
International Journal of Information Technology

Volume 6, No. 1 1 May 2000

AN EFFICIENT INDEX STRUCTURE
 FOR HIGH DIMENSIONAL IMAGE DATA

Myung Keun Shin1, Soon Young Huh1,
Seok Hee Lee2, Jae Soo Yoo2, Ki Hyoung Jo2 ,

 and Jang Sun Lee3

1 KAIST Graduate School of Management, Seoul, South Korea, 130-012
2 Department of Computer & Communication Engineering,

Chungbuk National University, San 48, Gaesin Dong,
Heungduk Ku, Cheongju, Chungbuk, South Korea, 361-763

3 Internet Service Department, Computer and Software Technology Lab.
Electronics and Telecommunications Research Institute

Kajong-Dong, Yusong-Gu, Taejon, 305-350, Korea

Abstract. The existing multi-dimensional index structures are not adequate for indexing higher-
dimensional data sets. Although conceptually they can be extended to higher dimensionalities,
they usually require time and space that grow exponentially with the dimensionality. In this pa-
per, we analyze the existing index structures and derive some requirements of an index structure
for content-based image retrieval. We also propose a new structure, called CIR(Content-based
Image Retrieval)-tree, for indexing large amount of point data in high dimensional space that sat-
isfies the requirements. In order to justify the performance of the proposed structure, we com-
pare the proposed structure with the existing index structures in various environments. We show,
through experiments, that our proposed structure outperforms the existing structures in terms of
retrieval time and storage overhead.

1. Introduction

Many recent applications such as image databases, medical databases, GIS and CAD/CAM
require enhanced indexing for content-based image retrieval. Content-based image retrieval is
to query large on-line databases using the content of images as the basis of queries. The Con-
tent examples include the color, texture, and shape of image objects and regions. In the applica-
tions that need content-based retrieval, indexing of high-dimensional data has become increas-
ingly important for fast retrieval. For example, in image databases, the image objects are usu-
ally mapped to feature vectors in some high-dimensional space. The queries are processed
against a database that consists of feature vectors. The index structures for the content-based
retrieval also efficiently need to process similarity queries that are related to some measure of
similarity between feature vectors.

There are several index structures for high dimensional data such as SS-tree [5], TV-tree
[11], X-tree [20] and SR-tree [16]. The SS-tree was proposed as an index structure to efficiently
support similarity search. The idea of TV-tree comes from the observation that, in most high-
dimensional data sets, a small number of the dimensions bears most of the information. The
main idea of the X-tree is to avoid the overlap of bounding boxes in the directory by using a
new organization of the directory that is optimized for high-dimensional space. The SR-tree is
an extension of the R*-tree [15] and the SS-tree [5]. The SR-tree uses both bounding spheres
and bounding rectangles to improve the performance on nearest neighbor queries. However,
they are not suitable for an indexing structure for content-based retrieval, because they usually
require time and space that grow exponentially with the dimensionality [18], although concep-
tually they can be extended to higher dimensionalities. The Pyramid-Technique [21] was pro-

International Journal of Information Technology

Volume 6, No. 1 2 May 2000

posed based on a special partitioning strategy to break the so-called curse of dimensionality. It
is suitable for high-dimensional range queries.

In this paper, we derive some design requirements of an index structure for content-based
image retrieval. We also propose a new structure, called CIR (Content-based Image Retrieval)-
tree, for indexing large amounts of point data in high dimensional space that satisfies the de-
rived requirements. We performed extensive experiments with a synthetic uniformly distributed
data as well as a real data. The relationships among various performance parameters are thor-
oughly investigated. We show through performance comparison based on experiments that
regardless of data distribution, the CIR-tree significantly improves performance in both of the
retrieval time and the storage overhead over TV-tree, X-tree and Pyramid-Technique.

The remainder of this paper is organized as follows. In section 2, we describe related work.
In section 3, we present a few requirements of an index structure for content-based retrieval. In
section 4, we propose a new indexing structure that satisfies the requirements. Section 5 per-
forms experiments to show that the proposed index structure outperforms existing index struc-
tures. Finally, conclusions are described in section 6.

2 Related Work

The R-tree [8] and its most successful variant, the R*-tree [15] have been used most often for
indexing high dimensional data in the database literature. The R-tree is a height-balanced tree
corresponding to the hierarchy of nested rectangles. The rectangle of an internal node is deter-
mined by the minimum bounding rectangle of those of its children. The rectangle of a leaf node
is determined by the minimum bounding rectangle of the data entries contained in that leaf.
Therefore, the rectangle of the root node corresponds to the minimum bounding rectangle of the
whole data entries, while the rectangle of an internal node corresponds to the minimum bound-
ing rectangle of the data entries contained in its lower leaves.

The R*-tree [15] has two major enhancements over the R-tree. First, rather than considering
the area only, it minimizes margin and overlap of each enclosing rectangle in the internal nodes.
Second, the R*-tree introduces the notion of forced reinsert to make the shape of the tree less
dependent on the order of insertion. However, the R-tree and the R*-tree explode exponentially
with the dimensionality, eventually reduce to sequential scanning.

R1 R2 R3 R4

A B C H F D I E G

R1

R4
R3

R2

A

B

C

D

E

G

I

F

H

Fig. 1. An example of TV-tree. In the root level, region R3 uses only one dimension for
discrimination. But other regions use two dimensions for discrimination.

The TV-tree [11] is a method in the database literature that was proposed specifically for
indexing high-dimensional data. The basis of the TV-tree is to use dynamically contracting and

International Journal of Information Technology

Volume 6, No. 1 3 May 2000

extending feature vectors. That is, it uses as little features as possible that are necessary to dis-
criminate the objects. An example of TV-tree is given in Fig. 1. The points designated from A
to I denote data points (only the first two dimensions are shown). In the root level, region R3
uses only one dimension for discrimination. But other regions use two dimensions for
discrimination.

However, the TV-tree would not handle overlap properly. To solve the overlap problem of
the TV tree, our proposed CIR-tree will suggest an improved ChooseSubtree algorithm that
chooses the most appropriate node for inserting an image object. The detail of the algorithm is
described in section 4.3.1. Also the CIR-tree adapts the supernode concept in Split algorithm to
alleviate the overlap problem.

The X-tree [20] was proposed as an index structure to avoid splits that would result in a
high degree of overlap in the directory. To do this, the X-tree uses a split algorithm that mini-
mizes overlap and additionally uses the concept of supernodes. Supernodes are large directory
nodes of variable size(a multiple of the usual block size). Supernodes are created during inser-
tion to avoid splits in the directory that would result in highly overlapped structure. The X-tree
uses the notion of maximum overlap value (MaxO) to decide whether it splits a node or extends
a node to a supernode. Most insertion algorithm split a node into two in case there occurs an
overflow. But, if the overlap of the two split nodes is larger than the MaxO, the X-tree extends
the original node into a supernode instead of splitting it. The suggested value of the MaxO in
[20] is 20%.

Due to the fact that the overlap is increasing with the dimension, the number and size of su-
pernodes increase with the dimension [20]. Fig. 2 shows three examples of X- tree with differ-
ent dimensionalities.

Although the overlap was reduced in the directory, the X-tree loses the efficiency of hierar-
chical structure. In Fig. 2, when the number of dimensions D is 32, the structure of the X-tree
looks linear because of large supernodes. However, because our CIR-tree uses smaller feature
vector than the X-tree in the directory, the size of supernodes will be decreased. Of course the
total size of the directory will be decreased.

3 Design requirements for high dimensional index structures

Under the condition that the features of images have been extracted, we analyze the properties
of the previously proposed high dimensional index structures and present desired design re-
quirements for high dimensional index structures. The design requirements are as follows.

D = 4:

D = 8:

D = 32:

Normal Directory Nodes Supernodes Leaf Nodes

Fig. 2. Various shapes of the X-tree in different dimensions

International Journal of Information Technology

Volume 6, No. 1 4 May 2000

The index structure must deal with high dimensional features efficiently.

Index structures for a content-based image retrieval system must deal with high dimen-
sional image features. Most existing multi-dimensional index structures are not adequate for
handling high dimensionality. When going to higher dimensions, they become extremely inef-
ficient because the number of nodes increases exponentially. When the index structure is con-
structed, the number of nodes should not increase exponentially as the number of dimension
increases.

The overlap between directory regions must be minimized.

In general, an overlap means a region that is covered by more than one directory area. As
the amount of data and the height of a tree increase, the overlap area increases remarkably with
growing dimensionality of data. Usually, since the overlap increases the number of paths to be
traversed, it produces bad effects on processing queries. As a result, the new index structure
should provide an algorithm to minimize the overlap.

Storage utilization must be optimized.

Higher storage utilization generally reduces the query cost since the height of the tree
would be kept low. Eventually, query types with large query regions are more likely to be influ-
enced since the concentration of regions in several nodes will have a stronger effect if the num-
ber of found keys is high.

The index structure must be appropriate to similarity retrieval.

Unlike conventional database systems, a content-based image retrieval system processes
queries based on similarity since images are not atomic symbol and unformatted data. There-
fore the index structure must process similarity queries efficiently.

The index structure must employ a similarity measure that can evaluate well similarity between
high-dimensional features.

In content-based retrieval system, image features are expressed as points in multi-
dimensional space. We use the Euclidean distance between two point objects as a similarity. In
general, since the dimensions of image features are independent with one another and different
in respect of relativity and distribution, measuring the similarity between two objects with just
Euclidean distance measure suffers limits on exactness. As a result, another similarity measure
must be employed.

The index structure must process various query types efficiently.

An index structure has to be able to process various query types such as exact match query,
partial match query, range query and k-nearest neighbor search query. We want a structure uni-
formly good at every query rather than very good at some queries but poor at other queries.

An index structure for content-based image retrieval system has to deal with high-dimensional
features dynamically.

Though there are certain applications having archival nature, i.e., insertions are less fre-
quent and updates/deletions are seldom necessary, the content-based image retrieval system in
practice requires a dynamic information storage structure.

International Journal of Information Technology

Volume 6, No. 1 5 May 2000

4. CIR(Content-based Image Retrieval)-tree

4.1. Characteristics

Various index structures for high dimensional data sets have been proposed. However, most of
them have the dimensionality problem, as surveyed in the previous sections, eventually loosing
the efficiency as an index structure. TV-tree and X-tree are the index structures proposed to
support efficient query processing of high-dimensional data. It is true that they are more ade-
quate index structure for high-dimensionality than existing index structures such as R-tree and
its variants. As we mentioned in the section 2, however, they suffer from processing image
data with a large number of features.

We propose a new high dimensional index structure, called CIR-tree, in order to alleviate
the problem. The proposed CIR-tree satisfies the design requirements mentioned in section 3.
The idea of CIR-tree came from the insights of these two structures, that is, the main character-
istics of the X-tree and the TV-tree. We applied the main idea of both tree structures to CIR-
tree in order to solve the dimensionality problem, and enhance the reinsert algorithm. For the
nodes that are close to the root node, we use just a few dimensions so that we can store more
branches and obtain a high fan out. On the other hand, we use more and more dimensions as
descending tree so that we can see more discrimination. In the CIR-tree, it is assumed that fea-
ture vectors for data objects are ordered in ascending order by its importance, and the impor-
tance can be obtained by employing various conversion functions [11].

Like other index structures, CIR-tree represents data with hierarchical structure. A node in
one level has its children nodes. This constitutes a hierarchical structure starting from a root
node to leaf nodes. An internal node includes the MBRs of its children nodes, and a leaf node
has feature vectors. The CIR-tree alleviates disadvantages of the index structures of R-tree
group. According to experimental evaluation of overlap in the R*-tree directories, overlap in-
creases to about 90% for high dimensionality larger than 5 [20]. The increase of overlap dete-
riorates the performance of index structure remarkably. The overlap can be increased when a
node is split or a record is inserted. The CIR-tree uses supernode concept of X-tree to reduce
the number of node splits and a split algorithm to avoid overlap when overflow occurs. That is,
the CIR-tree avoids overlap whenever it is possible without allowing the tree to degenerate.
Otherwise, the CIR-tree uses extended variable size directory nodes, so-called supernodes.
Therefore the structure of the CIR-tree is the mixture type of the linear array structure for rep-
resenting supernode and the hierarchical structure of the R-tree.

The CIR-tree uses forced reinsert operations that re-group entries between neighboring
nodes and thus decrease the overlap. The CIR-tree uses the concept of weighted center, or the
average coordinate of each entry, to enhance the reinsert algorithm. The use of the weighted
center significantly improves the clustering effect of nodes in the CIR-tree. Therefore the CIR-
tree has a chance to construct a condensed tree structure and to decrease the overlap between
neighboring nodes.

In general, the existing index structures use Euclidean distance as a similarity measure on
retrieval. However, the Euclidean distance is not appropriate as a distance measure for high
dimensional data because of its exactness limit. To alleviate such a problem, CIR-tree uses the
weighted Euclidean distance such as Equation #1. The weighted Euclidean distance processes
various kinds of similarity queries more efficiently than the Euclidean distance.

))(()(),(yxwdiagyxYXD T −−= (Equation #1)

where, x and y are feature vectors and w is a vector representing relative weight.

International Journal of Information Technology

Volume 6, No. 1 6 May 2000

4.2. Structure of the CIR-tree

The structure of the CIR-tree is similar to TV-tree except for supernodes. Each node con-
sists of pointers to child branches, and a MBR represents a child node. The MBR is a minimum
region containing all descendants of that branch, and has the feature vector as much as neces-
sary for discrimination.

The data structures of MBR are as follows:

struct MBR { Feature inactive,

 Feature lower,

 Feature upper };

struct Feature { float feature_value[];

 int no_of_dimensions };

where Feature denote ‘feature vector’.

A directory node contains the MBRs that represent minimum bounding region of all their
descendents. The data structure is as follows.

struct Branch_node { int no_of_element;

 list of(MBR) };

A leaf node includes actual feature vectors. The structure of the leaf node is as follows.

struct Leaf_node { int no_of_element;

 list of(Feature) };

A supernode is created when splitting a directory node. We will discuss the conditions of
creating supernodes in section 4.3.2, when we describe the split algorithm. The structure of
supernodes is represented as a continuous array of nodes

4.3. Algorithms in CIR-tree

4.3.1. Insertion algorithm

To insert a new object, we should find the branch at each level that is most suitable to hold the
new object, and then insert the new object to the chosen leaf node. If overflow occurs at this
time, we can cope with it by reinserting some entries in the node or splitting the node. After
inserting, splitting, and reinserting a node, we update the MBRs of affected nodes.

The insertion algorithm calls ChooseSubtree algorithm first. ChooseSubtree is very impor-
tant to make well-clustered tree structure. However, the TV-tree overlooks the clustering of
data. But in the CIR-tree, the second criteria shown below clusters similar object together.
Eventually, this reduces the overlap and significantly improves retrieval performance. The algo-
rithm ChooseSubtree uses the following criteria, in descending priority:

Select the MBR that has minimum number of new pairs of overlapping MBR within the
node. An example is in Fig. 3 (a).

International Journal of Information Technology

Volume 6, No. 1 7 May 2000

Select the MBR that uses more dimensions for discrimination. Fig. 3 (b) shows only the
first two dimensions. R1 and R2 are overlapped. R1 uses two dimensions for discrimination and
R2 uses one dimension for it. The R2 may have more regions in the direction of the next di-
mension. When inserting the point P, R1 is selected and R2 is not because R2 uses more dimen-
sions. Using more dimensions means that similar object are clustered in the small region.

Select the MBR whose center is close to a new object.

R2

R1

R3

New R1
New R2

New R3

(a) R3 is selected because extending
R1 or R2 will lead to a new pair
of overlapping regions.

(b) R1 is selected because R1 uses
two dimensions for
discrimination, but R2 uses
only first dimension.

R

R1

P

P

Fig. 3. Illustration of the criteria of ChooseSubtree algorithm

When overflow occurs during insertion, the CIR-tree first performs a more enhanced rein-
sert algorithm than the R*-tree. We will discuss the enhanced algorithm in the following sec-
tion. If another overflow occurs during reinsertion, the algorithm returns fail. Then it tries to
split the node. If the area of overlap within the node exceeds certain predetermined threshold
value in the split algorithm, the node is extended to supernode. The detail of split algorithm will
be explained in section 4.3.3. The pseudo code for insertion algorithm is as follows.

Algorithm Insertion

1. ChooseSubtree() // choose the best branch to follow,

 // descend the tree until the leaf

 // node is reached

2. Insert a new object into the leaf node.

3. if(node overflows)

4. Call Reinsert

5. if(Reinsert fail)

6. Call Split

5. if(the split routine returns supernode)

6. Extend the leaf node to supernode

7. else

8. Insert the MBRs of two split nodes

 into parent node

9. UpdateTree() // update the MBRs of the parent node

International Journal of Information Technology

Volume 6, No. 1 8 May 2000

4.3.2. Reinsert algorithm

In most tree structures for high dimensional data, including R-tree, R*-tree and TV-tree,
different insertion orderings of a set of records results in different trees. For this reason data
entries inserted during the early growth of the structure may have introduced bounding rectan-
gles, which cause a bad retrieval performance in current situation. As a result, the trees suffer
from the deterioration of tree performance.

Geometric center Weighted center

a) Reinsert with weighted center b) Reinsert with geometric center

Fig. 4. Comparison of a weighted center with a geometric center where p = 40%.
Reinsertion with weighted center makes smaller bounding rectangle.

The R-tree, the R*-tree and the TV-tree force the entries to be reinserted during the inser-
tion routine. But the X-tree does not perform reinsertion. Therefore the X-tree has more over-
lapped bounding rectangles, and as a result, it makes large supernodes that may decrease the
retrieval performance.

If overflow occurs, p entries farthest from the center of the node are deleted and they are re-
inserted from the top level. This provides a possibility of eliminating dissimilar entries from the
node so that it accomplishes more efficient clustering. The parameter p can be varied in per-
formance tuning stage. The experimentally suggested value of p in [15] is 30% of the maximum
number of entries in a node.

The R*-tree and TV-tree use geometric center to find the farthest entries. The CIR-tree uses

weighted center. The weighted center c of a node N is defined as:

n

e
c

n

i
i∑

= =1

Where ie denotes the center vector of the entry and n denotes the number of entries in a
node N.

International Journal of Information Technology

Volume 6, No. 1 9 May 2000

If we use the weighted center as a center of the node, the center of a node is moved toward
a place where, in its vicinity, the entries are more densely. Figure 4 shows the effect of the
weighted center when p = 40%. By using the weighted center, we can get smaller, or well-
clustered MBRs after deleting the farthest entries. In addition, the smaller MBRs would de-
crease the overlap. The computation cost for weighted center is linear in the number of entries
and in the number of dimensions. It is not a great burden in the whole algorithm.

Algorithm Reinsert

1. delete p% of entries from a node

2. insert them from the top level

3. if overflow occurs during insertion

4. return fail

5. else

6. return success

4.3.3 Split algorithm

The purpose of splitting is to divide the set of MBRs of vectors into two groups in order to
facilitate upcoming operations and provide high space usability. The creation and extension of
a supernode occur if there is no possibility to find a suitable hierarchical structure. In other
words, if the dividing of the MBRs does result in large overlap split, we does not split the node
but create a supernode of twice block size, or appending a block size if the current node is a
supernode.

When splitting a node, we sort the entries by the first dimension, then look for the best
break point in the sorted entries where the overlap of the two split MBRs gets the minimum. Of
course, both of the two split nodes have larger size than minimum fill factor. If the overlap ex-
ceeds the MaxO value, the directory node would be extended to a supernode. As mentioned in
section 2, we set the MaxO value to 20%.

Algorithm Split

1. find the first dimension with which overlap free split

 is Possible.

2. if the dimension found

3. do split

4. return the MBRs of two split nodes

5. else // overlap free split is impossible

6. split with the first active dimension

7. If(overlap_ratio > 0.2) return supernode

8. else return the MBRs of two split nodes

9. end

4.3.4. Search algorithm

In this algorithm, the search starts from root node. It examines whether there is intersection
between entries in the node and the search area or not. If the intersection exists, we traverse the
child nodes of the entries. Because MBRs are allowed to overlap, multiple branches can be
traversed. The following is the pseudo-code of search algorithm.

Algorithm Search

1. If(accessed node == Leaf node)

Evaluate the similarity of the query and the

 entries in the node.

International Journal of Information Technology

Volume 6, No. 1 10 May 2000

3. Return the objects satisfying the query according

 to similarity.

4. else // for directory nodes

5. Select all MBRs including the query for
 active dimensions.

6. Call the search algorithm recursively with

 child node that the selected MBR points to.

7. end

4.3.5. Nearest Neighbor Search algorithm

We used the Hjaltason and Samet’s algorithm [7] known as optimal. This algorithm uses the
MINDIST values as a metric to prune the node from the search list. The MINDIST is an Euclid-
ean distance between the query point and the nearest edge of the rectangle. Since the CIR-tree
and the TV-tree do not use full dimensions to compute the MINDIST value, the effectiveness of
pruning is degraded. To compensate this effect, the MINDIST value is re-scaled as

Dimensionactiveof

Dimensionfullof
MINDISTMINDIST

#

#
' ×=

Of course this may not retrieve exact k nearest neighbors. But in the reinsertion algorithm,
we use the distance as a metric to find the farthest entries, yielding well-clustered node. This
makes the modified MINDIST valid as a metric for pruning. In our experiment on 10 nearest
neighbor queries, only one or two records in the tail were different with the result of the X-tree.
In the case of the TV-tree, that did not make well-clustered index structure as the CIR-tree,
about 4 or 5 records are different with the result of the X-tree. This is because the choosing
subtree and the reinsertion algorithm is not efficient as the CIR-tree. The following is the
pseudo-code of nearest neighbor search algorithm.

Algorithm NN_Search

1. initialize SearchList with the child nodes of the root

2. sort SearchList by MINDIST

3. while (SearchList is not empty)

4. if (top of SearchList is a leaf)

5. find nearest point NNP

6. if(NNP is closer than NN)

7. prune SearchList with NNP

8. let NNP be the new NN

9. else

10. replace top of SearchList with its child nodes

11. endif

12. sort SearchList by MINDIST

13. endwhile

4.3.6. Deletion

Deletion is quite simple unless underflow occurs. In this case, the remaining entries of the node
will be deleted and reinserted. The underflow may propagate to upper level.

International Journal of Information Technology

Volume 6, No. 1 11 May 2000

4.3.7. The properties of CIR-tree

The proposed CIR-tree uses a variable number of dimensions when constructing tree to support
high-dimensional data efficiently. For nodes that are close to the root node, we use just a few
dimensions to store more data in a node. This tree provides higher fan out in the top levels, so
the height of the tree becomes lower. In that result, the number of disk accesses reduces, simi-
larity retrieval becomes easier, and the efficiency of storage space increases. It processes vari-
ous query types more effectively, and facilitates deletion and insertion process as well. Also,
the CIR-tree uses weighted Euclidean distance for more exactly evaluating similarity between a
query and an object. Using supernode, it minimizes overlap, so it reduces the factors that dete-
riorate retrieval performance. However, since it employs weighted Euclidean distance, in order
to give weight to each feature we need to get advice from domain experts.

5. Experiments

We show the characteristics of proposed CIR-tree by comparing its performance with those of
TV-tree, X-tree and Pyramid-Technique. In this experiment, we used SUN SPARC station 20
with 128Megabytes of main memory and 6 Gigabytes of hard disk. All simulation programs
were implemented with ANSI C++ and compiled with GNU C++ compiler. We used the TV-
tree, the X-tree and the Pyramid-Technique programs without modifying the program sources
that were implemented by the authors of the references [11, 20, 21]. The size of each block in
these experiments is 4Kbytes. As a synthetic data set, we generated 2,000,000 uniformly dis-
tributed floating point numbers between 0.0 and 10.0, and then we grouped them with desired
dimensions to make the data points. The dimension was varied from D=4 with 500,000 data
points up to D=18 with 111,111 data points.

5.1 Insertion performance

Because the CIR-tree uses the reinsertion technique in insertion algorithm, the insertion cost of
the CIR-tree is higher than those of the X-tree and the Pyramid-Technique which do not use the
reinsertion technique. The Pyramid-Technique always spends less time than the CIR-tree, but as
the size of the supernode grows, the X-tree tends to spend more time than the CIR-tree.

5.2 Retrieval performance

0

2

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18

Dimension

A
ve

ra
ge

 s
iz

e
of

 d
ir

ec
to

ry
no

de
s

X-tree CIR-tree

Fig. 5. The number of page accesses for
an exact match query

Fig. 6. An average size of directory nodes

0

10

20

30

40

50

60

70

80

90

4 6 8 10 12 14 16 18

Dimension

Pa
ge

 a
cc

es
se

s

X-tree CIR-tree TV-tree

International Journal of Information Technology

Volume 6, No. 1 12 May 2000

Fig. 5 and Fig. 6 show the comparison result of three index structures for uniformly distrib-
uted data. We have applied 50,000 exact match queries for each dimension. Note that, to count
the page accesses, the access to supernode of size s was counted as s page accesses. As shown
in Fig. 5, the CIR-tree outperforms other index trees. Since the number of data points is de-
creased with increasing number of dimensions, page accesses of the TV-tree with dimension
are reduced. The retrieval performance of the X-tree depends on the size of supernodes. For
large supernodes, for example D=12, the increase of page accesses of the X-tree is significant.
Because the CIR-tree maintains small size of directory, the number and the size of supernodes
are smaller than those of the X-tree. Eventually the CIR-tree always provides better perform-
ance for each dimension.

We also performed the range queries and the nearest neighbor queries with the TV-tree, the
X-tree and the CIR-tree. For the range query we first generated 5,000 center vector using ran-
dom number generation, then made range two bounding rectangles; for upper bound vector we
added one to each dimension of the center vector, for lower bound vector we subtract one from
the center vector. We extended the TV-tree source with the functions that process the range
queries and the neighbor queries. The original source of the TV-tree supports point query only.
The result of the range queries is presented in Fig. 7. Similar to the result shown in Fig. 5, the
page accesses of the X-tree depends on the size of supernodes. And the page accesses of the
CIR-tree is kept stable.

4

504

1004

1504

2004

2504

3004

4 6 8 10 12 14 16 18

Dimension

P
a
g
e

a
c
c
e
s
s
e
s

X-tree CIR-tree

0

10

20

30

40

50

60

70

4 6 8 10 12 14 16 18

Dimension

Pa
ge

 a
cc

es
se

s

X-tree CIR-tree TV-tree

Fig. 7. Range query Fig. 8. 10 nearest neighbor query

Fig. 8 shows the results of 10 nearest neighbor queries. Because the result of the k nearest
neighbor queries with the TV-tree was meaningless, we exclude the page accesses of the TV-
tree in the figure. The page accesses of the X-tree is increased exponentially with dimension.
But the page accesses of the CIR-tree is increased linearly with dimension.

Finally, we compared the CIR-tree with the Pyramid-Technique by using a real data set. We
used the letter image recognition data in [2] as the real data set. It was 20,000 points of 17 di-
mensional data (1 category and 16 numeric features). The category was one of the 26 capital
letters in the English alphabet and the numeric features were scaled to fit into a range of integer
values from 0 to 15. Fig. 9 is the experimental results with the real data that the CIR-tree shows
better performance than the Pyramid-Technique in range query and nearest neighbor query.
Note that, in Fig. 9 (a), the difference of the number of the page accesses of the two methods
gets smaller as the range increases. The CIR-tree seems better than the Pyramid-Technique in
large ranges, but we cannot definitely say that it is superior to the Pyramid-Technique because
the Pyramid-Technique has simple node structure than the CIR-tree. In other words, although

International Journal of Information Technology

Volume 6, No. 1 13 May 2000

the Pyramid-Technique needs more page accesses than the CIR-tree, it may spend less CPU
time than the CIR-tree because of its simple node structure.

(a) Range query

4

54

104

154

204

254

1 2 3 4 5 6 7 8 9

Query range

P
a
g
e

a
c
c
e
s
s
e
s

Pyramid T . CIR-tree

4

24

44

64

84

104

124

5,000 10,000 15,000 20,000

Num ber of objects

P
a
g
e

a
c
c
e
s
s
e
s

Pyramid T . CIR-tree

Fig. 9. Comparison with Pyramid Technique by using the real data

(b) 10 Nearest neighbor query

5.3. Storage space

Fig. 10 shows an experimental result of each index structure in terms of storage space. Due to
the fact that the CIR-tree and X-tree create similar numbers of leaf nodes, the comparison of the
number of leaf nodes is meaningless. So we only compared the number of directory nodes. The
figure shows that the space usage of the X-tree increases with the number of dimensions, but
the space usage of the CIR-tree is kept stable. This is because the CIR-tree stores small number
of features in the directory node for all dimensions. The CIR-tree creates small number of
nodes and the tree uses the storage space effectively. As a result, the performance comparison
in terms of storage space shows that the storage overhead of the CIR-tree is much less than that
of the X-tree.

0

50

100

150

200

250

4 6 8 10 12 14 16 18

Dimension

N
u
m
b
e
r

o
f

d
i
r
e
c
t
o
r

X-tree

CIR-tree

Fig. 10. Number of directory nodes depending on the dimensionality

International Journal of Information Technology

Volume 6, No. 1 14 May 2000

6. Conclusion

In this paper, we have analyzed existing index structure for high dimensional data and proposed
several desired design requirements that the new index structure must have. We have also pro-
posed new efficient index structure, called CIR-tree, which followed the design requirements.
Since the proposed CIR-tree used fewer dimensions at upper levels, it was able to store more
data at a node. This method produced high fan out at upper levels. As a result, the height of
the tree become lower, solving the dimensionality problems that we mentioned several times
before. This supported high dimensional data more efficiently, and diminished disk accesses
and improved the disk storage utilization. By using the weighted center, proposed in this paper,
in the reinsert algorithm, the CIR-tree produced well-clustered structure with less overlap. The
CIR-tree has also used weighted Euclidean distance measure to overcome the exactness prob-
lem of Euclidean distance and used supernode in order to minimize overlap.

We have compared the proposed CIR-tree with the TV-tree, the X-tree and the Pyramid-
Technique through various experiments to manifest the superiority of our tree. The experi-
ments have showed that the CIR-tree outperformed the TV-tree, the X-tree and the Pyramid-
Technique in terms of retrieval speed and space requirements. But the CIR-tree needs further
investigation to improve nearest neighbor query performance.

Acknowledgment

This work was supported in part by Korea Science and Engineering Foundation (KOSEF. 1999-
1-303-007-3) and the Ministry of Information & Communication of Korea("Support Project of
University foundation research<'99> " supervised by IIT.

References

1. B. Furht, S. W. Smoliar and H. Zhang, "Video and Image Processing in Multimedia Systems," Klu-
wer Academic Publishers, 1995.

2 Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases,
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Depart-
ment of Information and Computer Science.

3. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic and W. Equiz., "Efficient
and Effective Querying by Image Content," Journal of Intelligent Information System(JIIS),
3(3):231-262, July 1994.

4. Charles E. Jacobs, Adam Finkelstein, David H. Salesin., "Fast Multiresolution Image Query." Proc.
ACM SIGGRAPH, New York, 1995.

5. D. A. White and R. Jain, "Similarity Indexing with the SS-tree," Proc. 12th Int. Conf. On Data Engi-
neering, New Orleans, pp. 516-523, 1996.

6. D. A. White and R. Jain, "Similarity Indexing: Algorithms and Performance," Proc. SPIE: Storage
and Retrieval for Image and Video Databases IV, Vol. 2670, pp.62-75, 1996.

7. Gisli R. Hjaltason and Hanan samet, "Ranking in spatial Databases," Proc. 4th Symposium on Spatial
Databases, Portland, Maine, Aug. 1995, pp.83-95.

8. Guttman A., "R-trees: A Dynamic Index Structure for spatial Searching," Proc. 7th Int. Conf. on Data
Engineering, 1991, pp.520-527.

9. J. K. Wu, A. Desai Narasimhalu, B. M. Mehtre, C. P. Lam and Y. J. Gao, "CORE: a contentbased
retrieval engine for multimedia systems.," ACM Multimedia Systems, 3:25-41, 1995.

J. T. Robinson, "The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes,"
ACM SIGMOD, pp. 10-18, Apr. 1981.

11. K. I. Lin, H. Jagadish and C. Faloutsos, "The TV-tree: An Index Structure for High Dimensional
Data", VLDB Journal, Vol. 3, pp.517-542, 1994.

International Journal of Information Technology

Volume 6, No. 1 15 May 2000

12. Lomet D., "A Review of Recent Work on Multi-attribute Access Methods," ACM SIGMOD RE-
CORD, Vol. 21, No. 3, pp. 56-63, Sept. 1992.

13. M. J. Swain and D. H. Ballard, "Color indexing,” International Journal of Computer Vision," 7(1):11-
32, 1991.

14. Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,
Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele and Peter Yanker, "Query
by Image and Video Content: The QBIC System," IEEE Computer, 28(9), 1995.

15. N. Beckmann, H. P. Kriegel, R. Schneider and B. Seeger "The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles," ACM SIGMOD, pp.322-331, May 1990.

16. Norio Katayama and Shin’ichi satoh, "The SR-tree: An Index Structure for High-Dimensional Near-
est Neighbor Queries," Proc. ACM SIGMOD Int. Conf. On Management of Data, Tucson, Arizona,
pp. 369-380, 1997.

17. P. M. Kelly, T. M. Cannon and D. R. Hush., "Query by image example: the CANDID approach,"
Proc. SPIE Storage and Retrieval for Image and Video Database III, 2420:238-248, 1995.

18. Roger Weber, Hans-Jorg Schek and Stephen Blott, "A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces," Proc. 24th VLDB Conf., New York,
USA, pp 194-205, 1998.

19. Roussopoulos N., Kelley S., Vincent F., "Nearest Neighbor Queries," Proc. ACM SIGMOD Int.
Conf. On Management of Data, San Jose, CA, pp. 71-79, 1995.

20. S. Berchtold, D. A. Keim and H.-P. Kriegel, "The X-tree: An Index Structure for High-Dimensional
Data," Proc. 22nd VLDB Conf., Bombay, India, pp. 28-39, Sep. 1996

21. S. Berchtold, Christian Bohm and Hans-Peter Kriegel, "The Pyramid-Technique: Towards Breaking
the Curse of Dimensionality," Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, WA,
pp. 142-153, 1998.

22. W. E. Mackay and G. Davenport, "Virtual video editing in interactive multimedia applications,"
Communications of the ACM, 32:802-810, July 1989.

23. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos
and G. Taubin, "The QBIC project: Querying image by content using color, texture and shape." Proc.
SPIE Storage and Retrieval for Image and Video Databases, pp. 173-187, Feb. 1993.

24. Y. Alp Aslandogan, Chuck Their, Clement T. Yu, Chengwen Liu and Krishnakumar R. Nair, "De-
sign, Implementation and Evaluation of SCORE (a System for Content based Retrieval of pictures),"
Proc. 11th Int. Conf. of Data Engineering, pp. 280-287, 1995.

