Object-Relational Query Translation on Heterogeneous

Database Architecture

Hui Li" Chengfei Liu* Maria E Orlowska!
fCRC for Distributed System Technology
Level 7, GP South Building, The University of Queensland
St. Lucia, Qld 4072, Australia
Email: {huili, maria}@dstc.edu.au
t School of Computing Sciences
University of Technology, Sydney
PO Box 123, Broadway NSW 2007, Australia

Email: liu@socs.uts.edu.au

Abstract

The converging trend of relational database technology and object-oriented database technol-
ogy results in object-relational (OR) database systems, which extend the relational systems with
add-on object features. Efforts from both academic research and industry have been directed
into object-relational database systems. In this paper, we adopt an approach for implementing
object-relational database systems by using a heterogeneous database system architecture. We
propose a procedure to partition a global OR query into a group of relational and object-oriented
sub-queries on local databases so that it can be processed without a specialised query engine.

The correctness of this query translation is also shown.

1 Introduction

In traditional relational database systems (RDBMSs), complex data can only be stored as unin-
terpreted BLOBs (Binary Large Objects), and the interpretation of this data relies solely on the
application. However, many specialised databases, such as engineering DBs, spatial DBs, multime-
dia DBs, scientific and statistical DBs, require more complex structures for data, and nonstandard,
application-specific operations. It is desirable to extend the relational model to accommodate these

features.

About a decade ago, researchers began to investigate general methods to introduce objects into
database systems. A number of different ways were explored: extended relational database systems,
object-oriented (OO) databases [Kemper and Moerkotte, 1994, Cattell, 1994], toolkits for construct-
ing special-purpose database systems, and persistent programming language. As claimed by Carey
and DeWitt [Carey and DeWitt, 1996], the extended relational database systems, as they are called
object-relational (OR) database systems now, appear likely to emerge as the ultimate winner in

terms of providing objects for mainstream enterprise database applications.

Currently, different approaches are being taken by vendors to provide object-relational database
solutions: native implementation such as Informix’s Illustra [Stonebraker et al., 1990], Fujitsu’s ODB
IT [Ishikawa et al., 1996], Omniscience and UniSQL; incremental evolution taken by CA-Ingres,
DB2/6000 C/S, Oracle 8, etc.; wrapper approach taken by HP’s Odapter. Building an OR database
system is a complex, time-consuming task, requiring hundreds of man years of effort. It is always

psychologically and economically difficult for people to discard their investment in an old systems.

For the purpose of providing new technology without giving up old systems, we put forward a
new approach [Liu et al., 1997, utilising a heterogeneous database architecture as a vehicle for OR
database system implementation. A relational DBMS and an OODBMS are combined together to
provide an ORDB environment. This approach preserves an enterprise’s current investment on rela-
tional database systems and applications, while still offering the benefits of new add-on OO features.
Compared with the wrapper and gateway approaches discussed by Stonebraker [Stonebraker, 1996],

our approach is more biased towards using existing resources.

This paper extends the previous work discussed in [Liu et al., 1997], which mainly deals with
the shcema translation algorithm. Here we emphasis on the query translation algorithm and its
theory foundation. In the rest of the paper, the system environment will be introduced in section 2.
In section 3 the query partition algorithm will be described. Before showing the correctness of our
query processing approach in section 5, the OR tuple calculus is introduced in section 4 as the theory

foundation.

2 System Overview

2.1 Object-relational database model

There is still no agreement on how the relational model should be extended to have the mod-
elling power of object-oriented systems while keeping the simplicity of relational systems. Current
SQL3 draft [Melton, 1995] only supports unnamed row types, ADTs and collection types. In the
separate ”SQL/Object” part of SQL3 [Kulkarni et al., 1995], named row types(NRTs) are intro-
duced with polymorphism, identity, no inheritance, and no encapsulation. Reference types are also
introduced, but only references to row types are allowed. In contrast, an ADT supports polymor-
phism,inheritance,encapsulation, but no identity. Beech [Beech, 1997] suggests that a possible future
simplification of SQL3 is a combination of ADTs and NRTs. However, this may compromise the
simplicity of relational systems. In this paper, we prefer to keep the relational flavour in OR systems,

and keep a distinction between ADTs and NRTs.

The basic components of our object-relational data model are types. An OR database schema
consists of a set of row types, and each attribute in a row type is defined on a certain type, which
can be a built-in type, an abstract data type(ADT), a collection type, a reference type or another

row type. Therefore, the types can be defined recursively as follows,

e Base types are the system built-in types including integer, float, date, string, boolean and

day-time, which are supported by current SQL-3 standard draft.

e Abstract Data Types (ADTs) are user defined and implemented types. The implementation of

objects, and their attributes and behaviour, are invisible to the query systems. All accesses
to the instances of an ADT are through the interface defined for the type. Therefore, for the
purpose of our discussion here, we can describe an ADT by a collection of named functions,
t(fr : Ty 5 fn : Ty,), where t is the name of the ADT, f;(1 < ¢ < n) represents a method
of the ADT, Ty, is the function type of f;. A function type have the form Fun(Ty, Ty, - ,Ty)

where T7,--- , T, is a list of input types, and Ty is the output type of the function.

e row types have the form t(ay : t1, -+ ,an : t) : (-, -+ ,tm), where t is the name of the row
type, a;(1 < i < n) is the name of an attribute, ¢; is the data type of a;, and t;(r < j <m) is
a supertype of t. A row type has a name and a set of attributes. An instance of a row type
R is an element of the Cartesian product of the value sets of the types that define R. A row
type may be defined with or without a name. The former is called a named row type(NRT),

and the latter is called unnamed row type.

e reference (row) types have the form ref(t), where t is a row type. In current OR model, tables
are the only top-level named entities that can be stored persistently. In other words, only

tuples in a table are treated as independent objects with identity and thus can be referenced.

e Collection types have the form C(t), where t can be a base type, ADT, row type, reference type
or another collection type. C represents one of the built-in collection type constructs, including

set, bag, list, tree, etc.. They represent different ways to group up t’s instances.

2.2 Query language extension

The query language we utilise here is based on SQL92, with extended features to support type

extensibility in OR systems. The new query features we focus on include:

e method invocation — Since ADT have methods defined, method invocations are allowed to
appear in the Select-clause and Where-clause. A method invocation may take zero or more
values as input and one value as output. The data type of every value is either a base type or

an ADT.

e path expressions — Since NRTs and reference types are introduced, path expressions are

used to navigate the complex structures of objects and their relationships to other objects via
references. A deref() function is used to dereference an object identity to get its object. In the
query, we adopt the dot notation to represent a path expression. For example, V.A1. 45 --- Ay,
is a path expression in the query where V is an tuple variable, A; is either an attribute or
a dereferenced attribute in the OR table of V, and Ay can be an attribute or a dereferenced

attribute of type(Ax—_1), or a method invocation of Ag_;.

e set operations — Since collection types are introduced, set operations are also allowed in the

Where-clause. The predicates such as membership (IN) and subset(ISSUB) are allowed.

The followings are examples of OR schema definition and queries.

Example 1 In the following we define an OR database schema for a company. It consists definitions

of one ADT point, two NRTs emp-t and dept_t and two tables emp and dept.

create ADT point (x_coordinate float, y_coordinate float, distance(point) float);

const CENTRAL_POINT = new point(0, 0);

create NRT emp_t (create NRT dept_t (
name varchar (30), dname varchar (30),
salary decimal(9,2), budget float,
interest set(varchar(40)), location point,
location point, manager ref(emp_t));

dept ref (dept_t),
friend SET(REF(emp_t)));

create table emp of emp_t create table dept of dept_t
scope of dept is dept, scope of manager is emp;

scope of friend is emp;

As we can see here, tables are created based on certain NRTs. In addition, we need to specify the

scopes of reference-typed attributes in that table.

Example 2 Find the names of all employees and their research interests who have interest in ORDB

and work for the department which is located in central area (within 2 kilometres from the central

point) and has budget more than 1 million dollars.

select e.name e.interest

from emp e

where e.deref (dept) .budget > 1,000,000 and
"ORDB" in e.interest and

e.location.distance (CENTRAL_POINT) < 2;

2.3 Heterogeneous Database Architecture for ORDB

As shown in figure 1, an HDB engine is built on the top of a local RDB engine and an OODB
engine. This HDB engine can be used as a virtual ORDB engine. In the following section, we
describe each component in the architecture. Although it looks similar to UniSQL’s multi-database
management system (UniSQL/M), the purpose are different. UniSQL/M is used to integrate legacy
systems, however our purpose is to utilize functionalities of the existing DBMSs to implement those

of ORDBMS.

ORDB API
A

|nterface HDB Engine
T

DDL | DML

Schema
Transformer

Query
Partitioner

RDB API 0O0DbB API
i

i
RDB-AGENT OODB-AGENT

RDB Engine - - OODB Engine = -
Tables Objects

Control flow ~ --------- = Dataflow

Figure 1: HDB Architecture for ORDB

e Interface — It receives users’ OR requests, does syntactical check and hands them to cor-

responding components for processing. It is also responsible for returning the results of the

requests back to users.

e Schema Transformer — It handles requests for schema definition.The main function of this
component is to keep the information of the OR schema in the global repository, and to
transform the schema into local schemas of both relational and OO systems. A transformation
plan is generated by this component which is delivered to the executor for execution. The local

mapping information is also kept in the global repository.

e Query Partitioner — This component is responsible for translating OR queries which are
issued against global OR schema into local queries on both local relational and OO systems.
The local mapping information is used for such transformation. All local queries form a query

plan which is handed over for the executor to execute.

e Executor — The executor is responsible for coordinating the distributed execution of the
execution plan (both transformation and query plan). There is an RDB engine employed at
the global level to hold temporary results which may pass between the local relational system
and the OO system, to merge the results. Since users are on the top of an ORDB interface,
they may require the result in a form which is more than a flat table. Therefore, simulation of
an ORDB interface is necessary. Some functions are provided at this level for the final result
processing, such as, nest for reconstructing set-valued column values, deref for obtaining the

objects, etc.

¢ RDB-Agent — The RDB-agent is responsible for monitoring the execution of local queries

against transformed local relational schema and returning the results.

e OODB-Agent — The OODB-agent is responsible for monitoring the execution of local queries

against transformed local object-oriented schema and returning the results.

2.4 Schema transformation

Ideally, the HDB structure is transparent to users. That is, when designing an ORDB application,

they can use the system just like an integrated, pure ORDBMS, not knowing how the underly-

ing RDBMS and OODBMS are combined together to implement the ORDBMS. Given an ORDB

schema definition, it is the system’s task to map the schema down to the RDBMS and OODBMS.

Therefore, we need a process to automatically transform the OR schema into a set of relational

schemes and OO schemes, while preserving the semantics. Since this part has been discussed in

detail in [Liu et al., 1997], we just briefly recite the algorithm here.

Input: An OR schema.

Output: A relational schema and an associated OO schema.

We use two lists to keep useful intermediate information. N'RT for definitions of NRTs, TRAN

for table structures to be transformed. Initially, they are empty.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

For every NRT defined in the OR schema, create a table structure in A’RT to record the NRT

name and its attribute definitions.

For every ADT, output a definition of a deputy class which is used to implement the ADT.
The definition of the deputy class is formed by including definitions of attributes and methods
of the ADT definition and the definition of an extra object identity attribute oid. The value

of oid will be systematically assigned by the local OODBMS.

For table named O RT defined in the OR schema, create a (frame) structure in 7 RAN to record
the table name, copy the attribute definitions of the NRT in AR7T on which it is defined as
the attribute definitions of the table, and if scopes of referenced attributes are defined with
the table, keep the names of scope tables within the attribute definition. A frame table named

ORT_R will be created later in the relational schema based on this frame structure.

Loop for each table structure in TRAN until no structure exists.

For each table structure in TRAN, let its table name T'BL, create a relational table definition
with table name TBL_R. For each attribute definition A : T of TBL, we classify 8 cases for
different processing. Remove the structure of T'BL after all its attribute definitions have been

processed.

Case 1: If T is a built-in type, output a column definition A : T for TBL_R.

Case 2: If T is an ADT, output a column definition A : long for TBL_R, we use type long to

represent object identity.

Case 3: If T is a NRT, replace the attribute definition with all attribute definitions of the NRT
T for processing. The newly added attribute definitions can be found in N'RT, their

attribute names need to be renamed with the prefix A_.

Case 4: If T is a reference type ref(RNRT), there should be a scope clause declaring the table,
say RTBL, it really references to. Let RPK : Trpk be its primary key definition, then

output a column definition A : Tgpg for TBL_R.

Case 5: If T is a set type set(ET) and ET is a built-in type, output a definition for an auziliary
table TBL_A_R(PK : Tpx,TBL_A : ET), where PK : Tpk is the primary key definition

for TBL_R.

Case 6: If T is a set type set(ET) and ET is an ADT, output an auziliary class definition

TBL_A_C(oid :long, TBL4 : set(ET)).

Case 7: If T is a set type set(ET) and ET is a NRT, create an auxiliary structure in TRAN
with TBL_A_R as table name and (PK : Tpg,EA;, : ETy,--- ,EA, : ET,) as its
attribute definition, where PK : Tp is the primary key definition for TBL_R and (EA; :

ET:,--- ,EA,, : ET,,) is the definition for ET which can be retrieved from N'RT.

Case 8: If T is a set type set(ET), ET is a reference type ref(RNRT), there should be a scope
clause declaring the table, say RT BL, it really references to. Let PK : Tpx and RPK :
Trpk be primary key definitions of TBL and RT BL, respectively, then output a definition

of the auxiliary table TBL_A_R(PK : Tpk,A_RPK : Tgpk).

3 Query Partition

Given a query against global OR schema, it must be translated to local queries against its transformed
local relational schema and OO schema for execution. We design a query partition algorithm which

has three major steps: substitution, decomposition and final result reconstruction. The result consists

of a group of relational queries in SQL92 [ISO, 1992, Date and Darwen, 1993] format and a group of

OO0 queries in OQL [Cattell, 1994] format.

To simplify the discussion, we assume that all the constraints in the Where-clause are connected
by only “AND” operators. This is reasonable because for any Where-clause C' containing an “OR”
operator, it can always be transformed into the disjunctive form, “C; OR C5”. The original query
@ can then be translated into “Q); UNION -7, where); and @, take C; and Cs respectively in

the where-clause.

3.1 The substitution process

To process the OR query, the first task is to transform the OR schema representations in the query
into suitable local forms. The OR table and attribute names should be substituted by corresponding
local table and attribute names. As the set-valued attributes are flattened, some related predicates,
including membership and inclusion, should be rewritten. More importantly, as the navigational
access is not supported by relational systems, many path expressions V.A;.--- .A,, need be translated
into V.A form plus a set of join predicates to record the traversal information. After the substitution,
all the data elements from the local relational tables have the strict V.A form, where V is a relational

tuple variable, and those from OO classes may have arbitrarily long paths starting from a OO variable.

An important concept used in the following algorithm is the cluster of path expressions. A cluster
of path expressions in a query is a set of path expressions which start with the same tuple variable
and have the same first attribute. For example, V.A;,V.A;.A, and V.A;.A) are in the same cluster,

while V'.4; and V.A] belong to two other clusters.
Input: An OR query in the SELECT ---FROM ---WHERE--- form, and there is no “OR”
operation in Where-clause.
Output: An intermediate form. It is an integrated query against local schemes.
Step 1: (Initialisation) Define k as the variable counter, and initialise with value 1. k will be used to

name the variables in the query. Each time a variable is renamed or a new variable is created,

k is increased by 1.

10

Step 2: (Translation of the From-clause and variable names) For each tuple variable V' of OR table
TBL in the From-clause of an OR query, replace the table name with the corresponding local
frame table name TBL R so that V becomes a relational tuple variable on TBL_R. Rename
V and its all occurrence in the query with “VAR_k” so that all the variable names have a
standard format. In the rest of this algorithm we will still use V to represent the variables

whereever the name format is not concerned.

Step 3: (Translation of the path expressions) In the Select-clause and Where-clause, for each cluster of
path expressions in the form V.A;.--- or V.deref(A1).---, do the following process based on

the type of Aj, type(A;). Repeat this step until no more change can be applied.

Case 1: If type(A,) is a base type, A; should be the end of the path expressions. Nothing need be
done. Or if V is defined on an OO class, the path expressions need not be changed either.

Case 2: If type(A;) is an ADT, add a new variable definition in the From-clause, “ADTC VAR k",
where ADTC' is the OO class of the ADT. In the Where-clause, add a new predicate,
“AND (V.A; = VAR k.0ID)”. Change the original path expressions into “VAR_k.---7.

Case 3: If type(A,) is a NRT, for each path expression in the cluster, there are following subcases.

3.1. If there is a node, say A,, after Ay, then based on the previous schema transformation
algorithm, Ay should now be a attribute of TBL_R and be renamed as A;_A,. Here
TBLR is the relation on which V is defined. Therefore, we can translate the original
path expressions to “V.A;_As.---7.

3.2. If A; is the last attribute in the path expression, and the expression appears in the
Select-clause, then replace the path expression with a group of expressions, “V.PK,
V.A; Al ... [V.A;_A™" where A%, (1 < i < n) are the all attributes of type(A4;) and
PK is the primary key of TBL_R.

3.3. If A, is the last attribute in the path expression, and the expression appears in the
Where-clause, then change the path expression with “V.A; PK”, where PK is the
primary key of type(4;).

Case 4: If type(A1) is a reference type ref(RNRT), where RNRT is a NRT, there should be a

table RTBL R to hold the referenced tuple. Add a new variable definition in the From-

11

Case 5:

Case 6:

Case T7:

clause, “RTBLR VAR_k”. In the Where-clause, add a new predicate, “AND (V.4; =
VAR_k.RPK)”, where RPK is the primary key of RNRT. For each path expression in

the cluster, there are following subcases regarding the modification the expression itself.

4.1. If the form is like V.deref(A;).As.--- (there is another node after A;), change the
original path expressions into “VAR_k.A45.---”.

4.2. If the form is like V.deref(A;) (A4; is the last node), and appears in the Select-
clause, then change the path expression with a group of expressions, “VAR_k.A%,-- -,
VAR._k.A™, where A, (1 < < n) are the all attributes of RNRT.

4.3. If the form is like V.deref(A;), and appears in the Where-clause, rewrite the path
expression into V.A;.

4.4. If the form is like V.A;, it should only appear the Where-clause. No change need to

be done.

If type(A;) is a set type set(ET) and ET is a built-in type, there should be no more
node after it in the path expressions. Add a new variable definition in the From-clause,
“TBL_A; R VAR_K”, where TBL_A;_R is the relation that hold the set values. In the
Where-clause, add a new predicate, “AND (V.PK = VAR_k.PK)”, where PK is the
primary key for TBL_R, on which V is defined. Change the original path expressions into
“VAR_kK.TBL_A,”. If the path expression appears in the Select-clause, add a new part in

Select-clause, “VAR_k.PK”.

If type(A;) is a set type set(ET) and ET is an ADT, add a new variable definition in
the From-clause, “T"BL_A; _-C VAR_k”, where TBL_A; _C is the OO class of the ADT set.
In the Where-clause, add a new predicate, “AND (V.4; = VAR_k.OID)”. Change the

original path expressions into “VAR_k.TBL_A;.---"7.

If type(A;) is a set type set(ET) and ET is a NRT, add a new variable definition in
the From-clause, “I'BL_A;_R VAR_k”, where TBL_A; R is the table of the NRT set. In
the Where-clause, add a new predicate, “AND (V.PK = VAR _k.PK)”, where PK is the
primary key of TBL R, on which V is defined . For each path expression in the cluster,

there are following subcases regarding the modification the expression itself.

12

7.1.

7.2.

7.3.

If the form is like V.A;.As.--- (there is another node after A;), change the path
expression into “VAR_k.As.---7. If the path expression appears in the Select-clause,
add a new part in Select-clause, “VAR_k.PK”.

If the form is like V.A; (A; is the last node), and appears in the Select-clause, then
change the path expression with a group of expressions,

“VAR.k.A; A',--- VAR k.A;_A™", where A’ (1 < i < n) are the all attributes of
type(A;) plus the primary key of TBLpg.

If the form is like V.A;, and appears in the Where-clause, change the original path

expression into “VAR_k.A; _PK”, where A;_PK is the primary key of type(A;).

Case 8: If type(A,) is a set type set(ET) and ET is a reference type ref(RN RT'), there should be

a table RTBL_R to hold the referenced tuples and another table TBL_A; R to hold the

set information. Add a new variable definition “T'BL_A; R VAR_k” into From-clause. In

the Where-clause, add a new predicate, “AND (V.PK = VAR_k.PK)”, where PK is the

primary key of TBL_R, on which V is defined. For each path expression in the cluster,

there are following subcases regarding the modification the expression itself.

8.1.

8.2.

8.3.

If the form is like V.deref(A1).As. - - - (there is another node after A;), add a new vari-
able definition “RNRT R VAR k" (k' = k+1) into From-clause. In the Where clause,
add a new predicate, “AND (VAR_k.RPK = VAR_k'.RPK)”, where RPK is the pri-
mary key of RT BL_R. Change the original path expression into “VAR_k'.As.---7.
If the form is like V.deref(A;) (A is the last node), and appears in the Select-clause,
add a new variable definition “RNRT_R VAR_K'” (k' = k + 1) into From-clause.
In the Where clause, add a new predicate, “AND (VAR_k.RPK = VAR_k¥'.RPK)”,
where RPK is the primary key of RT BL_R. Change the original path expression into
a group of expressions, “VAR_k'.A!,---, VAR_k'.A™", where A%, (1 < i < n) are the
all attributes of RN RT plus the primary key of TBLg.

If the form is like V.deref(A;), and appears in the Where-clause, add a new variable
definition “RTBL_R VAR_k"” (k' = k + 1) into From-clause. In the Where-clause,

add a new predicate, “AND (VAR_k.RPK = VAR_k¥'.RPK)”, where RPK is the

13

primary key of RTBL R. Change the original path expression into “VAR_k'.RPK”.

8.4. If the form is like V.A;, it should only appear in the Where-clause. Change the
original path expression into “VAR_k.A;_RPK”, where RPK is the primary key of

RTBLR.

Step 4: (Translation of Where-clause)

Case 1:

Case 2:

Case 3:

Case 4:

(Membership of ADT set) The predicate appears like P; IN P,, where P; and P are path
expressions. The type of P; is an ADT and that of P, is the set of that ADT. In this

case, nothing need be done.

(Inclusion predicate between ADT sets) The predicate appears like P; ISSUB P,, where
Py and P; are two path expressions. Both of their types are same, an ADT set. Change

the predicate into “for all x in P; : x in Py”.

(Other membership predicate) The predicate appears like E; IN E,. E; can be either (1).
a constant; (2). path expression V.A, where V is relational tuple variable and A is a built-
in typed attribute; or (3). V.A;.--- .A,, where V is an OO variable and A,, is a built-in
typed attribute or an ADT method invocation returning a built-in typed value. FEj is in the
form V'.A where A is an attribute in the relational table, say T BL_R, to hold the flattened
information of the set. If F» has no other occurrence in the membership predicates of the

“w_"

query, simply change the operator “IN” into . Otherwise, create a new variable in
From-clause, “I'BL_R VAR_k”. Change the predicate into “E; = VAR_k.A”. Add a new
predicate “AND (VAR_k.PK = V'.PK)” in the Where-clause. Here PK is the primary

key of TBL R.

(Other inclusion predicate between base type sets) The predicate appears like V;.A4; IS-
SUB V5.A4,, where A; and A are attributes respectively in the relational tables, say
TBL; R and TBLs_R (not necessarily distinct), that hold the flattened information of

the sets. Change the original predicate into following script.

NOT EXISTS (

SELECT *

14

FROM TBL,-R VAR _k

WHERE VAR k.PK; = V;.PK; AND NOT EXISTS (
SELECT *
FROM TBL,; R

WHERE PK, = V3.PK, AND VAR k.A; = A,

Example 3 After substitution, the query in example 2 is transformed into the following format.

SELECT VAR_1.name, VAR_3.name, VAR_3.interest
FROM emp_R VAR_1, dept_R VAR_2, emp_interest_R VAR_3 VAR_5, point VAR_4
WHERE VAR_2.budget > 1,000,000 AND

VAR_1.dept = VAR_2.dname AND

VAR_3.name VAR_5.name AND

"ORDB" = VAR_5.emp_interest AND
VAR_1.name = VAR_3.name AND
VAR_4.distance (CENTRAL_POINT) < 2 AND

VAR_1.location = VAR_4.0ID

3.2 Variable graph for decomposition

After the substitution process, the query is now over the local schemes. However, we need to
decompose the integrated form into several parts so that each part can be executed by the related
local db engine. The major job is to find the bridge constraints. A bridge constraint is either a
predicate (called bridge predicate) in the Where-clause that involves both OO variables and relational
tuple variables, or a method invocation (called bridge invocation) that takes relational elements as
input parameters. The Where-clause is split based on the definition of the variables. In general,

all the predicates that have only relational variables involved are transfered into local relational

15

queries. Those which have only OO variables are in local OO queries, and those belonging to bridge
constraints are in the top level query. The Select-clause and From-clause are also split accordingly.
The decomposition result include a local relational query, a top level relational query, and a set of

local OO queries.

To decompose the query into local queries, we need to identify the boundary between the relational
system and the OO system. A wvariable graph is used to assist the process.The variable graph is an
extension of the relational predicate graph in [Meng et al., 1993]. Not only predicates, but also
method invocations are taken into consideration. Because the methods may appear in the Select-

clause, we draw the graph from the whole query instead of the Where-clause.

Definition 1 For a given query Q , we define its variable graph: VG(Q) as an annotated undirected
graph: VG(Q) = (V, E). Each vertex v in V represents a (relational or OO) variable used in Q,
and each edge E between vertices V; and V; in E represents either a predicate in Q that involve v
and vy, or there is a method invocation v;.--- .method() that takes vj;.--- as an input parameter

(i,7 € {1,2} Ni # j). Each edge is annotated with the predicate or the method invocation.

Compared with predicate graph, variable graph emphasises on the relationship among variables,
and does not contain all the constraints in Q. Rearrange the vertices so that two disjoint circles can
be drawn to enclose all the relational tuple variables and OO variables respectively. All the edges
that go cross the circles’ borders are called bridge edges, which corresponds to the bridge constraints.
An example is shown in figure 2, which is the variable graph of example 3. Four nodes are in the
relational side, VAR_1, VAR_2, VAR_3 and VAR_5. One node is in the OO side, VAR_4. The only

bridge constraint is the predicate, VAR _1.location = VAR_4.0ID.

By removing all the bridge edges, we get a disconnected graph VG', called local partition graph.
The relational variables and OO variables may distribute in several connected components, called
connected relational components (CRCs) and connected OO components (COCs) respectively. For
each connected component, there should be a corresponding local query. In the example there is only
CRC that contains four nodes, VAR_1, , VAR_2, VAR_3 and VAR_5, and one COC that containts

one node, VAR _4.

16

3.3

OO-side: Relational-side

VAR_1.dpet=
VAR_2.dname

VAR_4.0ID=

VAR_1.location

VAR_1.name=

Figure 2: The variable graph of example 3

The decomposition and final process

OR queries may have multi-valued attributes in the Select-clause, which are flattened on relational

side. Unfortunately, the top relational query engine is incapable of restoring the flat data back into

the nested format. Therefore, an external procedure is need to do the final job. We have slightly

extended the syntax of top level relational query to include a special function call nest().

Input: An integrated query against local schemes

Output: A set of relational queries in SQL92 form and a set of OO queries in OQL form.

Step 1:

Step 2:

Step 3:

(Query decomposition) Draw the variable graph VG(Q) of the substituted query Q. Identify
the bridge constraints. Identify the connected relational and OO components. If there is no

bridge constraints, no decomposition need be done and jump to the last step.

(Create local relational queries) Initialize the local relational query counter 74 to 1. The counter
works just like the variable counter k. For each CRC, create the local relational query LRQ,;
in the form “CREATE TABLE TEMP_R_ri AS SELECT --- FROM --- WHERE - --”. In the
From-clause, copy the definitions of all relational variables in the CRC. In the Where-clause,
copy all the predicates mentioning only the variables in the CRC. In the Select-clause, copy
each data element “V.A” which is in the Select-clause of Q or in the bridge predicates and V

is in the CRC.

(Create local OO queries) Initialize the local OO query counter ¢ and new attribute counter

j to 1. These counters work just like the variable counter k. For each COC(if any), create

17

Step 4:

Step 5:

the local OO query LOQ); in the form “define TEMP_OO. as select distinct struct(---) from
- where ---”. In the From-clause, copy the definitions of all OO variables in the COC. In
the Where clause, copy all the predicates mentioning only the variables in the COC. In the

Select-clause, for each data element “V....”

which is in the Select-clause of Q or in the bridge
predicates, and V is in COC, add a new element “name : V.---”. The naming rule is, if the
data element is in “V.A” form, then use A as the name, otherwise create a new name ATTR_j.

If the element is in “V.OID” form, change it into “&V” which represents the identity of the

object referenced by V.

In the Select-clause and Where-clause, if there are any method invocations that take an
attribute from relational side as input parameter, then add “VR.i in TEMP_R.” in From-
clause and replace each occurrence “V.A” with “V R_i.A” for each relational variable V. Add

“VR_i.A” into the Select clause.

(Create top level query) Create the top level relational query TR(Q. The From-clause has the
format “FROM TEMP_ R VR.1, ---, TEMP R.m, TEMP_O0O_1 VOO.1, ---, TEMP_OO.n
VOO, supposing there are m local relational queries and n local OO queries. In the Select-
clause, include all the contents in the Select-clause of Q. In the Where-clause, copy all the
predicates acting as bridge constraints. Change all the data elements in Select-clause and
Where-clause into right form. For each variable V, find out the CRC or COC it belongs to in
VG'(Q) and then the corresponding local query. Suppose the query results in a temporary table
TEMP T, replace all occurrence of V' with VT'. Any method invocation or long path expression
should be assigned to a new attribute in Select-clause of a certain local OO query, and therefore
substitute the invocation or long path with that attribute name. If there is a bridge invocation
connection between VR_i and VOO_j, add a new predicate, “VR_i.A = VOO_j.A”, into the

Where-clause for each VR_i.A used as input parameter in the j-th local OO query.

(Final result reconstruction) To restore the flattened values, the standard SQL syntax need be
extended a little. The nest operation is expressed as “NEST A;,---, A, ON PK”, where PK
is the key regarding to the operation. The result is a set of row type values, {(A41,---,A,)}.

This expression can be nested. Therefore, we can apply this operation in the Select-clause of

18

TRQ when the set valued attributes need be restored.

Example 4 To continue example 3, we have the following queries as final result.

Relational local query:
CREATE table temp_R AS
SELECT VAR_1.name as name, VAR_1.location as location,
VAR_3.name as name_2, VAR_3.emp_interest

FROM emp_R VAR_1, dept_R VAR_2, emp_interest_R VAR_3, VAR_5

WHERE VAR_1.dept = VAR_2.dname AND VAR_2.budget > 1,000,000 AND

VAR_1.name

VAR_3.name AND VAR_3.name = VAR_4.name AND

"ORDB" = VAR_5.emp_interest;

00 local query:

create table temp_00 as
select distinct struct(oid: &VAR_4)
from VAR_4 in point

where VAR_4.distance(CENTRAL_POINT) < 2;

Relational top query:
SELECT VR.name, NEST VR.emp_interest ON VR.name_2
FROM temp_R VR, temp_00 VO0O_1

WHERE VR.location = V0O_1.0id;

4 Extended Tuple Calculus for ORDB

Before showing the correctness of our query partition process, we need a query system to model the

ORDB queries.

In [Li et al., 1997], a tuple calculus and a query algebra is proposed for object-relational data

models. They are supersets of their relational counterparts, with new features to handle complex

19

data. The equivalence in expressive power for the calculus and algebra is also proved. Like other
declarative query languages, our SQL-like OR language is based on the OR calculus. That is, we

can easily translate an OR query in to an OR calculus expression.

The OR calculus adopts a 3-tiered structure. All the basic data elements are terms. An atom
can be either a tuple variable declaration or a §-comparison between two terms. A formula is a logic

expression which takes atoms as operands. Formally, we have the following defintion.

Definition 2 A term in the tuple calculus expression can be either a constant, a variable, or a path

expression.
The following definitions of atom and formula are similar to those of RTC [Maier, 1983].

Definition 3 An atom is the basic logical building block of formulas. It can be defined in the

following way,

e For any OR table r in D, and for any tuple variable z, r(x) is an atom, standing for = € r;

e For any comparator 6 € ©, any terms s and ¢ (not necessarily distinct) that are #-comparable,

s0t is an atom.

Definition 4 The formula in tuple calculus can be either an atom, or one or more atoms connected

by logical operators.

Definition 5 An OR tuple calculus ORTC is a penta-tuple (U, T,typing, D,0) where U is the
universe of attributes, 7 is the set of types, typing is a mapping from U to T, D is a database on
the row types in 7, and © is a set of comparators that includes at least equality and inequality for

for every type in 7.

5 Correctness of the Query Partitioning

THEOREM 1 The partitioned queries can be interpreted by a single ORTC expression E,e;.

20

PROOF. After substituting the path expressions of the global OR schema in the query, we get

an integrated query @) against the local schema. The corresponding OR7T C expression is,

V(A1 Ap)|3V4, - ViV € AN -~ AV, €Ty AV. A = VLAY

AN AVA, =V ATANP A---ANP,)} (1)

Here, we have Vi € {Vi,---,V;},(i <i<m) and T;(1 < j < t) is either a local table or class.

The decomposition process divides @) into a top level query QT', a set of local relational queries
QLR,,--- ,QLR,,, and a set of local OO queries QLO,--- ,QLO,. Because ORTC is extended
from relational tuple calculus, any valid relational tuple calculus expression is also a valid OR7TC
expression. Besides, each local OO query simply takes part of () and rewrites it to meet the syntax
requirement of the OODB engine. Therefore, the semantics of the result queries can always be

interpreted by a set of ORTC expressions as follows,

QT : RES ={V (A1, ,Ap)|AV Ry, - ,VR,,VO1, -+ ,VO,(VR; € temp_R;
A---ANVRy, €temp_R, AVO1 € temp-O1 A---ANVOy € temp_-Oy,
AV.A; = VTI.AT1 AN---ANV.A, = VTk.ATk Apri N\--- /\st)},

(V"€ {VRy, -+ VR, VOy,---VO,},1<i<k) (2)

QLR, : temp_Ry = {V(ARr,1, -, Ark)|3VRi1, VRt (Vi1 € TRy1 A -+~ A VRt € Tyt

AV.Ap, = VEL AR A AV AR = VERE ARSE App VA~ ApR,s)}

QLR,, : temp_R,, = {V(Ale, s ;ARmk)BVle, .. ,VRmt(Vle € Tle A---
AVg,: € Tr, t NV.Ag, 1 = VEnl ABmI A AV Ap ;= Vimk gBRmk

APRa1 A APR,s)}

21

QLO; : temp-Oy = {V (40,1, s Aok)|3Voi1, -, Vo,te(Voy1 € To,i A+ AN Vot € Toyt

AV.Ao,1 =yoit ... _Aoll/\.../\V_Aolk = YOk ... AO1m Apo,i A -Apo,s)}

QLO, : temp_Of = {V(Aonl,- .- ;Aonk)BVO,,l," . 7V0nt(VOn1 €eTo,1 N---
AVo,: € To,t NV.Ao,1 = VOl ..o AL A AV.Ap, = VOF. ... AOnk

APO,1 N+~ ANpPo,s)}

Please note that Ap,; may be either an attribute or a method. We do not distinguish them here

because they will be handled in the same way.

Comparing the expressions of Q and QT, we can see that they have the same result type, which
is the row type (Ay,---,Ax). To prove their equivalence, we need to further show their constraints

are the same. A constructive approach is adopted here.

First, we substitute all the occurrence of variables defined on temporary tables, say temp_R; and
temp_0;,(1 < i <m,1 < j < n), with those on local tables/classes. Based on [Quine, 1969], any
predicate like y € {z|F(z)} can be substituted with F(y). Therefore, we can substitute the predicate

VO; € temp-0;,(1 <i <n) with

Vo1, Vo,t(Vo,1 € Toa A AVo, € To,s ANVO;.Ap,y = VOt ... A0

A AVO; Ao = VOl oo A% Apoi Ao Apos)}

Because of VO;.4; = VOiJ.... 497 (1 < j < k), we can always replace the occurrence
of VO;.Ap,; in every predicate prs,(1 < h < s) and V.Ap, = VO;.Ap,;,(1 < g < k) with
VOii ... A9 After the replacement, the tuple variable VO; only appears in predicates like

VO,'.AO”' =VOii ... AQij,

Further, because dom(V 0;.Ao,;) = dom(type(Ao,;)) D dom(VOiJ.--. . A9iJ) the predicates

22

like IVO;(VO;.Ap,j = VOi.... .A97) is always true. Therefore we can remove all of this kind of

predicates and the tuple variable V O;.

Given a local OO query QLO;, there may exist a method invocation, Vp,g.- - .fun(), that takes
an attribute in the result of a local relational query, say ()LR;, as its input parameter. After the
above substitution the expression of top level query will contain more than one variables defined
on temporary table temp_R_j, which represents the result of QLR;. However, these variables can
always be combined together. From Step 4 of the decomposition and final process we can see that
in QT there is a predicate “VR;.A = VO;.A” for each bridge invocation. After substituting V O;,

the expression of QT now has the following format,

{V(A1,--- ,AR)|3VRy,--- ,VR;,VR},--- (VR; € temp_R; AVR), € temp_R; A ---

AVR;A=VRyAN---AVo.--- fun(--- ,VRLA,---) A---)}

Therefore we can always substitute VR};.A by VR;.A, and then remove the predicate VR;.A =
VR;-.A and the definition of VR;- without affecting the value of the expression. After the combination

process, there is one and only one variable defined on each QLR result table.

Similar to the treatment on the variables defined on temp_O;, we can always substitute the vari-
ables defined on temp_R; with corresponding local relational variables. After the whole replacement

process, the expression of top level query is expanded into the following form.

{V(Ay,-, Ap)|3VY, -+ V/(V{ € LTBy A--- AV} € LTB,AV.A; =V'" A" A
o AVAR = VA APy A APy APRUA - PR APOs1 A+ AP0}

(V" e {Wi,---Vi}) (3)

Given a variable V; in @, its definition in (1) is like AV4,--- ,V;,--- (V4 € LTB1 A--- AV, €
LTB; A ---), where LT B; is the name of a local table/class. After decomposition, it participates in
one and only one decomposed local query. In the expression of that local query, there is 3V --- (V] €

LTB;---). For each result of local OO query, there is one and only one predicate of the form VO; €

23

temp-O_j in (2), which is to be expanded. For each result of local relational query, as shown before,
we can always combine VR; € temp_R_j and VR;- € temp_R_j into one definition and therefore the
expression of (JLR; needs only to be expanded once in the top level query expression. Therefore
in (3) there is one and only one variable definition, 3V} ---(V; € LTB;---), which corresponds to
V;. For a different variable Vi in (), there exists a different variable definition Vj’ in local query,
and thus is still a different one in (3). Further, there is no new variables created in local queries,
therefore in (3) there is no variable which has no correspondence in (1). That is, there exists one to

one correspondence between the variables in (1) and those in (3).

For the same reason, there also exists one to one correspondence between the predicates in (1) and
those in (3). For each ordinary predicate P;(V1.--- . AL V™.... . A") where V1 € LTB'A---AV™ €

LTB"™, it takes part in a local query which has the form

{V(AL,-, An)3V{,--- V. (V"' € LTB'*A---AV'" € LTB" A -- -

APV ALV AT)

and V' corresponds to V7 in (1). After substituting the corresponding temporary table with the
expression, P; and all the related variables are copied into the top query expression without any

change. Therefore we have

PV ALY AY) = PV ALY A

If P; is a bridge constraint, in (1) it appears likeV!.A'V2.... A% where V! a relational variable

and V? is an OO variable. After decomposition, the predicate is in the top query and has the form

VR! € temp REAVO? € temp.O?> A---ANVR'V.ALQVZ A% ...

and the corresponding temporary table definitions are,

templ, = {V(AL,--)AV"' .- (V"' € TBLLA--- AV ATOV.A ...}

24

temp? = {V(A2,--) AV, .- (V> € TBLLEA---AV'".... A20V.A2...)}

After substitution, there exist the following definitions in (3),

{(V(A1,-- A3V, 3V, (V" e TBLLAV'? € TBLA--- AV A OV"> A2)}

Because of the correspondence between V! and V' 1, and V2 and V' 2, we have

(VI9A'QV2.... A% = (V' A 9V"? A%

Similarly, if P; contains a bridge invocation, we also have

PV ALV AN = PV ALV AT

where the left side in the equation is from (3) and right side is from (1).

Here we can see that we can get (3) by equivalent transformation from (2), and the constraints
of (3) is equivalent to that of (1). Therefore, the constraints of (2) is also equivalent to that of (1).
That is, the execution of decomposed queries is equivalent to the execution of @, and we can use (1)

to represent the decomposed queries.

The result reconstruction process is to add mest operations on the result of top level query.
Because of the equivalence between OR algebra and ORTC [Li et al., 1997], there always exists a
equivalent ORTC expression {z(---)|3y(y € RES A ---)}. When we substitute y € RES with (1),

we get a integrated calculus expression which represents the result of the partitioned queries. O

THEOREM 2 Any query over an OR schema is equivalent to its substituted queries over the

corresponding transformed local OO and relational schemes.

By equivalent we mean that the two queries always produce same result regardless the population of

tables being queried.

PROOYF. We have proven that the integrated query over the transformed local OO and relational

25

schemes is equivalent to the partitioned query. Here we need to show that the query over OR schema
is equivalent to the one over local schema. The main point is to show how the equivalence is preserved

through the path expression substitution process.

Given a OR query QOR, its calculus expression and that of the substituted query over local

schema can be written as,

{V(Ala" . ;Am)lavl(TBLl)a") aVn(TBLn)(P(V:Vl;' T :Vn)}a (4)

and {V(Ala o aAm)E”/lI(LTBl)J o JW(LTBS)(PI(Va ‘/lla T JVI)} (5)

s

Here, TBL;,(1 < i < n) and LTB;,(1 < i < s) represents OR tables and local tables/classes

respectively.

To prove the equivalence between the two expressions, we need to show that for each interpretation
I(P(T/V,Ti/V1,- -+ ,Tn/Vy)), there exists one and only one interpretation I(P'(T/V,T{/V{,-- -,

T!/V))) so that I(P) = I(P') is always true regardless the format of P.

We prove the theorem by induction on the number of variables excluding V' in the expression (4).

Basis No variable. P has the form V.A; = Ci A--- AV.A,, = Chn, where C;,1 <i <m are
constants. In this case, the algorithm makes no modification on the query, and thus P and P’ are

exactly the same. Therefore I(P) = I(P') always holds, that is (4) and (5) are equivalent.

Induction Assume the theorem holds for any calculus expressions with fewer than k variables. Let
EOR have k variables. We substitute the variables V5, --- ,Vj with corresponding variables defined

on local tables/classes, and get the following expression.

{V(A1,-+, An) 3Vi(TBLy), V{ (LT By), - -+ , V(LT By)(Po (V, Vi, V4, -+, V{)} (6)

(6) is equivalent to (4) because for each tuple Ty € TBL,, P(V,T;/V1,Va,---,V,) has k — 1

26

variables, and its substituted formula is Po(V, Ty /V1, VY, -+ ,V}). Based on the assumption that the
theorem holds for k—1 variables, there exists exactly one interpretation I(Py(T/V, Ty /V1, T /V{, -+,
T]/V))) that is equal to each interpretation of P, I(P(T/V,T1/V1, -+ ,Tn/Vys)). Therefore I(P) =
I(Py) always holds. Now we have to concentrate on how the substitution of path expressions like
V1.A.--- will affect the equivalence by comparing the interpretations of P’ and Py. We categorise

these path expressions into eight cases and study the cases respectively.

CASE 1 There is a path expression having the form V;.A, and the type of A is a built-in type.
The definition of V;(TBL;), is substituted into V,/(I'BL;_R). From the schema transformation
algorithm we can see that, for the OR table T'BL;, there is a relational table TBL;_R that holds
all the built-in typed attributes of TBL;. For each tuple T of TBL;, there exists a tuple T},
in TBL;_R that for each built-in attribute A4, T7.4 = T,;_R.A. Therefore for each interpretation
I(Py(T/V, T\ /V4,T{/V{,--- ,TL/V])), there always exactly exactly one interpretation

I(P'(T)V,-- ,T./V},--+ ,T!/V})) so that Tj.A = T!.A.

CASE 2 There is a path expression having the form V;.A.---, and the type of A is an ADT. The
instances of that ADT is stored in a class ADT'C', and the column A of T BL; _R stores the OIDs of the
ADT instances. After substitution, a new variable 3V}(ADT C) is introduced, the path expression is
substituted with V... -, and an additional predicate A(V,.OID = V}.A) is included in P’. Therefore,
for each tuple T} of TBLy, there exists exactly one instance T, in ADTC' corresponding to T;.4, and
its OID equals T}.A. Therefore for each interpretation I(Po(T/V,T1/V1,T{/V{,---,T{/V{)), there
exists exactly one interpretation I(P'(T/V,T{/V{,---,

TV - TV, ,Ti/V])) so that both T1.A.---=T/.--- and T..OID = T} .A are true.

CASE 3 There is a path expression having the form V;.A. - -, and the type of A is a NRT. In the
schema transformation process, all the attributes of type(A) are expanded in TBL; and thus there
is a set of virtual attributes in TBL;, A_A},---, A_A}, where A},---, A} are attributes of type(A).
Therefore, for each tuple T of TBL., there is TBL.A_A, = TBL,.A.A},1 < i < k. Three subcases

are considered as following,

27

If the path expression is like V7.A.A}. - - -, the algorithm rewrites it as V7. A_A}.---.

If the path expression is like V4.4 and is used in the predicate like V.A; = V1. A, it is changed into a
set of predicates, V.4;.A] = V1. A_A\A\-- -AV.A; A} = V1. A_Al . Foreach I(Py(T/V, Ty /V1,T{/VY,---
that makes T.A; = Ty.A true, the formula T.A;. A} = T1.A_A{ AN --- ANT.A; AL = T1.A_A), is also

true, and vice versa.

If the path expression is like V3.4 and is used in other kind of predicates like S6V;.A, the
predicates are changed into S.PK 8 V;.A_PK. Here, PK is the primary key of type(A), S is either a
constant or a path expression. If S is a constant, S.PK, denotes the component that corresponds to
the attribute PK; if S is a path expression, S.PK is also a path expression. Because the primary key
always identifies a tuple, there is one to one correspondence between V1.4 and V;.A_PK. Therefore,
the transformed predicates are always equivalent to their original ones.

After the substitution, the newly created path expressions are in the form V;.A_A}.---. They
are further processed based on the type of A_A}, just like normal path expressions of V;. The final

result V'.A’.--- in P’ is equivalent to V1.A_A].--- as long as each further iteration, which applies

one of the eight cases, keeps the equivalence.

CASE 4 There is a path expression having the form V;.A.--- or V;.deref(A).-- -, and the type of
A is a reference type. Assume the referenced row type instances are stored in TBL!. For each tuple
Ty of TBLy, there exists a tuple T}, in TBL;_R such that T}.A stores the value of the primary key

of a tuple T}, in TBL!, to which T;.A refers. Three subcases are considered as following,

If the path expression is like Vj.deref(A).Al.---, a new variable V,/(TBL!) is introduced, the
path expression is changed into V.A;.---, and a new predicate V;.A = V,.PK is included. For
each I(Py(T/V.Ty/V1,T{/V{,--- ,T./V]))) there exists one and only one tuple T, in TBL. and T} in
TBL,_R, such that T} .deref(A).A'.--- =T}.A;.--- and T}.A = T|.PK.

If the path expression is like V).deref(A) and is used in the predicate like V.A; = Vi.deref(A),
it is changed into a set of predicates V.4;. A} = V. A\ A--- AV.A;.A] = V. AL ANV].A=V! PK.
For each I(Po(T/V.Ty/V1,T{/V{, - ,T./V])) there exists one and only one tuple 7" in TBL; and

T{ in TBL,_R, such that T}.A = T.PK. If T.A; = Ti.deref(A), then the formula T.4;. A} =

28

T/ V)

T AL AN---ANT. A A} =T, Al is also true, and vice versa.

If the path expression is like Vi .deref(A) or V;.A, it participates in the predicates like S 8 Vi .dere f(A)
or S0 V;.A. The predicates can be rewritten to S.PK 8 V,/.PK or deref(S).PK 0 V,].PK correspond-
ingly. Here, PK is the primary key of type(A), and S may either be a constant or a path expression.

If S is a constant S.PK denotes the component that represents the value of attribute PK in S. If S
is a path expression with the form Vg.A;.--- .A;, S.A; denotes a path expression Vg.A;.- -+ .A;.4;,
and deref(S).A; denotes a path expression Vs.A;.--- .deref(A;).A;. Because primary keys uniquely

identify tuples in a table, the rewritten predicate is true as long as the original one is true.

After the substitution, some newly created path expressions are in the form V'.A’..--. They
need further process based the type of A’. The final path expression V'.A’.--- in P’ is equivalent to

V!.AL.--- aslong as each further iteration, which applies one of the eight cases, keeps the equivalence.

CASE 5 There is a path expression having the form V;.A, and the type of A is a set of built-in
type. The values of the attribute A is now stored in a relational table TBL; _A_R. For each tuple T}
of TBL4, there is one and only one tuple T in TBL;,_A_R that corresponds to each value in T7.A
so that T%.A € T1.A and T1.PK = T,.PK. In P, V;.A participates in three kinds of predicates,

SeVi.A,SCVi.Aor V1.ACS, and S = V;7.A, where S is either a constant or path expression.

For S € V1.A, the algorithm changes the predicate into 3V4(TBL;-A_R)(S = V4. AANV,.PK =
V4.PK). Therefore for each interpretation I(Py(T/V,T1/V1, T{/V{,--- ,T{/V})), there exists exactly
one interpretation I(P'(T/V,T{/V{,--- ,--- , T} /V}, -+ ,Ts/V])) that corresponds to it. If I(S) €
Ty.Ajis true in I(F,), then there exists one tuple Ty € TBL;_A_R so that T;,.A = I(S) and T, .PK =
T;.PK. Otherwise, there is no such T that makes both T}.A = I(S) and T,.PK = T} .PK true.

For V1.A C S, the predicate is changed into -3V (TBL,-A_R)(V,.PK =V,.PKAV}.A ¢ S. For
S C V4.A, it is changed into S C {V(A)|3V4(TBL:1-A_R)(V.A = V}.AAV!.PK = V}.PK)}. Clearly
for each interpretation I(Po(T/V.Ty/V1,T{/V{,--- ,Ts/V})), there exists exactly one interpretation
pPr/v,I{/v{,---,--- T, /V{,--- ,T;/V])) that corresponds to it. If the inclusion predicate is

true for I(Fp), the transformed predicate is also true in I(P'), and vice versa.

For S = V;.A, it is changed into S = {V(A)|3V4(TBL,_A_R)(V.A = V{.AANV}.PK = V}.PK)}.

29

Like last subcase, we can show the transformed predicate is equivalent to the original one.

CASE 6 There is a path expression having the form V;.A.-- -, and the type of A is set of an ADT.
The instances of that ADT set is stored in a class TBL;_A_C, and the column A of T BL, _R stores the
OIDs of the ADT set instances. After substitution, a new variable 3V!(T'BL;_A_C) is introduced,
the path expression is substituted with V..---, and an additional predicate A(V/.OID = V,.A)
is included in P’'. Therefore, for each tuple T; of TBL4, there exists exactly one instance T, in
TBL,-A_C corresponding to 7.4, and its OID equals 7}.A. Therefore for each interpretation
I(Py(T/V, Th /W1, T{/V{,--- ,T}/V}])), there exists exactly one interpretation I(P'(T/V,T{/V{,---,

TV, - Ty [V, -, Ti/V]))) so that both Th.A.--- =T/.--- and T..OID =T} .A are true.

CASE 7 There is a path expression having the form V;.A.---, and the type of A is set of a NRT.
The schema transformation process outputs an intermediate OR table TBL 4. The columns in TBL 4
include all the attributes of type(A) and the primary key of type(TBL,), say PK. Therefore, for
each tuple T7 of TBL,, there exists a set of tuples in TBL 4 such that for each tuple in the set, we
have T4;.PK = T,.PK. Further, there exists one to one correspondence between values in T;.A and
the tuples in the set, such that I.A] = Ta;. A} A--- ANI. A}, = Ts;. A}, where I € Ty. A, Ty, is a tuple
of TBLy, and Af,--- , A} are all the attributes of type(A). Two subcases are considered here. Like
CASE 5, the path expression participates in three kinds of predicates, membership, inclusion, and

equivalence.

If the path expression is like V;.A.A}.---, the following transformations are applied based on
the predicate type it involves in. For S € Vj.A.A}.--- it is changed into 3V, (TBL4)(V4.PK =
Vi PK NV AL--- = 8). For S C Vi.AAj.--- or V1.AAj.--- C S, it is changed into S C
{V(TBLA.A)|V.PK = V/.PK} or =aV4{(TBLA)(V4.PK = V].PK AV}.Al.--- ¢ S) correspond-
ingly. For S = Vi.A.A;.---, it is changed into S = {V(TBL4.A}.---)|V.PK = V/.PK}. Here, if S
is a path expression, then S.A] is also a path expression; if S is a constant, then S.A} denotes the

components in S representing the values of attribute A;.

If the path expression is like V;.A, the following transformations are applied on the predicate type

it involves in. For S € V;.A, it is changed into 3V, (TBL4)(Vy.PK = V. PK AN V3. A] = S A A

30

-~ ANVg. Al = S.A}), where A},---, A} are all the attributes of type(A). For S C Vi.Aor V;.AC S,
it is changed into S.PK C {V(TBLA.PK)|V.PK = V!.PK} or -3V} (TBL4)(V}.PK = V! PK A
Vi.PK ¢ S.PK) correspondingly. For S = V;.A, it is changed into S.PK = {V(TBL4.PK)|V.PK =
Vi.PK}. Here, if S is a path expression, then S.A4} is also a path expression; if S is a constant, then

S.A} denotes the components in S representing the values of attribute Aj.

Like CASE 5, we can show the transformed predicates are equivalent to the original ones. After
the substitution, the newly created path expressions are in the form Vj.A}.---. They are further
processed based on the type of A. The final result V'.A’..-- in P’ is equivalent to V}.A}.--- as

long as each further iteration, which applies one of the eight cases, keeps the equivalence.

CASE 8 There is a path expression having the form V;.4 or Vi.deref(A).---, and the type of
A is a set of a NRT reference. Assume that the table holding the tuples referenced by A is TBL'.
The schema transformation process outputs an intermediate OR table TBL 4. The table has two
columuns, one (PK) stores the primary key of TBLy, the other (A_RPK) stores the primary key of
TBL'. Therefore, for each tuple T} of T BL,, there exists a set of tuples in T BL 4 such that for each
tuple in the set, we have T'y;. PK = T|.PK. Further, there exists one to one correspondence between
values in T7.A and the tuples in the set, such that deref(I).RPK = T;-A_-RPK, where I € Ty .A,
RPK is the primary key of TBL', and T'4; is a tuple of T BL 4. Three subcases are considered here.
Like CASE 5, the path expression participates in three kinds of predicates, membership, inclusion,

and equivalence.

If the predicate is like Vi.deref(A).AL. -- -, it may participates in three kinds of predicates, S €
Videref(A).Al.---, S C Videref(A).AL.--- or Vi.deref(A).A.--- C S,and S = Vi.deref(A).AL. ---
where S is either a constant or another path expression. The first kind of predicate is changed into
VI (TBL,),V4(TBL')(V,.PK =V} .PK AV,.RPK = V}.A RPK AV}.A,.--- = S). The second
kind of predicate is changed into S C {V(T'BL'.A;j.---)|3V4(TBLA)(V4.PK = V|.PKAV},.RPK =
Vi A_RPK)}or =3V (T BLA)(AVY(T'BL")(V).PK = V. PKAV}.RPK =V}, . A_LRPKAV}, A}.--- ¢

S)). The third kind of predicate is changed into

S ={V(TBL'.A..---)|3V4{(TBL4)(V4.PK = V{ .PK AV4.RPK = V;.A_RPK)}.

31

If the predicate is like V;.deref(A), the three kinds of predicates are transformed as following. If
the predicate is like S € Vi.deref(A), it is changed into 3V, (T BL), V4(TBL')
(Vi-PK = V. PK ANV},.RPK = V,.A_.RPK A V},.RPK = S.RPK). If the predicate is like S C

Vi.deref(A) or Vi.deref(A) C S, it is changed into

S.RPK C {V(TBL'.RPK)|3V,(TBL)(V}.PK = V|.PK AV},.RPK = V}.A_LRPK)},or

-3V, (TBL4)(3VL(TBL)(Vy.PK = V|.PK ANV}4.RPK = V. A.RPK AV},.RPK ¢ S.RPK))

correspondingly. If the predicate is like S = Vj.deref(A), it is changed into

S.RPK = {V(TBL'.RPK)3V4(TBL,)(V4.PK = V|.PK AV}.RPK = V}.A_.RPK)}.

Here, if S is a path expression, then S.RPK is also a path expression; if S is a constant, then S.RPK

denotes the components in S representing the values of attribute RPK.

If the predicate is like V;.A, the three kinds of predicates are transformed as following. If
the predicate is like S € V4.A, it is changed into 3V (TBLA)(V4.PK = V. PK A V,,.RPK =
deref(S).RPK). If the predicate is like S C V].A or V1.A C S, it is changed into deref(S).RPK C
{V(TBLA.RPK)|V,.PK = V}.PK} or ~3V4(TBLA)(V}.PK = V. PKAV}.A_-RPK ¢ deref(S).RPK)
correspondingly. If the predicate is like S = Vj.deref(A), it is changed into deref(S).RPK =
{V(TBLA.A_RPK)|V,.PK = V/.PK}. Here, both S and deref(S).RPK are path expressions.

Assume S is V.Ay.--- .A;, then deref(S).A; denotes a path expression V.A;.--- .deref(A;).A;.

Like CASE 5, these transformed predicates are equivalent to their original ones. After the
substitution, some newly created path expressions are in the form Vj.Al.---. They are further
processed based on the type of Aj. The final result V'.A’.--- in P’ is equivalent to V.AL.--- or as

long as each further iteration, which applies one of the eight cases, keeps the equivalence.

Therefore, we can see that for each interpretation I(Po(T/V,Ty/V1,T{/V{,---,T}/V})), there
exists exactly one corresponding interpretation I(P'(T/V,Ty/V{,---,T:/V))). Comparing the two

interpretations, all the newly added predicates in P’, which are introduced when substituting all

32

V1.A.--- like path expressions, are always true. All those predicates in P’ that simply have V;.4. - --
substituted with V/.A'.--. produce same value as their counterparts in Py because T7.A4.--- =
T].A'.--. always holds. All those predicates in P' that are transformed from predicates of Py
produce the same values of those of Py, as described above case by case. Therefore, we have

I(Po(T/V, s [Vi, T VY, TV{)) = I(P'(T/V, T{ VY, -, TL/V2), and further

I(P(T/V,T1/VA,- -+, Tn/ V) = I(P"(T/V, T{/ VY, - , T4/ V7))

That is, the theorem holds for any calculus with k variables. O

Here, we have shown that any query over the integrated OR schema is equivalent to the sub-
stituted queries over transformed local OO and relational schemes, and the substituted query is
equivalent to the partitioned queries. Therefore, the query over OR schema is equivalent to the
set of queries produced by the partitioning algorithm. That is, given a query over OR schema, the
execution of partitioned queries can always produce the same result as if there were an OR query

engine.

6 Conclusion

The object-relational data model opens up type system of traditional relational model, allowing more
complex data structures. This requires new facilities to manage the data and handle the queries.
Instead of building an object-relational DBMS from scratch, we proposed an approach to build the
OR system by integrating existing relational and OO database systems. In this paper, we focused on
the design of query partitioner in this heterogeneous architecture. The algorithm for implementing

this functionality has been proposed. The correctness of the process has also been proven here.

Comparing with the native implementation approaches, the performance of our approach is not
as good. However, it provides an easy way to build an experimental ORDBMS, and therefore gives

us a convenient platform to further study OR database issues.

Up to date, we have implemented the two algorithms of schema transformation and query parti-

33

tion, and will implement the full fledged heterogeneous system in the future. We have also observed
that the performance of generated queries need further optimization. For example, it is desirable to
reduce the number of join operations in the output query, and to reduce the interactions across the
two local DBMSs. Further research work will include the OR query optimisation issues, especially

in this heterogeneous environment.

References

[1SO, 1992] (1992). ISO/IEC 9075:1992, Database Language SQL- July 30, 1992. ISO/IEC.

[Beech, 1997] Beech, D. (1997). Can SQL3 be simplified? Database Programming and Design, pages

46-50.

[Carey and DeWitt, 1996] Carey, M. J. and DeWitt, D. J. (1996). Of objects and databases: A
decade of turmoil. In Proceedings of the 22nd International conference on VLDB, pages 3-14,

Mumbai (Bombay), India. VLDB, Morgan Kaufmann.

[Cattell, 1994] Cattell, R. G. G., editor (1994). The Object Database Standard: ODMG-93. Morgan

Kaufmann Publishers.

[Date and Darwen, 1993] Date, C. J. and Darwen, H. (1993). A Guide to The SQL Standard, 3rd

ed. Addison-Wesley, Reading, MA.

[Ishikawa et al., 1996] Ishikawa, H., Yamane, Y., Izumida, Y., and Kawato, N. (1996). An object-
oriented database system Jasmine: Implementation, application, and extension. IEEFE Transac-

tions on Knowledge and Data Engineering, 8(2):285-304.

[Kemper and Moerkotte, 1994] Kemper, A. and Moerkotte, G. (1994). Object-Oriented Database

Management: Application in Engineering and Computer Science. Pretice-Hall.

[Kulkarni et al., 1995] Kulkarni, K., Carey, M., DeMichiel, L., Mattos, N., Hong, W., Ubell, M.,
Nori, A., Krishnamurthy, V., and Beech, D. (1995). Introducing Reference Types and Cleaning up

SQL3’s Object Model. ISO DBL LHR-077 and ANSI X3H2-95-456 R2.

34

[Li et al., 1997] Li, H., Liu, C., and Orlowska, M. E. (1997). Extended algebra and calculus for

object-relational databases. information € Computation. Submitted.

[Liu et al., 1997] Liu, C., Orlowska, M. E., and Li, H. (1997). Realizing object-relational databases
by mixing tables with objects. In Proceedings of 4th International Conference on Object-Oriented

Information Systems. Springer-Verlag.
[Maier, 1983] Maier, D. (1983). The Theory of Relational Databases. Computer Science Press.

[Melton, 1995] Melton, J. (1995). (ISO/ANSI Working Draft) Database Language SQL3. ISO DBL

YOW-004 and ANSI X3H2-95-084.

[Meng et al., 1993] Meng, W., Yu, C., Kim, W., Wang, G., Pham, T., and Dao, S. (1993). Con-
struction of a relational front-end for object-oriented database systems. In Proceeding of 9th

International Conference on Data Engineering, pages 476—483.

[Quine, 1969] Quine, W. V. O. (1969). Set Theory and Its Logic, chapter 2. Virtual Classes, pages

15-21. The Belknap Press.

[Stonebraker, 1996] Stonebraker, M. (1996). Object-Relational DBMSs: The Next Great Wave. Mor-

gan Kaufmann.

[Stonebraker et al., 1990] Stonebraker, M., Rowe, L. A., and Hirohama, M. (1990). The implemen-

tation of POSTGRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125-142.

35

