels 

[47][48][49]. By combining appearance-based and warping-based methods, FLNet [50] 

generates faithful face reenactment outputs by simply adopting only the source faces and facial 

landmark differences between source and target. CrossID-GAN [51] performs multi-ID face 

reenactment by gathering identity-invariant motion patterns from facial landmarks. 

Concurrently, more complex algorithms have occurred to analyze deeper image features. Zeng 

et al. [52] introduced a novel self-supervised hybrid model, DAE-GAN, that learns to reenact 

faces naturally from large amounts of unlabeled videos that provide hints for identity and pose 

features disentanglement. Besides, Burkov et al. [53] conducted a latent pose representation 
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encoder and an identity encoder that are supervised solely by image reconstruction losses. 

Despite achieving satisfactory facial output with favorable model simplicity, the output images 

are unavoidably turned into an all-black background. Further, to deal with cases containing 

extreme facial expressions and poses, Liu presented a large pose identity-preserving face 

reenactment network, LI-Net [54], that treats the pose and expression features separately and 

carefully by the face rotation module and the expression enhancing generator, respectively. 

With the demand for boosting model ability, the few-shot and one-shot topics have become 

popular and several studies have been conducted accordingly. Zhang et al. [55] attempted to 

satisfy the one-shot scenario in this task, and they devised a disentangle-and-compose framework 

to correctly extract expression and pose features out of a single target image. Yao et al. [56] 

decomposed identity, expression, and pose features from the source and driving images, then 

recombined them to reconstruct the 3D mesh with desired features. Based on the optical flow 

between the original and desired 3D meshes, the output facial image can be easily derived under 

few-shot and one-shot conditions. Zakharov et al. [57] demonstrated a one-shot face reenactment 

pipeline that guides the expression and pose transfer by obtaining high- and low-frequency 

texture components from source and target images, respectively. Yao et al. [58] designed a novel 

appearance adaptive normalization mechanism to globally predict adaptive parameters of 

different layers using a skip-connected network, preventing the unresolved issue caused by non-

pixel-level alignment. Meanwhile, some studies focus on facial expression synthesis without 

requiring a source image. Providing a target image and a desired facial expression label, the 

algorithms are capable of modifying the facial expression within the target image. Specifically, 

GANimation [59] utilizes action unit (AU) values with attention masks [60] to transfer facial 

images to standard facial expressions such as happy and angry. FReeNet [61] builds a unified 

landmark converter (ULC) that utilizes an auto-encoder to adapt standard expressions to the 

target faces. 
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Similar to the evolution of generative AI models in the face swapping task, recently, a few 

diffusion-based models have been raised thanks to the development of the large models. In detail, 

Collaborative Diffusion [62] can edit the facial attributes of the images upon receiving prompts 

by collaborating pre-trained uni-modal diffusion models. DiffusionRig [63], conditioned on 

crude 3D face models estimated from single in-the-wild images, illustrates outstanding 

performance by feeding a small number of portrait photos of a target identity. However, such an 

adoption trend on the DDPMs has just started and thus there is a considerable potential research 

gap. 

III. Opportunities and Risks 

 

Like many other new technologies, the flourishing of Deepfake can bring convenience to human lives 

in many industries such as educational media and digital communications [64]. On the contrary, huge 

negative consequences have gradually appeared on the dark side. In this section, we briefly discuss 

the potential opportunities and risks brought by Deepfake from both ends. 

A. Opportunities 

Benefiting from the publicly available source code implementations, various Deepfake mobile 

applications have been published on the internet. In the early times, FakeAPP8 requires sufficient 

input images in order to contribute a reasonable synthetic output. Later, a popular Chinese 

application, ZAO9, demonstrates superior face swapping performance while requiring a single 

image, especially for the ones without complex occlusions and bad light conditions. Other later 

software such as ReFace10, Wombo11, and FaceApp12 continuously adopts and encapsulates 

state-of-the-art Deepfake algorithms, and has brought mass attention in people’s entertainment.  

 
8 http://tinyurl.com/yj3r6ce2 
9 https://apps.apple.com/cn/app/id1465199127 
10 https://hey.reface.ai/ 
11 http://tinyurl.com/rkf29d5s 
12 http://tinyurl.com/4rak9fsu 
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With the swift development of generative AI models, it is becoming easier to produce high-

quality and hyper-realistic synthetic media. Generally, the Deepfake technique benefits both 

individuals and industries. On the one hand, individual film lovers may inject themselves into 

Hollywood movies and play the role of their favorite characters by performing face swapping. 

People can also digitally bring a deceased friend or family back and have conversations to make 

up for regrets via face reenactment upon their still photographs. As to the e-commerce industry, 

market brands can show fashion outfits with a diversity of faces using Deepfake, rather than for 

the customers to personally visit the off-line stores. Meanwhile, for global educational purposes, 

a malaria awareness campaign produces Deepfake David Beckham with multilingual speeches, 

attracting increasing attention from the soccer fan group 13 . Referencing this event, further 

educational activities can be arranged in the future. 

Risks 

Privacy Threats and Crisis of Confidence. In contrast to the positive benefits of Deepfake, 

misusing the technology can lead to severe consequences. Besides the popular ‘fake Obama’ 

video14 circulating on the internet for educational and entertainment purposes, recently, a fake 

president Zelensky15 has caused a crisis of confidence toward the government in Ukraine during 

the Russia-Ukraine war. In that fake video, President Zelensky tells Ukrainians to put down their 

weapons and give up resistance. In addition, there is already a large number of female celebrities 

suffering reputational loss due to Deepfake. Representative victims include the famous singer 

Ariana Grande and the well-known actress Emma Watson [65], who have been face swapped 

into porn videos that are largely distributed. Furthermore, the privacy threats of malicious 

Deepfake are closely approaching every human being. In June 2022, a lady was sentenced to 

probation for three years because of her harassment of the rivals on her daughter’s cheerleader 

 
13 http://tinyurl.com/yj3r6ce2 
14 https://www.youtube.com/watch?v=cQ54GDm1eL0 
15 http://tinyurl.com/ywka3brs 
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team using Deepfake16. Unfortunately, due to the lack of evident and credible forgery detection 

tools, the justification for generating Deepfake videos is unable to be confirmed17. 

Due to the hyper-realistic quality that is indistinguishable by human eyes, Deepfake has already 

been ranked as the most serious artificial intelligence crime threat since 202018. To resolve the 

ongoing and potential threats, the battle between malicious facial manipulation and Deepfake 

detection has been consistently continued [66]. In a nutshell, to reduce the threats and efficiently 

protect people’s privacy and reputation, the current research domain is continuously focusing on 

conducting reliable deep-neural-network-based (DNN-based) Deepfake detectors that are 

generalizable to unseen data, interpretable with evidence that follows common sense, and robust 

when dealing with complex real-life scenarios [3]. 

Generative AI Models and the Environmental Issue. In the big data era, most generative AI 

models follow a common guideline, that is, more training data can usually advance better model 

performance given acceptable data qualities. On the other hand, the sufficient data quantity also 

benefits the data-consuming generative models for them to grow toward larger scales, where the 

additional modules and the corresponding model weights are designed to deeply and broadly 

analyze the latent features that are unfortunately ignored by the lightweight models in the early 

stages. Admittedly, the progress in data and model scales has brought out the best in each other 

for a period of time. However, such a fast development causes a significantly large demand for 

computational power. For example, a recent study [4] compares the number of parameters 

(Params.) and the number of floating point operations (FLOPs) of state-of-the-art (SOTA) face 

swapping models in the past years, and an obvious efficiency loss can be observed in Table I for 

most of the ones that come up with complex modules to deal with deeper features. As a result, 

the environmental issue has been frequently raised in discussions [71]. Therefore, besides 

 
16 http://tinyurl.com/mst7wk6v 
17 http://tinyurl.com/4w8c62ja 
18 http://tinyurl.com/4wpxfs6t 
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consistently improving the ability of generative AI models, the new research demand lies in the 

topic of green generative AI. 

Model Year Resolution FLOPs↓ Params.↓ 

Deepfakes19 2017 64 1.9G 82.1M 

SimSwap [19] 2020 224 57.7G 107.3M 

FaceShifter [15] 2020 256 97.4G 421.0M 

InfoSwap [22] 2021 512 222.8G 121.6M 

RAFSwap [25] 2022 256 83.6G 305.2M 

UniFace [67] 2022 256 137.2G 92.4M 

FaceSwapper [68] 2022 256 279.3G 97.3M 

FSLSD [69] 2022 1,024 256.2G 324.1M 

FaceDancer [70] 2023 256 58.1G 89.7M 

Table I. Complexity evaluation of the face swapping models. The table is partially adopted from 

the latest study [4]. 

IV. Future Research Directions 

 

In this survey, we comprehensively review the evolution of generative AI models in Deepfake face 

synthesis domain. For both categories, face swapping and face reenactment, in the domain, a similar 

developing history experiences auto-encoder, GAN, and DDPM as the model scale, data scale, and 

synthetic performance are all boosted continuously. As a new technology that has pros and cons, the 

opportunities and risks of Deepfake are illustrated accordingly.  

Nevertheless, there remain considerable research gaps from both aspects. Regarding Deepfake face 

synthesis, although achieves relatively stable performance in common and easy scenarios such as the 

frontal face condition, faces are usually produced with unexpected artifacts, distortions, and unwanted 

content when encountering complex cases such as side faces and occlusions. Meanwhile, preserving 

a low computational cost simultaneously to resolve the environmental issue becomes a new topic, and 

new solutions are eagerly desired. Furthermore, although faces generated by the diffusion-based 

algorithms are generally clear and smooth with no obvious irregular trace, the existing models are not 

stable such that the high-resolution synthetic images overdo artifacts clean-up by accidentally 

removing common facial textures that are commonly contained in facial images. Therefore, future 

 
19 Source code at https://github.com/deepfakes 
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research is expected to maintain a reasonable balance regarding unwanted artifacts and common facial 

textures, and at the same time, to save the computational cost.  

On the other hand, to deal with malicious Deepfake manipulation on facial images, a reliable detector 

that can be truly helpful in human lives, and even for relevant court-case prosecutions, is expected to 

demonstrate satisfactory ability in terms of transferability, interpretability, and robustness. In specific, 

research studies may focus on devising a detection model that maintains high accuracy when 

generalized to unseen testing data and evaluated on real-life noisy or low-quality data, while the 

evidence that a falsification as made based is easy to follow. Furthermore, to address the bottleneck 

that the current passive detectors are encountering, it is also meaningful to proactively insert invisible 

signals to untampered media in advance to prevent potential attacks. In particular, one can add 

invisible perturbations into image features that the generative models mostly rely on, and thus disables 

the synthetic workflow. Additionally, robust and semi-fragile watermarks can be utilized to prove the 

credibility by verifying the their existence after potential malicious Deepfake facial image 

manipulation. 
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