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Abstract

Vehicle routing is an area of both practical and theoretical importance. Unfortunately,
routing problems are notably difficult to solve since almost all vehicle routing
problems are NP-hard. However, we have discovered that when reduced to its
simplest form, solving a single vehicle routing problem, without capacity and time
window constraints is quite similar to the Traveling Salesman Problem (TSP). In this
paper, we studied various well-known traveling salesman heuristics such as the
Nearest Neighbor, the Space-Filling Curve, and the 2-Opt. In addition, we proposed a
hybrid that can trade off the quality of a solution with computing time. The input to
any TSP heuristic is the all-pairs shortest paths of the points to be visited. We have
found the Floyd-Warshall algorithm, a traditional method to compute all-pairs
shortest paths, to be too time-consuming, especially for large data sets. Hence, in this
paper, we also proposed an algorithm that generates approximate all-pairs shortest
paths. Our experimental results showed that our algorithm’s errors are quite small.
More importantly, these estimated shortest paths information is sufficient for TSP
heuristics to produce good tours especially for geometric graphs like road networks.
In addition, our approximate all-pairs shortest paths also allowed pre-computation,
thus speeding up shortest path computations tremendously. Finally, our algorithms
were implemented and integrated into a vehicle routing application that can be run on
a PC.

1 Introduction

Vehicle routing [1,2] is an area of both practical and theoretical importance. From the
practical point of view, good routing procedure can save the industry millions of
dollars per year through cost-effective movement and delivery of goods. In addition,



effective routing can increase productivity, improve operations and make the job of
the dispatcher easier.

However, routing problems are notoriously difficult to solve since almost all
routing problems are NP-hard. One must consider both the nature of a particular
routing problem and the environment in which the solution of the problem is being
used. Some of such considerations include fleet size, vehicle and crew cost, number of
routes run daily, etc.

These considerations, unfortunately, have turned the theoretical analysis of the
performance quality of routing problems into a non-trivial task. However, the essence
of most variations of routing problems is to minimize the distance-related cost. Hence,
in this paper, we focus on achieving this fundamental objective.

We have found that when reduced to its simplest form, solving a single-
vehicle routing problem is quite similar to solving the classical Traveling Salesman
Problem (TSP). We conducted experiments on several popular TSP heuristics, namely
Nearest Neighbor (NN), Space-Filling Curve (SP), and Nearest Neighbor improved
by 2-Opt (NN-2Opt). We discovered that NN and SP were able to generate tours
rather quickly but at the expense of the quality of results. We also found that although
the 2-Opt heuristic generates good tours, it takes too long for it to be useful in real
world applications. This led to our proposal of a new heuristic that is able to trade-off
between the quality of a solution and computing time.

In order to use any TSP heuristic, the first step is to locate the all-pairs shortest
paths among points to be visited. However, current all-pairs shortest paths are too
slow. Hence, we propose a clustering technique that can speed up the computation of
all-pairs shortest paths; and by performing some pre-computations, we can achieve
further speed-ups.

Finally, the programs written specially for this paper are in Visual C++ and
the CPU times recorded are in seconds on 486-DX 100 with 16 Mbytes of extended
memory.

2 Comparison of TSP Heuristics

We conducted tests on three of the most popular heuristics for TSP, namely the
Nearest Neighbor (NN), the Space-Filling Curve (SP), and the Nearest Neighbor
improved by 2-Opt (NN-2Opt) to analyze their performances in terms of tour lengths
generated as well as their computation times. Table 1 is a summary of the results. For
more details of these heuristics, please refer to [3,4].

Tour Length
(% overNN-2-Opt)

Tour Generation Time (s)

Heuristic Name NN SP NN-2Opt NN SP
Problem Size (pt)
100 123.76 130.58 7 1 1
200 121.55 123.45 50 1 1
500 117.50 121.60 946 3 1
800 118.00 125.30 3400 8 1
1000 117.70 120.20 6536 12 1

Table 1   Tour Lengths and Generation Times Produced by TSP Heuristics

The NN-2Opt heuristic produced the shortest tour length in all test cases.
However, we found it too time-consuming, taking O(n3) time. In contrast, the Space-



Filling Curve technique is very fast, taking just O(nlogn) time. But, the generated tour
lengths using SP are relatively poor, even losing out to the NN heuristic for test
problem sizes of up to 1000 points. Moreover, the gain in tour generation time using
SP over NN is but a matter of a few seconds, even for problems with 1000 points.

3 Partitioning Using NN-2Opt Heuristic

3.1 Simple Partitioning-NN-2Opt Heuristic

We used the “divide and conquer” technique to reduce the computation time of NN-
2Opt heuristic. Suppose all the points to be visited are enclosed in a rectangle. This
rectangular-pointed coverage is then divided into n smaller identical rectangular
regions. A partial tour through all the points within each sub-region is constructed
using NN-2Opt heuristic. All the partial tours in each region are then linked up. The
results revealed that inter-partial tour links improved when the 2-Opt heuristic was
implemented (See Figure 1).

Figure 1   Simple Partitioning-NN-2Opt Heuristic

We observed that the simple Partitioning-NN-2Opt heuristic has a tendency to
yield very bad tours when most pairs of end-points of the partial tours are facing away
from one another. Figure 2 shows how wrong orientations of partial tours will result
in lengthy inter-partial tour links.

Figure 2   Poor Partitioning-NN-2Opt Heuristic

3.2 Improved Partitioning-NN-2Opt Heuristic

The nature of the Space-Filling Curve technique is that it recursively visits each of the
consecutive quadrants of a square in either the clockwise or anti-clockwise direction.
This means that the points are visited in either one of these directions. We can use this
property of the space-filling curve to guide the orientation of each partial tour so that



all pairs of endpoints of each partial tour will face inwards. This way, we can keep
inter-partial tour link lengths to the minimum, thus reducing the overall tour length.
Figure 3 illustrates how the poor tour shown in Figure 2 can be improved by using the
SP heuristic to orientate each partial tour.

Figure 3   Improved Partitioning-NN-2Opt Heuristic

Basically, our Partitioning-NN-2Opt Heuristic consists of the following 4
main steps:

(i) Dividing the area enclosing the points to be visited into n rectangular
partitions (where n should be a multiple of 2). This is followed by a grouping
of these points into their respective partitions based on their positions.

(ii) Applying the Space-Filling Curve technique to each partition of points so as to
guide the order of the visitation of points such that the endpoints of each
partial tour all face toward their respective centers.
Some of the partitions will lie in odd-numbered columns/rows while others lie
in even-numbered columns/rows. The orientation of the space-filling curve
used for a particular partition will then depend on whether it lies in an
even/odd numbered row and column. An example is shown in Figure 4 where
if the partition lies in an even numbered row and column, the order of the
visitation of points will be based on their position on a space-filling curve with
endpoints facing North-west.

 odd   even odd     even ..
odd
Even
Odd
Even
...

Figure 4   Different Orientations of Space-Filling Curve

(iii) Applying NN-2Opt heuristic to all the points in each partitioned region to
construct a partial tour.

(iv) Linking up all the endpoints of each partial tour to form a complete tour and
using the 2-Opt heuristic to improve the inter-partial tour links.

SP Curves of different orientations



3.3 Time Complexity

When a graph of n points are to be visited and these points are well distributed into m
partitions, grouping these points into m partitions will take O(n) time. Applying the
Space-Filling Curve technique to orientate the partial tours in all partitions takes
O(nlogn/m) time. Using the NN-2Opt heuristic to form m partial tours, however, takes
O(n³/m²) time. Additionally, improving inter-partial tour links using the 2-Opt
heuristic will take another O(m³) amount of time. Thus, the running time of the
Partitioning-SP-NN-2Opt heuristic would be

O( max { n, n log n/m, 
n³/m², m³ } ).

Hence, we see that a time complexity of O(n1.8) is achievable if we have n0.6

partitions.

3.4 Experimental Results

In this section, we analyze the partitioning-NN-2Opt heuristic, the Partitioning-SP-
NN-2Opt heuristic and the NN-2Opt heuristic in terms of their running times and
generated tour lengths.

We conducted an experiment in which each heuristic was run with different
sizes of test problems. The results are summarized in Tables 2 and 3. Table 2
tabulates the tour lengths while Table 3 tabulates the tour construction times needed
by the various heuristics. To facilitate analysis, only the averages of the tour lengths
and tour generation times are being shown. All tour lengths are expressed as a
percentage over the corresponding tour lengths generated by NN-2Opt.

Tour Length (% over NN-2Opt)
4 Partitions 8 Partitions (Data Size)0.6 Partitions

Heuristic
Name

Partition-NN-
2Opt

Partition-SP-
NN-2Opt

Partition-NN-
2Opt

Partition-SP-
NN-2Opt

Partition-NN-
2Opt

Partition-SP-
NN-2Opt

Data Size
100 120.58 112.16 121.82 115.76 121.60 120.94
200 117.00 111.73 121.95 115.93 122.78 118.78
500 111.25 104.98 115.25 110.53 126.70 123.50
800 112.97 106.50 112.73 111.50 127.63 123.67
1000 108.90 104.30 110.90 110.00 123.90 119.10

Table 2   Lengths of Tours Constructed with Different Number of Partitions

Tour Generation Time (s)
4 Partitions 8 Partitions (Data Size)0.6 Partitions

Heuristic
Name

NN-
2Opt

Partition-
NN-2Opt

Partition-
SP-NN-

2Opt

Partition-
NN-2Opt

Partition-
SP-NN-

2Opt

Partition-
NN-2Opt

Partition-
SP-NN-

2Opt
Data Size
100 7 1 1 1 1 < 1 < 1
200 50 3 3 1 1 < 1 1
500 946 46 47 13 13 1 2
800 3400 208 212 53 49 3 4
1000 6536 357 364 97 93 3 5

Table 3   Tour Generation Times Needed with Different Number of Partitions



Experimental results show that the Partitioning-SP-NN-2Opt heuristic
consistently produces better tours than the Partitioning-NN-2Opt heuristic. The extra
time taken by the Partitioning-SP-NN-2Opt heuristic use the SP technique to orientate
all partial tours is very small since the SP technique needs O(nlogn) running time.
Thus both heuristics take almost the same time.

We also observed that the 4-Partitioning-SP-NN-2Opt heuristic may take a
slightly shorter time than the 4-Partitioning-NN-2Opt heuristic for large test data. A
plausible reason may be because the usage of the SP technique in the Partitioning-SP-
NN-2Opt heuristic caused the tour to be reasonably good, thus reducing the number of
possible 2-Opt swaps needed to reach a 2-Opt optimum.

The results also showed that as the number of partitions used approaches n0.6

(where n is the number of points visited), the tour construction time taken gets shorter
while the tour quality becomes poorer.

Finally, for a large data set (e.g. 1000 points), the 4-Partitioning-SP-NN-2Opt
heuristic has generated rather good tours – approximately 4.3% worse than the NN-
2Opt heuristic – and managed to save over thousands of seconds of computation time.

4 Approximate All-Pairs Shortest Paths

In this section, we propose an algorithm which can compute approximate shortest
distances between all pairs of points in quadratic time for sparse graphs.

Our algorithm uses the “divide and conquer” approach to speed up running
time. Points to be visited are first grouped into clusters. The all-pairs shortest paths
among the points within each cluster as well as the all-pairs shortest inter-cluster
paths are computed. The shortest path between any two points in two different
clusters is assumed to be via their respective shortest inter-cluster path. Thus,
approximate all-pairs shortest paths can be computed.

An outline of this approximation algorithm is described below:

I. Construct an edge table to hold direct edge information between points (similar to
the first step in Floyd-Warshall’s Algorithm).

II. Construct x Minimum Spanning Trees (spanning forest of x trees) to group the
points to be visited into x clusters.

III. Use Floyd-Warshall’s algorithm to compute all-pairs shortest paths among all the
points in each cluster.

IV. Compute inter-cluster direct shortest paths (if one exists).
V. Use Floyd-Warshall’s algorithm to compute inter-cluster shortest paths among all

pairs of clusters.
VI. Compute approximate all-pairs shortest paths among all the points using

information from intra-cluster shortest paths and inter-cluster shortest paths.

4.1 Time Complexity

Let us suppose that there exist n points and e edges in a graph. These n points are
divided into n/s clusters, each containing an average of s points. Building MSTs take
O(e log n) time. Each Intra-Cluster All-Pairs Shortest Path computation takes O(s³)
time. Since there are n/s clusters, it will take O(ns²) time. All Inter-Cluster Direct



Shortest Paths computation take  O(e) time, while Inter-Cluster All-Pairs Shortest
Paths computation take O((n/s)³) time, and the Approximate All-Pairs Shortest Paths
computation take O((n/s) * (n/s – 1) * s²) time. Thus, the running time of the
Approximation All-Pairs Shortest Paths Algorithm is

O( max { e log n, ns², e, (n/s)³, n² } ).

4.2 Experimental Results

4.2.1 Test Problems

We have carried out our experiments on two types of graphs, namely random and
geometric graph.

In a random graph, edges between all pairs of points will be arbitrarily given a
probability of existence. If we want a dense random graph, we will set the allowed
probability of existence p to be high so that all edges with probability of existence less
than p will be considered present. Conversely, for a sparse random graph, we will set
p to be low.

In a geometric graph, only edges within certain length will be considered
present. We also assume the area enclosing the points to be visited to be a unit square
(through suitable scaling).

The bounding length is defined as:

)*int( ΠsPoofNoTotal
EdgesAdjacentofNoExpected

An edge is present if its length between the 2 points is less than the predefined
bounding length. If we want a dense geometric graph, we will set its expected number
of adjacent edges to be high. Conversely, for a sparse geometric graph, we will set it
to be low.

4.2.2 Estimated Shortest Paths Quality Analysis

In this sub-section, we compare the quality of the all-pairs shortest path lengths
created using our approximation algorithm to those created by Floyd-Warshall’s
algorithm.

Tables 4 and 5 give the total lengths of the all-pairs shortest paths for 4
differently sized sets of data for random graphs. For each data size that is being tested,
the density of graphs vary, ranging from sparse (p = 0.3) to dense (p = 0.8).

Tables 6 and 7 give the total lengths of the all-pairs shortest paths for 4
differently sized sets of data for geometric graphs. For each data size, graphs of
increasing density (represented by increasing number of expected number of adjacent
edges) are being tested.

Probability of Edge
Existence

Total Length Error
 (%)

Length Error Per Edge
(%)

Generation Time Saved
(S)

0.3 48.37 0.0048 25
0.5 28.05 0.0028 33
0.8 8.05 0.0008 31

Table 4   Random Graph, 100 Points



Probability of Edge
Existence

Total Length Error
 (%)

Length Error Per Edge
(%)

Generation Time Saved
(S)

0.3 49.85 0.0012 220
0.5 18.86 0.0005 279
0.8 7.10 0.0002 201

Table 5   Random Graph, 200 Points

Expected # of Adjacent
Edges

Total Length Error
 (%)

Length Error Per Edge
(%)

Generation Time Saved
(S)

7 46.70 0.00467 22
10 19.32 0.00193 22
20 20.92 0.00209 23
50 12.95 0.00130 23

Table 6   Geometric Graph, 100 Points

Expected # of Adjacent
Edges

Total Length Error
 (%)

Length Error Per Edge
(%)

Generation Time Saved
(S)

10 33.03 0.00083 200
20 24.94 0.00062 228
50 25.28 0.00063 227

100 19.77 0.00049 215

Table 7   Geometric Graph, 200 Points

Note that the Total Length Error % is given by the expression below:

(Approx algo total path length -  Floyd - Warshall algo total path length) 
Floyd - Warshall algo total path length

 100%

% of Length Error per Edge = Total Length Error %
( Total no of points in the graph) 2

Time saved = Floyd-Warshall Time – Approximation Algo Time

4.2.3 Observations

� The length error percentage per edge gets smaller as the problem size increases.
This shows that the rate of error increase with the problem size is very slow.

� As the problem size increases, the gain in computation time of our approximation
algorithm over Floyd-Warshall’s algorithm increases.

� We observed that for most sizes of test problems, the total length error percentage
decreases as the density of the graphs increase. This is because a denser graph
means there will be more direct edges present between the points. Thus, a denser
graph is more immune to the mistakes made by the approximation algorithm,
since most shortest paths are the direct edges which lengths are already available.



� Our approximation algorithm has produced a good estimate of all-pairs shortest
paths, incurring an error of < 0.03% per edge for random graphs and 0.01% per
edge for geometric graphs.

� Finally, a plausible reason why our approximation algorithm gives better
estimates for geometric graphs than for random graphs may be due to the lower
probability of the occurrence of bad clustering.

4.3 Tour Length and Time Analysis

Most TSP heuristics assume an underlying complete graph connecting points. To
simulate the complete graph model in a sparse graph, we need to compute the all-pairs
shortest paths between all pairs of points. However, using Floyd-Warshall’s algorithm
for such computation is very time-consuming. Since not all pairs of shortest paths will
be used in the final construction of the shortest tour, our approximation algorithm can
be used to provide a quick approximation of the shortest paths between all pairs of
points. Furthermore, our approximation algorithm has shown to give a good
estimation of most shortest paths and it should more than sufficiently be able to
produce the necessary information for the TSP heuristic to generate a reasonably good
tour.

After the order of the visitation of points is decided by the TSP heuristic, we
can then use Dijkstra’s algorithm to generate the actual tour, ie use Dijkstra’s
algorithm to compute the actual shortest path and intermediate points between
consecutive pairs of points in the tour. Since the order of the visitation of points is
designed to form a short tour, we can safely assume that most inter-point paths are
reasonably short. Thus, once the order of the visitation of points is known, the
computation time of an actual tour length will be very short as well.

Next, we study the quality of the tours constructed by the various heuristics
when they are given the approximate and actual all-pairs shortest paths information.
We tested problems of different sizes and densities on the various TSP heuristics.
Tables 8 to 11 are summaries of our experimental results. This experiment involved
two types of graphs, namely geometric and random. The heuristics implemented
include the Nearest Neighbour (NN), the Space-Filling Curve (SP), NN with 2-Opt,
and partitioning using SP in conjunction with the NN-2Opt for post optimization (see
Foo (1996) [5]).

Tour Length Difference (%)
Heuristic Name NN SP NN-2Opt Partition-SP-NN-2Opt

Probability
0.3 2.32 0 3.84 5.79
0.5 3.26 0 1.86 8.09
0.8 6.60 0 0.84 2.43

Table 8   Tours Generated from a Random Graph with 100 Points



Tour Length Difference (%)
Heuristic Name NN SP NN-2Opt Partition-SP-NN-2Opt

Probability
0.3 -1.34 0 2.66 4.92
0.5 -2.31 0 -2.90 1.31
0.8 3.42 0 0.38 5.63

Table 9   Tours Generated from a Random Graph with 200 Points

Tour Length Difference (%)
Heuristic Name NN SP NN-2Opt Partition-SP-NN-2Opt
Expected # of

Adjacent Edges
7 -12.71 0 1.43 -1.50

10 -4.25 0 -2.77 1.79
20 0 0 0.32 3.16
50 0.59 0 -1.37 0

Table 10   Geometric Graphs with 100 Points

Tour Length Difference (%)
Heuristic Name NN SP NN-2Opt Partition-SP-NN-2Opt
Expected # of

Adjacent Edges
10 -0.02 0 0.60 1.62
20 -10.15 0 0.08 -0.68
50 -7.33 0 -0.12 2.77

100 -7.09 0 -1.81 0.52

Table 11   Geometric Graphs with 200 Points

From the above tables, we note that even when our approximation algorithm
makes mistakes in the approximation of shortest paths especially for sparse graphs,
the corresponding tour length difference remains quite small. This is because the
errors , made by the approximation algorithm in estimating shortest path distances
usually involve points which are far apart. Since all TSP heuristics seek to minimize
the final tour length, most of the path lengths between points are short. Thus, the
wrong estimation of shortest path lengths will not affect the final tour construction too
much.

Based on our results, we observed that better tours can be generated using
estimated shortest paths information for geometric graphs than for random graphs.
This may be due to the better approximation information generated for geometric
graphs than for random graphs.



5 A PC Vehicle Routing Application

Based on the algorithms we have studied in the earlier sections, we have built a PC
Vehicle Routing Application using Singapore’s road network. Our road network
comprises of all major roads and minor roads in Singapore. The total number of
vertices (junctions) in our graph is about 16000. A screen shot of the system is given
in Figures 5 (a) and (b) below:

Figure 5 (a) Zooming In

Figure 5 (b) TSP routing in the application



6 Conclusion

In this paper, we experimented with various well-known traveling salesman heuristics
and proposed a hybrid that can trade off the quality of solution with computing time.
The input to any TSP heuristic is the all-pairs shortest paths of the points to be visited.
The traditional method of using Floyd-Warshall’s Algorithm to compute all-pairs
shortest paths is too time-consuming, especially for large data sets. Hence, we
proposed an algorithm that generates the approximate all-pairs shortest paths. Our
experimental results showed our algorithm’s error to be quite small. More
importantly, these estimated shortest paths information are sufficient for TSP
heuristics to produce good tours especially for geometric graphs such as road
networks. Our approximate all-pairs shortest paths also allow pre-computation which
can speed up the shortest path computation tremendously. All these algorithms are
implemented and integrated into a vehicle routing application that can be run on a PC.
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