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Abstract

The recent surge in research focused on generating synthetic data from large language models

(LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative

Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this

approach as a compelling solution to low-resource challenges. This paper delves into advanced

technologies that leverage these gigantic LLMs for the generation of task-specific training data.

We outline methodologies, evaluation techniques, and practical applications, discuss the current

limitations, and suggest potential pathways for future research.

Keywords: Generative AI, Synthetic Data Generation, Large Language Models..

I. Introduction

The introduction of Transformer [78] in 2017, followed by groundbreaking LLMs like OpenAI’s

GPT [6] and Google’s BERT [16], marked the beginning of a new era in language understanding

and generation. More recently, generative LLMs (e.g., GPT-3[37], LlaMa[77] and ChatGPT[59])

have propelled this evolution to unprecedented heights, seamlessly converging with Generative AI

and heralding a fresh era in the realm of synthetic data generation[53, 52, 82, 21, 83, 86, 10].
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The origins of Generative AI can be traced back to pivotal models such as Generative Adver-

sarial Networks[24] (GANs) and Variational Autoencoders[36] (VAEs), which demonstrated the

ability to generate realistic images and signals[80]. However, it wasn’t until the advent of LLMs

in recent years that Generative AI truly began to flourish. The convergence of Generative AI and

LLMs in the realm of synthetic data creation represents not merely a technological advancement,

but a profound paradigm shift in our approach to data creation and the training of AI models.

Why do we need synthetic data? The necessity for synthetic data arises from the inherent lim-

itations of general-purpose Large Language Models (LLMs) in specialized and private domains,

despite their significant achievements across various benchmarks. For instance, ClinicalBERT[33],

adapted from BERT through pre-training on clinical texts, demonstrates superior performance

in predicting hospital readmissions compared to the original BERT[15], which was trained on

Wikipedia and BookCorpus[91] text data. This highlights a crucial challenge: specialized do-

mains often rely on domain-specific data that is not readily available or open to the public, thereby

underscoring the importance of synthetic data in bridging these gaps.

Synergy between LLMs and synthetic data generation. This synergy is pivotal in addressing

data scarcity and privacy concerns, particularly in domains where real data is either limited or

sensitive. By generating text that closely mirrors human language, LLMs facilitate the creation

of robust, varied datasets necessary for training and refining AI models across various applica-

tions, from healthcare[65], eduction[57] to business management[70]. Moreover, this collabora-

tion opens new avenues for ethical AI development, allowing researchers to bypass the biases and

ethical dilemmas often inherent in real-world datasets.

Other related survey papers. Comprehensive surveys for Generative AI and LLMs exist, each
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revisits related works from a different perspective: Generative AI surveys provide a holistic view

of this area starting from Generative Adversarial Networks (GANs) to ChatGPT [7] and models

developed for synthetic data generation in the past decade [3], with a special focus on text-to-

image [87] or text-to-speech [88] generation as well as practical applications in Education [1]

and Healthcare [84]; Surveys for LLMs provide systematic categorization [66] for NLP tasks [56]

and methods to adapt these LLMs to specific domains [25] through model optimization and per-

sonalization perspectives [28]. Surveys on LLMs for text generation [41] focus on developing

generative LLMs including model architecture choices and training techniques and do not con-

tain gigantic LLMs released in the past two years. Unlike these survey papers, this paper mainly

focuses on recent technologies that employ generative LLMs without training them for synthetic

training data generation and elicit their potential impact on practical adoption.

II. Generating synthetic training data from LLMs

Generative LLM <X>
"what a waste of time and money."

Write a <Y> review for a 
movie. Review:

(Label-conditional prompts)

Generative LLM <Y>The sentiment of the 
movie review <X> is

Target label: negative

"what a waste of time and money."

(a) Synthetic Data Generation

(b) Prompting

Fig 1 A general comparison between using LLMs for label-specific synthetic data generation (a) and label words
prediction (b). In both cases, the LLMs are frozen and a task-related prompt is provided to condition the LLMs for
task adaptation. ⟨X⟩ represents the text data and ⟨Y ⟩ represents the label words.

Figure 1 shows the major difference between using generative LLMs for synthetic data gen-

eration and the predominant Prompting technique [6, 68] that directly applies LLMs for label
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prediction. In short, Prompting requires deploying the LLM model in practice to predict the la-

bel words ⟨Y ⟩ (e.g., negative) from the input text data ⟨X⟩ with additional constraints from the

prompt, e.g., “the sentiment of the movie review” indicates that the context is a movie review and

the label shall describe its sentiment. On the contrary, synthetic data generation requires LLMs to

generate text data ⟨X⟩ based on label-conditional prompts. It is the synthetic data distilled from

LLMs rather than the LLMs themselves that will be applied in downstream applications, enabling

more diverse and unlimited use cases based on synthetic data. Table 1 lists the newly emerging

methods for generating task-specific training data from LLMs proposed in the past two years.

Method Generator Classifier Benchmark
ZeroGen [82] GPT2-XL [67] LSTM[29] SST-2[74], IMDb[49], QNLI[69]

DistilBERT [73] RTE[14], SQuAD[69]
AdversarialQA[2]

ZeroGen+ [21] GPT2-XL[67] LSTM[29] IMDb[49], SST-2[74], Amazon[50]
DistilBERT [73] Rotten Tomatoes[63], Yelp[89]

Subj[62], AGNews[89], DBpedia[89]
SuperGen [52] CTRL[35] COCO-LM[55] GLUE[79]

RoBERTa[46]
GPT-2[67]

FewGen [53] CTRL[35] RoBERTa[46] GLUE[79]
ReGen [86] Condenser[22] RoBERTa[46] AGNews[89],DBpedia[89], MR[63]

NYT[54], Yahoo[89], Amazon[50]
Yelp[89], SST-2[74], IMDb[49]

ProGen [83] GPT2-XL[67] LSTM[29] SST-2[74], IMDb[49], Elec[50]
DistilBERT [73] Rotten Tomatoes[63], Yelp[89]

AttrPrompt [85] ChatGPT[59] BERT[16] NYT[54], Amazon[5]
DistilBERT [73] Reddit[23], StackExchange[23]

MixPrompt [10] FLAN-T5 XXL [12] GODEL [64] NLU++[9],TOPv2[11]
CrossNER [47]

Table 1 Data generation methods. Generator refers to LLMs that are used for synthetic data generation. Classifier
refers to small-scale models that are trained on the synthetic data. These methods are limited to NLP models and tasks.

A. Prompt engineering

Designing an informative prompt is the key to effective data generation with LLMs. A simple and

straightforward approach is to embed the label information in the prompt to refrain LLMs from
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generating label-agnostic data as described in Figure 1 (a). However, due to the limited number

of words in labels and the limited task information in the prompt, the data generated by LLMs

still can be unrelated to the task and lack diversity, limiting the size of the synthetic dataset that

can be generated from the same LLM. As such, more advanced prompt engineering techniques are

expected to circumvent the limitations of traditional ones.

Attribute-controlled prompt. A clear definition for a specific task can be obtained by specifying a

set of attributes. Take News classification as an example, one piece of News article can differ from

another by providing the details of location, topic, text genre and so on. Inspired by this, MSP

[10] employs a mixture of attributes in the prompt template to obtain desired synthetic data. In

AttrPrompt [85], authors show that such attribute-specific prompts can be directly extracted from

ChatGPT and then applied to query ChatGPT for generating attribute-specific data. By expanding

the simple class-conditional prompt with more attribute constraints, we can gather more diverse

synthetic data from LLMs while ensuring relevance to the given task.

Verbalizer. The verbalizer technique was originally proposed to enhance Prompting performance,

where the target label words are expanded with their neighbouring words that hold the same se-

mantic meanings [13, 32]. This strategy can be directly utilized to promote diverse data generation

by expanding the class-conditional prompt into a set of semantically similar prompts. Besides, the

verbalizer values can be extracted from LLMs themselves. For example, MetaPrompt [71] first ob-

tains an expanded prompt from ChatGPT and further applies the enriched prompt to prompt LLMs

for data generation.
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B. Parameter-efficient task adaptation

Parameter-efficient approaches in the era of LLMs generally refer to the tuning methods that only

tune a small set of an LLM’s parameters (e.g., bias terms [4], embeddings or last layer) or an

extra set of parameters that are inserted to LLMs (e.g., Adapters [30, 44], Prompt Tuning [40, 26],

Prefix Tuning [42] and LoRA [31]). In the tuning process, the parameters of the LLM backbone

are not updated and only the small set of trainable parameters are learned on task-specific datasets

to achieve domain adaptation [17]. The advantage of parameter-efficient methods is that they grasp

new task information while retaining powerful pre-trained knowledge. For example, FewGen [53]

demonstrates that by tuning a few set of prefix vectors prepended to the CTRL model (1.6 Billion

parameters) on few-shot datasets, the PrefixCTRL can generate more task-related training data.

Similarly, MSP [10] trains a set of soft prompt embeddings on few-shot task-specific training data

and then applies the trained soft prompts to condition the FLAN-T5 [12] (T5[68] further trained

on instruction tuning datasets) for text generation.

C. Measuring data quality

In ZeroGen [82], authors measured the quality of the generated data from three quantitative per-

spectives: diversity, correctnes, and naturalness. Results suggest that the quality of synthetic

data is lower than real data in terms of the three perspectives. To obtain high-quality synthetic data,

ProGen [83] proposes to incorporate a quality estimation module in the data generation pipeline,

where the firstly generated synthetic data are evaluated by a task-specific model that was trained

on oracle data in advance. Then, the most influential synthetic samples are selected as in-context

examples to prompt GPT2-XL [67] to generate a new set of synthetic data. Similarly, authors in

[18] employ a pre-trained classifier to filter out hard samples from synthetic datasets.
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D. Training with synthetic data

To mitigate noise contained in the synthetic datasets, the implementation of regularization tech-

niques is crucial for stabilizing training with noisy datasets. Innovations like ZeroGen+ [21]

suggest the use of a small weight network trained through bilevel optimization to autonomously

determine sample weights. Additionally, FewGen [53] incorporates a self-supervised training ap-

proach using temporal ensembling [39]. This method has been shown to offer superior perfor-

mance enhancements compared to label smoothing [58] when training downstream classifiers on

synthetic data, highlighting its effectiveness in dealing with the unique challenges posed by syn-

thetic datasets. Other techniques such as gradual annealing [19] also demonstrates to be effective

in enhancing the learning performance on synthetic data.

III. Applications

A. Low-resource and long-tail problems

Low-resource problems generally suffer from the lack of sufficient data and in some cases par-

ticularly impacted by long-tail classes in practice [76]. Traditional research has predominantly

leveraged transfer learning [27, 26] to enhance performance in low-resource settings. Yet, these

methods hinge on the availability of relevant source-domain datasets, which may not always be

accessible. A primary challenge in merging the research directions of synthetic data generation

and low-resource learning tasks is navigating the distribution disparity between real and synthetic

data, as well as optimizing the use of synthetic data in training scenarios. For instance, temporal

ensembling employed in FewGen[53], gradual learning used in CAMEL [19], and the innovative

data selection techniques proposed in [18], all contributed notable performance improvements.
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B. Fast inference and lightweight deployment

Finetuning pre-trained language models on downstream tasks has been the predominant approach

starting from the release of BERT [15]. However, the growing size of these language models, while

enhancing performance, imposes practical burdens on organizations requiring swift inference and

prompt responses. The shift towards synthetic data generation opens up a realm of possibilities for

downstream applications. By generating a curated synthetic dataset, it becomes feasible to train

smaller, less complex models, as demonstrated in [82, 21, 83]. This approach not only facilitates

easier deployment but also ensures faster inference, addressing the critical need for efficiency in

real-world applications.

C. Medical Scenarios

Data augmentation. Synthetic data generation can help some medical tasks that lack sufficient

data to train a strong predictive model. For instance, studies in [61] demonstrated that augment-

ing real datasets with synthetic chest radiograph images generated by latent diffusion models[72]

can enhance classification performance. In medical language processing, Tang et al. (2023) [75]

demonstrated that tailored prompts provided to ChatGPT can yield task-specific synthetic data,

significantly boosting the performance in tasks like biological named entity recognition and re-

lation extraction. Additionally, GatorTronGPT, as explored in Peng et al. (2023) [65], which

involved training GPT-3 from scratch on a dataset amalgamating 277-billion words from English

and clinical texts, exhibited remarkable proficiency in generating synthetic clinical text.

Missing value imputation. Medical data can be sparse in that patients may take different or do

not take some examinations, leading to imbalanced attributes. Missing value imputation (MVI)

methods are helpful in enhancing the density of medical attribute values [45]. Traditional MVI
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approaches typically involve random sampling from specified value ranges, as noted in Luo et al.

(2022) [48], essentially serving as a form of random data augmentation for certain attributes. With

the advent of multi-modal LLMs, Ozbey et al. (2023) [60] demonstrate that in cross-modality

translation tasks, missing images under specific attributes can be effectively imputed using syn-

thetic images generated from diffusion models. Such synthetic data, compared to traditional ran-

dom imputation methods, offer more diverse information, thereby helping to mitigate the issue of

overfitting in attributes with limited data.

IV. Challenges with Synthetic Data and Future Directions

A. Overcoming Data Limitations

Correctness and Diversity. In Section II., we summarized existing approaches for monitoring

the data quality and promoting data diversity in generation. They demonstrated effectiveness but

do not entirely solved the problem. The challenge of ensuring the quality and accuracy of the

generated data still remains profound. As an inherent nature, LLMs may inadvertently propagate

inaccuracies or biases present in their pre-training data [43, 38], leading to outputs that may not

always align with factual or unbiased information. Additionally, the intra-class and inter-class data

diversity and domain representativeness are a concern, especially in specialized or niche domains.

Hallucination. Synthetic data generated by Large Language Models (LLMs) can sometimes be

not only inaccurate but completely fictitious or disconnected from reality, a phenomenon often

referred to as ”hallucination” [34, 90]. For instance, image generation based on specific captions

can result in outputs with unrealistic features, such as a soldier depicted with three hands, as noted

in the studies [19] for cross-modality generation. This hallucination issue is frequently linked to the

quality of the training data, particularly if it contains inaccuracies that the LLM then overfits during
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the pre-training phase. Therefore, there’s a pressing need to develop new, more effective strategies

to detect and address hallucination [81] in the context of synthetic data generation, ensuring the

reliability and authenticity of the output.

B. Data privacy and ethical concerns

While synthetic data offers a way to leverage the power of AI without compromising individual

privacy[20], the ethical implications of using synthetic data, particularly in sensitive domains,

raise questions about privacy and consent, as the boundaries between real and synthetic data blur.

Research in [8] demonstrates that it is possible to extract specific information from the datasets

used in training LLMs. Consequently, there exists a risk that synthetic data generation might

inadvertently reveal elements of the underlying training data [51], some of which might be subject

to licensing agreements. Moreover, uploading data to LLM APIs also remains a data privacy

concern. For instance, employing LLMs in clinical text mining poses significant privacy risks

related to uploading patient information to LLM APIs [75]. This challenge necessitates a careful

balance between leveraging the benefits of AI and respecting the confidentiality and privacy of

individuals, particularly in healthcare and other sensitive areas.

V. Conclusion

This paper reviews recent research on utilizing generative LLMs for synthetic data generation.

With a focus on gigantic LLMs which are fixed for inference, we summarize recent generation

methods for synthesizing training data. Additionally, we introduce some practical training tech-

niques for training downstream models on the synthetic data presuming the data quality is inade-

quate. Then, we introduce some application scenarios extending from general low-resource issues
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to more specialized medical contexts. Finally, we conclude by spotlighting the significant ongoing

challenges in the realm of synthetic data and proposing potential avenues for future research.
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