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Abstract. The existing multi-dimensional index structures are not adequate for indexing higher-
dimensional data sets. Although conceptually they can be extended to higher dimensionalities, 
they usually require time and space that grow exponentially with the dimensionality. In this pa-
per, we analyze the existing index structures and derive some requirements of an index structure 
for content-based image retrieval.  We also propose a new structure, called CIR(Content-based 
Image Retrieval)-tree, for indexing large amount of point data in high dimensional space that sat-
isfies the requirements.  In order to justify the performance of the proposed structure, we com-
pare the proposed structure with the existing index structures in various environments.  We show, 
through experiments, that our proposed structure outperforms the existing structures in terms of 
retrieval time and storage overhead. 

1. Introduction 

Many recent applications such as image databases, medical databases, GIS and CAD/CAM 
require enhanced indexing for content-based image retrieval. Content-based image retrieval is 
to query large on-line databases using the content of images as the basis of queries. The Con-
tent examples include the color, texture, and shape of image objects and regions. In the applica-
tions that need content-based retrieval, indexing of high-dimensional data has become increas-
ingly important for fast retrieval. For example, in image databases, the image objects are usu-
ally mapped to feature vectors in some high-dimensional space. The queries are processed 
against a database that consists of feature vectors. The index structures for the content-based 
retrieval also efficiently need to process similarity queries that are related to some measure of 
similarity between feature vectors. 

There are several index structures for high dimensional data such as SS-tree [5], TV-tree 
[11], X-tree [20] and SR-tree [16]. The SS-tree was proposed as an index structure to efficiently 
support similarity search. The idea of TV-tree comes from the observation that, in most high-
dimensional data sets, a small number of the dimensions bears most of the information. The 
main idea of the X-tree is to avoid the overlap of bounding boxes in the directory by using a 
new organization of the directory that is optimized for high-dimensional space. The SR-tree is 
an extension of the R*-tree [15] and the SS-tree [5]. The SR-tree uses both bounding spheres 
and bounding rectangles to improve the performance on nearest neighbor queries. However, 
they are not suitable for an indexing structure for content-based retrieval, because they usually 
require time and space that grow exponentially with the dimensionality [18], although concep-
tually they can be extended to higher dimensionalities. The Pyramid-Technique [21] was pro-
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posed based on a special partitioning strategy to break the so-called curse of dimensionality. It 
is suitable for high-dimensional range queries. 

In this paper, we derive some design requirements of an index structure for content-based 
image retrieval. We also propose a new structure, called CIR (Content-based Image Retrieval)-
tree, for indexing large amounts of point data in high dimensional space that satisfies the de-
rived requirements. We performed extensive experiments with a synthetic uniformly distributed 
data as well as a real data. The relationships among various performance parameters are thor-
oughly investigated. We show through performance comparison based on experiments that 
regardless of data distribution, the CIR-tree significantly improves performance in both of the 
retrieval time and the storage overhead over TV-tree, X-tree and Pyramid-Technique. 

The remainder of this paper is organized as follows. In section 2, we describe related work. 
In section 3, we present a few requirements of an index structure for content-based retrieval. In 
section 4, we propose a new indexing structure that satisfies the requirements. Section 5 per-
forms experiments to show that the proposed index structure outperforms existing index struc-
tures. Finally, conclusions are described in section 6. 

2   Related Work 

The R-tree [8] and its most successful variant, the R*-tree [15] have been used most often for 
indexing high dimensional data in the database literature. The R-tree is a height-balanced tree 
corresponding to the hierarchy of nested rectangles. The rectangle of an internal node is deter-
mined by the minimum bounding rectangle of those of its children. The rectangle of a leaf node 
is determined by the minimum bounding rectangle of the data entries contained in that leaf. 
Therefore, the rectangle of the root node corresponds to the minimum bounding rectangle of the 
whole data entries, while the rectangle of an internal node corresponds to the minimum bound-
ing rectangle of the data entries contained in its lower leaves. 

The R*-tree [15] has two major enhancements over the R-tree. First, rather than considering 
the area only, it minimizes margin and overlap of each enclosing rectangle in the internal nodes. 
Second, the R*-tree introduces the notion of forced reinsert to make the shape of the tree less 
dependent on the order of insertion. However, the R-tree and the R*-tree explode exponentially 
with the dimensionality, eventually reduce to sequential scanning. 
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Fig. 1. An example of TV-tree. In the root level, region R3 uses only one dimension for 
discrimination. But other regions use two dimensions for discrimination. 

 

The TV-tree [11] is a method in the database literature that was proposed specifically for 
indexing high-dimensional data. The basis of the TV-tree is to use dynamically contracting and 
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extending feature vectors. That is, it uses as little features as possible that are necessary to dis-
criminate the objects. An example of TV-tree is given in Fig. 1. The points designated from A 
to I denote data points (only the first two dimensions are shown). In the root level, region R3 
uses only one dimension for discrimination. But other regions use two dimensions for 
discrimination. 

However, the TV-tree would not handle overlap properly. To solve the overlap problem of 
the TV tree, our proposed CIR-tree will suggest an improved ChooseSubtree algorithm that 
chooses the most appropriate node for inserting an image object. The detail of the algorithm is 
described in section 4.3.1. Also the CIR-tree adapts the supernode concept in Split algorithm to 
alleviate the overlap problem. 

The X-tree [20] was proposed as an index structure to avoid splits that would result in a 
high degree of overlap in the directory. To do this, the X-tree uses a split algorithm that mini-
mizes overlap and additionally uses the concept of supernodes. Supernodes are large directory 
nodes of variable size(a multiple of the usual block size). Supernodes are created during inser-
tion to avoid splits in the directory that would result in highly overlapped structure. The X-tree 
uses the notion of maximum overlap value (MaxO) to decide whether it splits a node or extends 
a node to a supernode. Most insertion algorithm split a node into two in case there occurs an 
overflow. But, if the overlap of the two split nodes is larger than the MaxO, the X-tree extends 
the original node into a supernode instead of splitting it. The suggested value of the MaxO in 
[20] is 20%. 

Due to the fact that the overlap is increasing with the dimension, the number and size of su-
pernodes increase with the dimension [20]. Fig. 2 shows three examples of X- tree with differ-
ent dimensionalities. 

Although the overlap was reduced in the directory, the X-tree loses the efficiency of hierar-
chical structure. In Fig. 2, when the number of dimensions D is 32, the structure of the X-tree 
looks linear because of large supernodes. However, because our CIR-tree uses smaller feature 
vector than the X-tree in the directory, the size of supernodes will be decreased. Of course the 
total size of  the directory will be decreased. 

3   Design requirements for high dimensional index structures 

Under the condition that the features of images have been extracted, we analyze the properties 
of the previously proposed high dimensional index structures and present desired design re-
quirements for high dimensional index structures. The design requirements are as follows. 

D = 4: 

D = 8: 

D = 32: 

Normal Directory Nodes Supernodes Leaf Nodes 

Fig. 2. Various shapes of the X-tree in different dimensions 
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The index structure must deal with high dimensional features efficiently. 

Index structures for a content-based image retrieval system must deal with high dimen-
sional image features.  Most existing multi-dimensional index structures are not adequate for 
handling high dimensionality.  When going to higher dimensions, they become extremely inef-
ficient because the number of nodes increases exponentially. When the index structure is con-
structed, the number of nodes should not increase exponentially as the number of dimension 
increases.   

The overlap between directory regions must be minimized. 

In general, an overlap means a region that is covered by more than one directory area.  As 
the amount of data and the height of a tree increase, the overlap area increases remarkably with 
growing dimensionality of data.  Usually, since the overlap increases the number of paths to be 
traversed, it produces bad effects on processing queries. As a result, the new index structure 
should provide an algorithm to minimize the overlap. 

Storage utilization must be optimized. 

Higher storage utilization generally reduces the query cost since the height of the tree 
would be kept low. Eventually, query types with large query regions are more likely to be influ-
enced since the concentration of regions in several nodes will have a stronger effect if the num-
ber of found keys is high. 

The index structure must be appropriate to similarity retrieval. 

Unlike conventional database systems, a content-based image retrieval system processes 
queries based on similarity since images are not atomic symbol and unformatted data. There-
fore the index structure must process similarity queries efficiently.  

The index structure must employ a similarity measure that can evaluate well similarity between 
high-dimensional features. 

In content-based retrieval system, image features are expressed as points in multi-
dimensional space. We use the Euclidean distance between two point objects as a similarity.  In 
general, since the dimensions of image features are independent with one another and different 
in respect of relativity and distribution, measuring the similarity between two objects with just 
Euclidean distance measure suffers limits on exactness.  As a result, another similarity measure 
must be employed. 

The index structure must process various query types efficiently. 

An index structure has to be able to process various query types such as exact match query, 
partial match query, range query and k-nearest neighbor search query. We want a structure uni-
formly good at every query rather than very good at some queries but poor at other queries. 

An index structure for content-based image retrieval system has to deal with high-dimensional 
features dynamically. 

Though there are certain applications having archival nature, i.e., insertions are less fre-
quent and updates/deletions are seldom necessary, the content-based image retrieval system in 
practice requires a dynamic information storage structure. 
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4. CIR(Content-based Image Retrieval)-tree 

4.1. Characteristics 

Various index structures for high dimensional data sets have been proposed.  However, most of 
them have the dimensionality problem, as surveyed in the previous sections, eventually loosing 
the efficiency as an index structure.  TV-tree and X-tree are the index structures proposed to 
support efficient query processing of high-dimensional data.  It is true that they are more ade-
quate index structure for high-dimensionality than existing index structures such as R-tree and 
its variants.  As we mentioned in the section 2, however, they suffer from processing image 
data with a large number of features.  

We propose a new high dimensional index structure, called CIR-tree, in order to alleviate 
the problem. The proposed CIR-tree satisfies the design requirements mentioned in section 3. 
The idea of CIR-tree came from the insights of these two structures, that is, the main character-
istics of  the X-tree and the TV-tree.  We applied the main idea of both tree structures to CIR-
tree in order to solve the dimensionality problem, and enhance the reinsert algorithm.  For the 
nodes that are close to the root node, we use just a few dimensions so that we can store more 
branches and obtain a high fan out.  On the other hand, we use more and more dimensions as 
descending tree so that we can see more discrimination.  In the CIR-tree, it is assumed that fea-
ture vectors for data objects are ordered in ascending order by its importance, and the impor-
tance can be obtained by employing various conversion functions [11]. 

Like other index structures, CIR-tree represents data with hierarchical structure. A node in 
one level has its children nodes. This constitutes a hierarchical structure starting from a root 
node to leaf nodes. An internal node includes the MBRs of its children nodes, and a leaf node 
has feature vectors. The CIR-tree alleviates disadvantages of the index structures of R-tree 
group.  According to experimental evaluation of overlap in the R*-tree directories, overlap in-
creases to about 90% for high dimensionality larger than 5 [20]. The increase of overlap dete-
riorates the performance of index structure remarkably. The overlap can be increased when a 
node is split or a record is inserted. The CIR-tree uses supernode concept of X-tree to reduce 
the number of node splits and a split algorithm to avoid overlap when overflow occurs. That is, 
the CIR-tree avoids overlap whenever it is possible without allowing the tree to degenerate. 
Otherwise, the CIR-tree uses extended variable size directory nodes, so-called supernodes. 
Therefore the structure of the CIR-tree is the mixture type of the linear array structure for rep-
resenting supernode and the hierarchical structure of the R-tree.   

The CIR-tree uses forced reinsert operations that re-group entries between neighboring 
nodes and thus decrease the overlap. The CIR-tree uses the concept of weighted center, or the 
average coordinate of each entry, to enhance the reinsert algorithm. The use of the weighted 
center significantly improves the clustering effect of nodes in the CIR-tree. Therefore the CIR-
tree has a chance to construct a condensed tree structure and to decrease the overlap between 
neighboring nodes. 

In general, the existing index structures use Euclidean distance as a similarity measure on 
retrieval. However, the Euclidean distance is not appropriate as a distance measure for high 
dimensional data because of its exactness limit. To alleviate such a problem, CIR-tree uses the 
weighted Euclidean distance such as Equation #1. The weighted Euclidean distance processes 
various kinds of similarity queries more efficiently than the Euclidean distance. 

))(()(),( yxwdiagyxYXD T −−=               (Equation #1) 

where, x and y are feature vectors and w is a vector representing relative weight.  
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4.2. Structure of the CIR-tree 

The structure of the CIR-tree is similar to TV-tree except for supernodes.  Each node con-
sists of pointers to child branches, and a MBR represents a child node.  The MBR is a minimum 
region containing all descendants of that branch, and has the feature vector as much as neces-
sary for discrimination.  

The data structures of MBR are as follows: 
 

struct     MBR { Feature  inactive, 

 Feature  lower, 

 Feature  upper }; 

 

struct Feature { float feature_value[]; 

 int no_of_dimensions }; 

where Feature denote ‘feature vector’. 

A directory node contains the MBRs that represent minimum bounding region of all their 
descendents. The data structure is as follows.   

 

struct Branch_node { int no_of_element; 

  list  of(MBR) }; 

 

A leaf node includes actual feature vectors. The structure of the leaf node is as follows. 
 

struct Leaf_node { int no_of_element; 

  list of(Feature) }; 

 

A supernode is created when splitting a directory node. We will discuss the conditions of 
creating supernodes in section 4.3.2, when we describe the split algorithm. The structure of 
supernodes is represented as a continuous array of nodes 

4.3. Algorithms in CIR-tree 

4.3.1. Insertion algorithm 

To insert a new object, we should find the branch at each level that is most suitable to hold the 
new object, and then insert the new object to the chosen leaf node. If overflow occurs at this 
time, we can cope with it by reinserting some entries in the node or splitting the node. After 
inserting, splitting, and reinserting a node, we update the MBRs of affected nodes. 

The insertion algorithm calls ChooseSubtree algorithm first. ChooseSubtree is very impor-
tant to make well-clustered tree structure. However, the TV-tree overlooks the clustering of 
data. But in the CIR-tree, the second criteria shown below clusters similar object together. 
Eventually, this reduces the overlap and significantly improves retrieval performance. The algo-
rithm ChooseSubtree uses the following criteria, in descending priority: 

Select the MBR that has minimum number of new pairs of overlapping MBR within the 
node. An example is in Fig. 3 (a). 
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Select the MBR that uses more dimensions for discrimination. Fig. 3 (b) shows only the 
first two dimensions. R1 and R2 are overlapped. R1 uses two dimensions for discrimination and 
R2 uses one dimension for it. The R2 may have more regions in the direction of the next di-
mension. When inserting the point P, R1 is selected and R2 is not because R2 uses more dimen-
sions. Using more dimensions means that similar object are clustered in the small region. 

Select the MBR whose center is close to a new object. 

R2 

R1 

R3 

New R1 
New R2 

New R3 

(a) R3 is selected because extending
R1 or R2 will lead to a new pair
of overlapping regions. 

(b) R1 is selected because R1 uses
two dimensions for
discrimination, but R2 uses
only first dimension. 

R

R1 

P 

P 

Fig. 3. Illustration of the criteria of ChooseSubtree algorithm 

 

When overflow occurs during insertion, the CIR-tree first performs a more enhanced rein-
sert algorithm than the R*-tree. We will discuss the enhanced algorithm in the following sec-
tion. If another overflow occurs during reinsertion, the algorithm returns fail. Then it tries to 
split the node. If the area of overlap within the node exceeds certain predetermined threshold 
value in the split algorithm, the node is extended to supernode. The detail of split algorithm will 
be explained in section 4.3.3. The pseudo code for insertion algorithm is as follows. 

Algorithm Insertion 

1. ChooseSubtree() // choose the best branch to follow,  

 // descend the tree until the leaf  

 // node is reached 

2. Insert a new object into the leaf node. 

3. if(node overflows)  

4.     Call Reinsert 

5.     if(Reinsert fail) 

6.         Call Split 

5.         if( the split routine returns supernode) 

6.              Extend the leaf node to supernode 

7.         else 

8.              Insert the MBRs of two split nodes  

                into parent node 

9. UpdateTree()   // update the MBRs of the parent node 
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4.3.2. Reinsert algorithm 

In most tree structures for high dimensional data, including R-tree, R*-tree and TV-tree, 
different insertion orderings of a set of records results in different trees. For this reason data 
entries inserted during the early growth of the structure may have introduced bounding rectan-
gles, which cause a bad retrieval performance in current situation. As a result, the trees suffer 
from the deterioration of tree performance. 

Geometric center Weighted center 

a) Reinsert with weighted center b) Reinsert with geometric center 

Fig. 4. Comparison of a weighted center with a geometric center where p = 40%. 
Reinsertion with weighted center makes smaller bounding rectangle. 

 

The R-tree, the R*-tree and the TV-tree force the entries to be reinserted during the inser-
tion routine. But the X-tree does not perform reinsertion. Therefore the X-tree has more over-
lapped bounding rectangles, and as a result, it makes large supernodes that may decrease the 
retrieval performance. 

If overflow occurs, p entries farthest from the center of the node are deleted and they are re-
inserted from the top level. This provides a possibility of eliminating dissimilar entries from the 
node so that it accomplishes more efficient clustering. The parameter p can be varied in per-
formance tuning stage. The experimentally suggested value of p in [15] is 30% of the maximum 
number of entries in a node. 

The R*-tree and TV-tree use geometric center to find the farthest entries. The CIR-tree uses 

weighted center. The weighted center c  of a node N is defined as: 

n

e
c

n

i
i∑

= =1

 

Where ie  denotes the center vector of the entry and n denotes the number of entries in a 
node N.  
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If we use the weighted center as a center of the node, the center of a node is moved toward 
a place where, in its vicinity, the entries are more densely. Figure 4 shows the effect of the 
weighted center when p = 40%. By using the weighted center, we can get smaller, or well-
clustered MBRs after deleting the farthest entries. In addition, the smaller MBRs would de-
crease the overlap. The computation cost for weighted center is linear in the number of entries 
and in the number of dimensions. It is not a great burden in the whole algorithm. 

 

Algorithm Reinsert 

1. delete p% of entries from a node 

2. insert them from the top level 

3. if overflow occurs during insertion 

4. return fail 

5. else 

6. return success 

4.3.3 Split algorithm 

The purpose of splitting is to divide the set of MBRs of vectors into two groups in order to 
facilitate upcoming operations and provide high space usability.  The creation and extension of 
a supernode occur if there is no possibility to find a suitable hierarchical structure.  In other 
words, if the dividing of the MBRs does result in large overlap split, we does not split the node 
but create a supernode of twice block size, or appending a block size if the current node is a 
supernode.   

When splitting a node, we sort the entries by the first dimension, then look for the best 
break point in the sorted entries where the overlap of the two split MBRs gets the minimum. Of 
course, both of the two split nodes have larger size than minimum fill factor. If the overlap ex-
ceeds the MaxO value, the directory node would be extended to a supernode. As mentioned in 
section 2, we set the MaxO value to 20%. 

Algorithm Split 

1. find the first dimension with which overlap free split 

 is Possible. 

2. if the dimension found 

3. do split 

4. return the MBRs of two split nodes 

5. else    // overlap free split is impossible 

6. split with the first active dimension 

7. If(overlap_ratio > 0.2) return supernode 

8. else return the MBRs of two split nodes 

9. end 

4.3.4. Search algorithm 

In this algorithm, the search starts from root node. It examines whether there is intersection 
between entries in the node and the search area or not. If the intersection exists, we traverse the 
child nodes of the entries.  Because MBRs are allowed to overlap, multiple branches can be 
traversed.  The following is the pseudo-code of search algorithm. 

Algorithm Search 

1. If(accessed node == Leaf node) 

Evaluate the similarity of the query and the 

  entries in the node. 
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3. Return the objects satisfying the query according 

  to similarity. 

4. else // for directory nodes 

5. Select all MBRs including the query for  
  active dimensions. 

6. Call the search algorithm recursively with  

  child node that the selected MBR points to. 

7. end  

4.3.5. Nearest Neighbor Search algorithm 

We used the Hjaltason and Samet’s algorithm [7] known as optimal. This algorithm uses the 
MINDIST values as a metric to prune the node from the search list. The MINDIST is an Euclid-
ean distance between the query point and the nearest edge of the rectangle. Since the CIR-tree 
and the TV-tree do not use full dimensions to compute the MINDIST value, the effectiveness of 
pruning is degraded. To compensate this effect, the MINDIST value is re-scaled as  

Dimensionactiveof

Dimensionfullof
MINDISTMINDIST

#

#
' ×=  

Of course this may not retrieve exact k nearest neighbors. But in the reinsertion algorithm, 
we use the distance as a metric to find the farthest entries, yielding well-clustered node. This 
makes the modified MINDIST valid as a metric for pruning. In our experiment on 10 nearest 
neighbor queries, only one or two records in the tail were different with the result of the X-tree. 
In the case of the TV-tree, that did not make well-clustered index structure as the CIR-tree, 
about 4 or 5 records are different with the result of the X-tree. This is because the choosing 
subtree and the reinsertion algorithm is not efficient as the CIR-tree. The following is the 
pseudo-code of nearest neighbor search algorithm. 

Algorithm NN_Search 

1. initialize SearchList with the child nodes of the root 

2. sort SearchList by MINDIST 

3. while (SearchList is not empty) 

4.  if (top of SearchList is a leaf) 

5.  find nearest point NNP 

6.  if(NNP is closer than NN)  

7.   prune SearchList with NNP 

8.   let NNP be the new NN 

9. else 

10.  replace top of SearchList with its child nodes 

11. endif 

12. sort SearchList by MINDIST 

13. endwhile  

4.3.6. Deletion 

Deletion is quite simple unless underflow occurs.  In this case, the remaining entries of the node 
will be deleted and reinserted.  The underflow may propagate to upper level. 
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4.3.7. The properties of CIR-tree 

The proposed CIR-tree uses a variable number of dimensions when constructing tree to support 
high-dimensional data efficiently.  For nodes that are close to the root node, we use just a few 
dimensions to store more data in a node.  This tree provides higher fan out in the top levels, so 
the height of the tree becomes lower.  In that result, the number of disk accesses reduces, simi-
larity retrieval becomes easier, and the efficiency of storage space increases.  It processes vari-
ous query types more effectively, and facilitates deletion and insertion process as well. Also, 
the CIR-tree uses weighted Euclidean distance for more exactly evaluating similarity between a 
query and an object. Using supernode, it minimizes overlap, so it reduces the factors that dete-
riorate retrieval performance. However, since it employs weighted Euclidean distance, in order 
to give weight to each feature we need to get advice from domain experts. 

5. Experiments 

We show the characteristics of proposed CIR-tree by comparing its performance with those of 
TV-tree, X-tree and Pyramid-Technique.  In this experiment, we used SUN SPARC station 20 
with 128Megabytes of main memory and 6 Gigabytes of hard disk.  All simulation programs 
were implemented with ANSI C++ and compiled with GNU C++ compiler.  We used the TV-
tree, the X-tree and the Pyramid-Technique programs without modifying the program sources 
that were implemented by the authors of the references [11, 20, 21]. The size of each block in 
these experiments is 4Kbytes. As a synthetic data set, we generated 2,000,000 uniformly dis-
tributed floating point numbers between 0.0 and 10.0, and then we grouped them with desired 
dimensions to make the data points. The dimension was varied from D=4 with 500,000 data 
points up to D=18 with 111,111 data points. 

5.1 Insertion performance 

Because the CIR-tree uses the reinsertion technique in insertion algorithm, the insertion cost of 
the CIR-tree is higher than those of the X-tree and the Pyramid-Technique which do not use the 
reinsertion technique. The Pyramid-Technique always spends less time than the CIR-tree, but as 
the size of the supernode grows, the X-tree tends to spend more time than the CIR-tree. 

5.2 Retrieval performance 
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Fig. 5 and Fig. 6 show the comparison result of three index structures for uniformly distrib-
uted data. We have applied 50,000 exact match queries for each dimension. Note that, to count 
the page accesses, the access to supernode of size s was counted as s page accesses. As shown 
in Fig. 5, the CIR-tree outperforms other index trees. Since the number of data points is de-
creased with increasing number of dimensions, page accesses of the TV-tree with dimension 
are reduced. The retrieval performance of the X-tree depends on the size of supernodes. For 
large supernodes, for example D=12, the increase of page accesses of the X-tree is significant. 
Because the CIR-tree maintains small size of directory, the number and the size of supernodes 
are smaller than those of the X-tree. Eventually the CIR-tree always provides better perform-
ance for each dimension. 

We also performed the range queries and the nearest neighbor queries with the TV-tree, the 
X-tree and the CIR-tree. For the range query we first generated 5,000 center vector using ran-
dom number generation, then made range two bounding rectangles; for upper bound vector we 
added one to each dimension of the center vector, for lower bound vector we subtract one from 
the center vector. We extended the TV-tree source with the functions that process the range 
queries and the neighbor queries. The original source of the TV-tree supports point query only. 
The result of the range queries is presented in Fig. 7. Similar to the result shown in Fig. 5, the 
page accesses of the X-tree depends on the size of supernodes. And the page accesses of the 
CIR-tree is kept stable. 
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Fig. 8 shows the results of 10 nearest neighbor queries. Because the result of the k nearest 
neighbor  queries with the TV-tree was meaningless, we exclude the page accesses of the TV-
tree in the figure. The page accesses of the X-tree is increased exponentially with dimension. 
But the page accesses of the CIR-tree is increased linearly with dimension. 

Finally, we compared the CIR-tree with the Pyramid-Technique by using a real data set. We 
used the letter image recognition data in [2] as the real data set. It was 20,000 points of 17 di-
mensional data (1 category and 16 numeric features). The category was one of the 26 capital 
letters in the English alphabet and the numeric features were scaled to fit into a range of integer 
values from 0 to 15. Fig. 9 is the experimental results with the real data that the CIR-tree shows 
better performance than the Pyramid-Technique in range query and nearest neighbor query. 
Note that, in Fig. 9 (a), the difference of the number of the page accesses of the two methods 
gets smaller as the range increases. The CIR-tree seems better than the Pyramid-Technique in 
large ranges, but we cannot definitely say that it is superior to the Pyramid-Technique because 
the Pyramid-Technique has simple node structure than the CIR-tree. In other words, although 
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the Pyramid-Technique needs more page accesses than the CIR-tree, it may spend less CPU 
time than the CIR-tree because of its simple node structure. 

(a) Range query 
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(b) 10 Nearest neighbor query 

 

5.3. Storage space 

Fig. 10 shows an experimental result of each index structure in terms of storage space. Due to 
the fact that the CIR-tree and X-tree create similar numbers of leaf nodes, the comparison of the 
number of leaf nodes is meaningless. So we only compared the number of directory nodes. The 
figure shows that the space usage of the X-tree increases with the number of dimensions, but 
the space usage of the CIR-tree is kept stable. This is because the CIR-tree stores small number 
of features in the directory node for all dimensions. The CIR-tree creates small number of 
nodes and the tree uses the storage space effectively. As a result, the performance comparison 
in terms of storage space shows that the storage overhead of the CIR-tree is much less than that 
of the X-tree. 
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6. Conclusion 

In this paper, we have analyzed existing index structure for high dimensional data and proposed 
several desired design requirements that the new index structure must have. We have also pro-
posed new efficient index structure, called CIR-tree, which followed the design requirements.  
Since the proposed CIR-tree used fewer dimensions at upper levels, it was able to store more 
data at a node.  This method produced high fan out at upper levels.  As a result, the height of 
the tree become lower, solving the dimensionality problems that we mentioned several times 
before.  This supported high dimensional data more efficiently, and diminished disk accesses 
and improved the disk storage utilization. By using the weighted center, proposed in this paper, 
in the reinsert algorithm, the CIR-tree produced well-clustered structure with less overlap. The 
CIR-tree has also used weighted Euclidean distance measure to overcome the exactness prob-
lem of Euclidean distance and used supernode in order to minimize overlap. 

We have compared the proposed CIR-tree with the TV-tree, the X-tree and the Pyramid-
Technique through various experiments to manifest the superiority of our tree.  The experi-
ments have showed that the CIR-tree outperformed the TV-tree, the X-tree and the Pyramid-
Technique in terms of retrieval speed and space requirements. But the CIR-tree needs further 
investigation to improve nearest neighbor query performance. 
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