
1

Consistent Global States of Distributed Mobile Computations*

Zhonghua Yang, Chengzheng Sun, Abdul Sattar, and Yanyan Yang

School of Computing & Information Technology
Griffith University, Brisbane,

Qld 4111 Australia
Email: {z.yang, c.sun, a.sattar, yyang}@cit.gu.edu.au

* The early version of this paper appeared in the Proceedings of The 1998 International Conference on Parallel and
Distributed Processing Techniques and Applications(PDPTA'98). Las Vegas, Nevada, USA. July 13-16, 1998.

Abstract
In this paper, we consider one of fundamental issues in
distributed systems, that is, calculating consistent global
states, or consistent distributed snapshots. Two
algorithms of distributed snapshots are presented using
a two-phase-cut approach. These two algorithms adopt
a two-tier system model, separating the system into two
parts: a resource-rich network consisting of stationary
hosts and the wireless networks consisting of resource-
poor mobile hosts and supporting stationary hosts. The
algorithms rely on the resource-rich network to take an
active role and substantially undertake the
responsibility for distributed snapshots and for
calculating consistent global states, The two-phase-cut
algorithms employ an efficient message passing
mechanisms with low overhead. How the specific
mobile issues identified in the paper are handled is also
discussed.

1. Introduction

A distributed system consists of several processes
that execute on geographically dispersed computers and
collaborate via message-passing with each other to
achieve a common goal. In a traditional distributed
system all hosts are stationary. Recent advances in
portable computers with wireless communication
interfaces and satellite services have made it possible for
mobile users (mobile computers) to perform distributed
applications and to access information anywhere and at
anytime. This new computing environment where some
hosts are mobile computers connected by wireless
communication networks and some are stationary
computers connected by a fixed network is called a
distributed mobile computing environment. Thus, a
distributed mobile system can be considered as a special

kind of general distributed systems where some of its
hosts are not fixed in their location. This new paradigm
is distributed mobile computing. Clearly, a mobile
system is not necessarily a distributed system, and
mobile computing is not necessarily distributed
computing.

A distributed mobile system is characterized by the
mobility and poor resource of mobile hosts. These two
distinct features raise various new issues and constraints
not faced in a stationary distributed system [16,15]. In
this paper we identify the following four issues and
discuss their implications when designing algorithms in
distributed mobile setting.

Issue 1. Mobile connectivity is highly variable in
performance and reliability (e.g. communication
delay), and the wireless communication channels
used by the mobile hosts have a lower bandwidth
than the wire-line, fixed communication links
between stationary systems.

Thus, the burden of computation and
communication load cannot be distributed equally
among stationary and mobile hosts.

Issue 2. Mobility is inherently vulnerable. The disk
storage is potentially unstable for logging or
recording of the states. For example, a laptop is
accidentally physically dropped or stolen; or the
data stored on a mobile host's disk are totally wiped
out by some security systems.

Thus, the state recording and message logging
cannot rely on the mobile host's storage, and the
saved local states and message logs cannot be

2

assumed to be immediately available from the
mobile hosts when it is required.

Issue 3. Mobile hosts are often disconnected from the
rest of the system. A disconnected mobile host can
neither send nor receive messages, but can continue
an application execution by using its local data and
cashed shared data [9]. Disconnected operations
become a regular feature in mobile computing.
Disconnected operations in a mobile environment is
distinct from failure in that they are voluntary in
nature and a mobile host can be required to execute
a disconnection protocol before its detachment.

Thus, The algorithms have to accommodate this
voluntary disconnection and make progress during
the disconnection of mobile hosts.

Issue 4. The mobility implies that a mobile host may
change its location during distributed computation.

Thus, the location management or search for the
targeted mobile host becomes an indispensable task
of any distributed protocols/algorithms.

All these new issues and challenges have made those
algorithms devised for traditional distributed systems not
applicable. In this paper, we consider one of
fundamental issues in distributed computations:
calculating the consistent global states, which
underlying many distributed applications. Calculating
global states is sometimes called taking distributed
snapshots (a distributed snapshot returns a global state).
A large class of important problems in distributed
systems can be cast as periodically calculating consistent
global states and executing some reactions based on the
global state that have been taken. Examples of such
problems include distributed debugging and monitoring,
fault-tolerant and rollback-based recovery, detection of
state properties such as a deadlock and termination. This
paradigm requires consistently recording (often,
periodically recording) the global state of a distributed
computing. A global state is a collection (union) of the
local states, one from each process of the computation,
recorded by a process. The global state is said to be
consistent if it looks to all the processes as if it were
taken at the same instant everywhere in the system.
There have been many papers on finding consistent
global states of a distributed application [17]. However,
the constraints imposed by the mobility and poor-
resource of mobile hosts as outlined above complicate
the design of distributed algorithms and applications,
and make them inappropriate for distributed mobile
computing environments. In this paper, we present two
distributed algorithms for constructing a consistent

global state of distributed mobile applications. Our
algorithms tackle the issue 1 by adopting a two-tier
system model: a stationary-tier and a mobile-tier. In this
model, the stationary tier (hosts) is required to play a
key and guiding role by undertaking the major
communication and computation of the algorithms and
store the local states of all the mobile hosts. On the other
hand, the mobile-tier (hosts) plays only the passive role
and undertakes the communication and computation
only when necessary. The local states recorded by the
mobile hosts are immediately sent to the supporting
stationary hosts and is not kept in the mobile hosts, as a
solution to the issue 2. Our algorithms allow the
voluntary disconnected operations simply by requiring
the mobile host to take a local snapshot and send to its
supporting stationary host before disconnection (the
issue 3). Finally, our algorithms incorporate a simple
handoff protocol to handle the changing of mobile host's
location as a solution to the location management issue
(the issue 4). As analyzed in the paper, our algorithms
are designed to be very message efficient, adding a light
burden on the mobile host.

The rest of this paper is organized as follows. In the
next section we present a two-tier mobile system model
based on a configuration of the system having a fixed
network part and a wireless network part. In Section 3,
two Two-Phase-Cut algorithms for distributed snapshots
are presented. The algorithms are analyzed and shown
that they are message efficient. The approach to tackling
the mobility issues is discussed in Section 4 and 5. Some
related work is remarked in Section 6. Finally we
conclude the paper in Section 7.

2. System Model

The system model that we adopt in this paper is
adapted from the architectures used in [4,8].

A distributed mobile system is described as a two-tier
model consisting of a set of mobile hosts (MHs) and
stationary hosts. A mobile host is a host which is able to
move (can change its location with time) while retaining
its network connections [8]. A stationary host, as its
name implies, does not change its location and
connects/communicates to other stationary hosts via a
wired fixed network. We do not require that the fixed
network is completely connected, but the underlying
protocols allow a stationary host to communicate with
any other stationary host. The communication channels
are not required to be FIFO. Some stationary hosts also
serve as an infrastructure computer to support
communication between mobile hosts and is called a
mobile support system (MSS). A MSS communicates
directly with the MHs through a wireless channel. A

3

MSS and all the MHs it supports form a cell or wireless
cell, which is generally a logical or geographical area
covered by a MSS. The wireless medium allows a MSS
to communicate with all the MHs within its cell with a
single message transmission. For simplicity of
presentation, we assume that all nodes in the fixed
network are the MSS. All MHs that have identified
themselves with a MSS belong to its cell and are
considered local to the MSS. A MH may belong to only
one cell at any given time. A MH can communicate with
other MHs and MSSs only through the MSS to which it
belongs. The communication between a MSS and an

MH needs not be FIFO, either. All communications in
the fixed network are assumed reliable; the
communication primitives of multicast or broadcast are
not available. Communications within wireless cell tend
to be error prone and not very reliable, but a simple
protocol could be devised to make wireless
communication reliable. In the presentation below,
therefore, we focus on the consistent snapshot
algorithms, and will also make an assumption of reliable
communication within wireless cell. Message
transmission delays are unpredictable but finite. A two-
tier distributed mobile system is shown in Figure 1.

4

In this system model, we make an architectural
distinction between the resource-rich fixed network and
the resource-poor tier. As described in the next section,
our algorithms take this architectural advantage to tackle
the mobile issues by relying on the resource-rich
network to take an active role and to substantially
undertake the responsibility for distributed snapshots
and for calculating consistent global states. On the other
hand, the mobile-tier (hosts) plays only the passive role
and undertakes the communication and computation
only when necessary.

A distributed application consists of a set of
processes {p1, p2, …, pn} that run on different hosts of
the distributed mobile system. In the following, the term
host, node and process will be used interchangeably.
The processes communicate with each other via
message-passing. The system does not have a global
clock and global time is not available to applications.

Each process in the system executes a sequence of
events that brings the process from one state to another.
There are three kinds of events of interest in a system,
send, receive, and internal events. We denote xth event
in process pi by ei

x. The occurrences of these events are
governed by the happen-before relation [10], denoted by
→, which is defined below.

Definition 1 Event ei
x happen-before ej

y, denoted by ei
x

→ej
y, if (1) i = j and x < y, or (2) ei

x is the sending of a
message and ej

y is the corresponding receiving of that
message, or (3) there is an event ei

z such that ei
x →ei

z

and ei
z →ej

y.

The causality between events as defined by happen-
before relation can be used to describe mutually
consistent local states of a distributed system. A set of
local states is said to be mutually consistent if it looks to
all the processes as if it were taken at the same instant
everywhere in the system. However, since the global real
time is not available in distributed systems, we cannot
rely on setting a common time instant to determine the
consistency of local states. Instead, we use the causality
between events to obtain the desired consistency. But
first we give a formal definition of a global state and its
consistency.

For each process pi, the local state, LSi
 of pi at a given

time is defined by the local context of the distributed
application. The global state of a distributed mobile
computing is a collection of all the local states. More
formally,

Definition 2 A global state of a distributed mobile
computation is a set of local state, GS= {LS1, LS2, …,
LSn}, each per process in the computation.

Note that in a distributed system only local states of
processes are (locally) observable at a given time.
Therefore, the consistency has to be considered with
respect to the local states of processes. For two
communicating processes, pi and pj, and pi has sent a
message mij to pj, their local states (LSi and LSj) are
inconsistent if and only if mij ∉ LSi and mij ∈ LSj. We
denote by inconsistent (LSi, LSj) the set of message-
receive events in LSj without the corresponding send-
events in LSi. In other words, if a message-receiving
event is included in a local state LSj of the receiving
process but the corresponding send-event is not included
in a local state LSi of the sending process, then LSi and
LSj are clearly not consistent. Thus, we have:

Definition 3 A global state GS = {LS1, LS2, …, LSn}, is
consistent if, and only if, ∀ i ∀ j: inconsistent(LSi, LSj) =
∅ .

On the other hand, it is possible that a message is
recorded in a local state of the sending process but has
not been included in the local state of the receiving
process. In this case, the message is held in the channel
between the two communicating processes, and the
message is a transit message. The set of messages in
transit between two processes is denoted by transit (LSi ,
LSj).

Definition 4 A global state GS = {LSi , LS2, …, LSn } is
transitless if, and only if, ∀ i ∀ j: transit(LSi, LSj) = ∅ .

Definition 5 A global state is strongly consistent if, and
only if, it is consistent and transitless [6].

This last property means that, for any pair (LSi, LSj), a
message mij is received in LSj if, and only if, it is sent in
LSi.

In the following, we assume that the local state
recorded by a process includes the channel state (the
messages held in the channel) and will not separately
consider the recording of the channel states.

In addition, we do not consider issues related to
process failure. Like the most (if not all) of distributed
algorithms that calculate the consistent global states, our
algorithms, as described in the next section, are not
designed to accommodate process failures that occur
during the algorithm execution.

5

3. Two Phase Cut Algorithms

In this section, we present two algorithms for finding
consistent global states of a distributed mobile
computation, called two phase cut algorithms. As
indicated earlier, the algorithms deal with mobility
issues mentioned above and rely on the fixed MSS
systems to take responsibility for initiating the snapshot,
for guiding the progress of the snapshot process, and for
constructing the consistent global states from collected
local states. As a result of adopting the two-tier system
model, the communication and computation of mobile
hosts is minimal.

In both algorithms, three sets of messages, Prepare,
Cut, and Resume, are sent respectively during the two
phases: from the initiator to all processes, back to the
initiator, and back to processes. The sending of
application messages is disabled during taking snapshot.
These messages take the form of (Prepare, {snpno, MSSid
}), (Cut, {snpno, MSSid}), and (Resume, {snpno, MSSid}),
where the pair {snpno, MSSid} denotes the snapshot
number initiated by MSS whose process id is MSSid.

3.1. Prepare-and-Cut Algorithm

The first Two-Phase-Cut algorithm is a Prepare-and-
cut algorithm, so named because of two distinct phase
messages Prepare and Cut. The messages from the
initiator are indirectly sent to the other MSS along paths
of length d or less, where d is the diameter of the fixed
network. Recall that we do not assume that the network
is completely connected, and we also do not assume that
the broadcast is available.

We assume that the snapshot is initiated by one of
MSSs. Typically, the initiator is a monitor or
coordinator process in the system. Its designation is
application dependent. In this paper, we simply assume
that there exists an initiator that initiates a distributed
snapshot.

The following procedures prescribe the actions taken
by the initiator, the MSS, and MHs respectively

Actions taken by the Initiator:

1. The initiator executes a StartCut event (to signify
the beginning of a snapshot) and then sends Prepare
to each other stationary process (MSS); It also sends
Prepare to all its own MHs.

2. Waits for Cut messages from all processes including
its MHs.

3. After receiving Cut from all processes, immediately
records its state, and then sends Resume to all other
MSS processes.

Actions taken by the responding MSS:

1. Upon receiving Prepare, disables the sending of
application messages (including the forwarding of
application messages to its MHs), and records its
state.

2. Send Prepare to all MHs within its cell, and wait
for Cut from all its MHs;

3. After receiving Cut from all its MHs, sends Cut to
the initiator, and then wait for Resume from the
initiator.

4. Upon receiving Resume, re-enables the sending of
application messages and sends Resume to its MHs
who will re-enables the sending of application
messages.

Actions taken by the mobile host:

1. Upon receiving Prepare from its MSS, disables the
sending of application messages and records its
state,

2. Sends Cut to its MSS, and then wait for Resume
message from its MSS.

3. Upon receiving Resume, re-enables the sending of
application messages.

4. Sends the local state to its MSS.

After each host has taken snapshots, the initiator can
collect them to form a global state that is consistent by
the algorithm.

Theorem 1 The global state collected by the initiator
after the Prepare-and-Cut Algorithm completes is a
consistent global state.

Proof. The key here for a global state to be consistent
is to show that if an event of the message-receive by a
process is included in a global state, then its
corresponding sending event is also included in the
global state. To see this is the case by our algorithm, we
prove it by contradiction. For the simplicity of
presentation, we assume that the sending process pi is
the Initiator. Suppose that m1 sent by pi is received by

6

process pj and included in pj's snapshot and it was
received by pj before it received Prepare sent by pi
(Figure 2). If the global state by the algorithm is
inconsistent, then the sending of m1 must be after pi
sending out the Resume. But this could not happen
because during the period of Prepare to Resume, the
processes including pi are disabled to send any
application message: a process could not receive a
message (e.g. m1) which was not being sent, thus
contradicting the assumption. �

Figure 2. Proof by contradiction: An impossible scenario
by the algorithm where a receive is in the snapshot, but

the corresponding send is not.

3.2 Cut-Along-Tree Algorithm

 The second algorithm for calculating consistent global
states is called the Cut-Along-Tree algorithm. As the
name implied, in the algorithm, the Prepare, Cut, and
Resume messages are sent along a spanning tree of the
fixed network; consequently, it requires bi-directional
channels so that messages may take the same path to and
from the initiator. As in the first algorithm, the event
StartCut begins the initiator's action for taking snapshot,
and the algorithm also assume that the snapshot
algorithm is initiated by the MSS.

 The details of the Cut-Along-Tree algorithm is
described by the following steps:

1. Let T be a spanning tree of the fixed network rooted
at the Initiator I; let parent(i) and children (i) be the
parent and children of node i in T.

2. The initiator executes an event StartCut, disables
forwarding application messages to the mobile hosts
under it, and then sends Prepare to children (I) and
its MHs.

3. Each internal node i, after receiving Prepare, does
the following:

• send Prepare to all its MHs.

• send Prepare to children (i);

4. Each MH in the cell, upon receiving Prepare, does
the following:

• disable the sending of application messages,
record its local state,

• send Cut to its MSS.

• send its local snapshot to its MSS.

5. Each leaf node i, after receiving Prepare, does the
following:

• disable the sending of application messages
(including the forwarding of application
messages to its MHs), and record its local
state,

• send Prepare to all its MHs.

• after receiving Cut from all its MHs, send Cut
to parent(i).

6. Each internal node i, after receiving Cut from
children(i) and all its MHs, disable the sending of
application messages, record its local state, and then
send Cut to parent(i).

7. The initiator I, after receiving Cut from children(I)
and from all its MHs, records its local state, and
then sends Resume to children(I) and all its MHs,

8. Each internal node i, after receiving Resume from
parent(i), does the following:

• send Resume to all its MHs

• send Resume to children (i);

• and then re-enable the sending of application
messages.

9. Each leaf node i, after receiving Resume from
parent(i), send Resume to all its MHs, and re-enable
the sending of application messages.

10. Each MH, after receiving Resume from its MSS, re-
enable sending of application messages.

In essence, this algorithm is the optimization of the
Prepare-and-Cut algorithm by using a pre-calculated

7

spanning tree and thus also obtains a consistent global
state. As a result of this optimization, the message
complexity of this algorithm is significantly improved.
The detailed analysis is given in the remainder of this
section.

Theorem 2 The global state collected by the initiator
after the Cut-Along-Tree algorithm completes is a
consistent global state.

Proof. This algorithm also uses a two-phase approach
to obtain the consistent global state. At the core of the
algorithm, it is the same as the first one (Prepare-and-
Cut). But, the algorithm sends out the protocol messages
along a pre-calculated spanning tree, instead of by the
point-to-point communication, in this sense, it is just an
optimization of the first one, and this optimization has
no impact on its correctness. The difference of two
algorithms lies in a performance issue. Keeping this in
mind, the proof that the algorithm obtains the consistent
global state is very similar to the proof of Theorem 1. �

3.3 Analysis of Complexity: Message Efficient

These two algorithms work for network with any
topology and do not require FIFO channels. Both are
message efficient.

We first consider the message complexity for the
Prepare-and-Cut algorithm. Since in this algorithm, the
mobile host consumes less messages than stationary
hosts (MSS), the worse case is when there is no mobile
hosts under all MSSs. In other words, the system
contains n processes that all are just Mobile Support
Systems (MSSs) without any mobile host. In this case,
there are 3 protocol messages (Prepare, Cut, and
Resume) among the n processes, travelling the fixed
network of d diameter. Therefore, the Prepare-and-Cut
algorithm uses (3nd) messages in the worse case where n
is number of the processes in the system and d is the
diameter of the fixed network.

For the Cut-Along-Tree algorithm, since 3 protocol
messages travel along the spanning tree, consider the
worse case of a spanning tree, the algorithm uses only
3(n-1) messages.

As a comparison, the well known Chandy-Lamport
distributed snapshot algorithm [5], which assumes a
completely-connected fixed network and FIFO channels,
has a message complexity of O(n2). As discussed above,
two algorithms use a very low message overhead that
helps handle mobility (handoff).

4. Handling Mobility -- Handoff

A mobile host MHm may move from one cell, MSSi, to
another MSSj, during the distributed computation, care
must be taken to ensure that the consistency of the global
state is maintained in spite of the location change of the
mobile hosts. Normally, there needs a separate protocol
to discover that an MH has moved to a new cell, the
example protocols are [8,11]; After discovery, the
handoff begins with this MH contacting the new boss
(MSS). The following handoff process is based on the
network-layer handoff procedure [8,2].

• On discovering that it has moved from MSSi to a
new cell MSSj, MHm sends a greeting(MHm, MSSi)
message to MSSj,

• MSSj acknowledges the receipt of the greeting
message, and send deregister(MHm) to MSSi which
will delete MHm from its registration. At the same
time it registers MHm.

• If both MSSi and MSSj have not yet taken snapshot,
or if both MSSi and MSSj have taken snapshot, the
handoff process completes.

If MHm has taken its snapshot while in the cell of
MSSi and then moves to the cell of MSSj which has
not yet had snapshot. In this case, the snapshot of
MHm with the pair of {snpno, MSSid } will be handed
over from MSSi, the handoff process completes.
Note that MHm will not participate in the snapshot
later instructed by MSSj as it has already had the
snapshot of MHm.

If MHm has not taken its snapshot while in the cell
of MSSi, and moved into the MSSj cell which has
already taken snapshot. MSSj will instruct MHm to
take a snapshot using the two-phase-cut procedures,
and completes the handoff process.

5. Handling Disconnection

We take a simple approach to disconnection operations
of a mobile host by requiring the mobile host, MHi, to
take a (unsolicited) snapshot prior to disconnecting from
the network as follows:

• records the local state, local_statei, of the distribute
application running on MHi,

• sends local_statei to its local MSS.

8

Note that in a disconnected mode of operation, MHi
does not send or receive any message, and the local MSS
will not forward any message addressed to it. Thus the
local state recorded will not cause inconsistency if
included in a future global state.

In responding to the snapshot request, the local MSS will
use this pre-recorded local state as MHi 's local snapshot
which will be associated with a corresponding {snpno,
MSSid } pair.

6. Related Work

Mobile computing has received increasingly strong
research interest. The implications of host mobility for
distributed management are considered in [7], while its
impact on distributed computing and fundamental
challenges are considered in [16,3]. Although there were
much research on consistent global states from different
perspectives (for example see a collection in [17]), there
are only a very few reported work considering this issue
in a mobile setting [1,12,13,15]. Acharya et al. [1] were
the first to present an asynchronous (uncoordinated)
snapshot collection algorithm for distributed
applications on mobile systems. Because there is no
coordination for taking snapshots, an MHi is forced to
take its local snapshot whenever a message reception is
preceded by a message sending at that host. This may
lead to as many as local snapshots being taken as the
number of application messages and thus results in a
high cost. Pradhan et al [13] also proposed an
uncoordinated protocol that considers the MH’s disk
storage as unstable and inappropriate for storage of a
host’s state. Prakash et al. [14,15] presented a snapshot
collection algorithms for synchronously checkpointing
mobile applications; it uses minimal dependency
information to achieve low cost. Neves and Fuchs [12]
describe a time coordinated recovery protocol which
adapts its processing by tuning the MH’s stable storage
participation in the snapshot-taking process based on the
current network characteristics. Our algorithms also use
a coordinated approach and are very message efficient.

7. Conclusion

Consistent global states are required in a variety of
distributed applications. Distributed mobile systems
impose severe constraints on distributed algorithms,
mainly the mobility and poor resource of mobile hosts.
In this paper, we presented the Two-Phase-Cut
algorithms for distributed mobile applications based on a
two-tier system model. The algorithms rely on the
resource-rich stationary hosts, which serve as a mobile
support system (MSS) to guide the progress of the

snapshot algorithms and maintain the consistency. These
algorithms use very low message overhead to handle
mobility issue, disconnection operation, and they are
very message-efficient, using O(3nd) messages for the
Prepare-and-Cut algorithm, where n is number of the
processes in the system and d is the diameter of the fixed
network, and only 3(n-1) messages for the Cut-Along-
Tree algorithm.

Acknowledgments

We'd like to thank anonymous referees for their
instructive comments and suggestions that help improve
the presentation of the paper.

12. References

1. A.Acharya and B.R. Badrinath. Checkpointing
Distributed Applications on Mobile computers. In
the Proceedings of 3rd IEEE Intl. Conf. on Parallel
and Distributed Information Systems, October
1994.

2. A.Acharya and B.R. Badrinath. A Framework for
Delivering Multicast Messages in Networks with
Mobile Hosts. ACM-Baltzer Journal on Mobile
Networks and Applications, 1(II):199--219, 1996.

3. B.R. Badrinath, A.Acharya, and T.Imielinsk. Impact
of Mobility on Distributed Computations. ACM
Operating Systems Review, 27(2), April 1993.

4. K.Brown and S.Singh. RelM: Reliable Multicast for
Mobile Networks. Technical report, Dept of
Computer Science, University of South Caroline,
January 1996.

5. K.M. Chandy and L.Lamport. Distributed
Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on
Computer Systems, 3(1):63--75, February 1985.

6. J. M. Helary, N.Pouzeau, and M.Raynal. A
Characterization of a Particular Class of Distributed
Snapshots. In Proc. of International Conf. on
Computing and Information (ICCI'89), Toronto,
Canada, May 23-27 1989.

7. T. Imielinsk and B.R. Badrinath. Wireless Mobile
Computing: Challenges in Data Management.
Communications of the ACM, 37(10):19--27,
October 1994.

8. J. Ioannidis, D. Duchamp, and G. M. Jr. IP-based
Protocols for Mobile Internetworking. In
Proceedings of ACM Symposium on
Communication, Architectures and Protocols,
pages 235--245, September 1991.

9. J. J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM

9

Transactions on Computer Systems, 10(1):3--25,
February 1992.

10. L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21(7):558--565, July 1978.

11. T. Narten, E. Nordmark, and W. A. Simpson.
Neighbor Discovery for IP Version 6 (IPv6).
Internet Request for Comments RFC 1970, August
1996.

12. N. Neves and W. K Fuchs. Adaptive Recovery for
Mobile Environments. Communications of the
ACM. 40 (1):69-74, January 1997.

13. D. K. Pradhan, P.Krishna, and N.H. Vaidya.
Recoverable Distributed Mobile Environments:
Design and Tradeoff Issues. In the 26th
International Symposium on Fault-Tolerant
Computing (FTCS-26), June 1996. Also as Tech
report 95-053, Texas A&M University.

14. R. Prakash, M. Raynal, and M. Singha. An Adaptive
Causal Ordering Algorithm Suited to Mobile
Computing Environments. Journal of Parallel and
Distributed Computing, 41:190--204, 1997.

15. R.Prakash and M.Singhal. Low-Cost Checkpointing
and Failure Recovery in Mobil Computing Systems.
IEEE Transactions on Parallel and Distributed
Systems, 7(10):1035--1048, October 1996.

16. M. Satyanarayanan. Fundamental Challenges in
Mobile Computing. In Fifteenth ACM Symposium
on Principles of Distributed Computing,
Philadelphia, PA, May 1996.

17. Z. Yang and T. A. Marsland. Global States and
Time in Distributed Systems. IEEE Computer
Society Press, 1994. ISBN: 0-8186-5300-0.

	Consistent Global States of Distributed Mobile Computations*
	Qld 4111 Australia

	Actions taken by the Initiator:
	3.2 Cut-Along-Tree Algorithm

