
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 1

Adding an Object-Oriented Interface to Relational Database
Using Frame Model1

Joseph Fong

Department of Computer Science, City University of Hong Kong
Tat Chee Avenue, Hong Kong, E-mail : csjfong@cityu.edu.hk

San Kuen Cheung

Department of Computer Science, City University of Hong Kong
Tat Chee Avenue, Hong Kong, E-mail : cheungsk@asiaonline.cityu.edu.hk

An object-oriented interface can be implemented into a RDBMS as an application program interface for
communicating between object-oriented concepts and relational database. We apply frame model
approach for constructing the object-oriented interface. It includes static and dynamic behaviors of data
modeling in a meta-data as a knowledge representation, and is user friendly for the purpose of
transforming a RDBMS into an ORDBMS. Its function consists of schema translation from OODB to
frame model and OFMA (Object Frame Model Agent) to interpret frame model for OO operations and
method calls.

The schema translation consists of schema and method translations. The object-oriented schema can be
translated to frame model and relational schema. The method translation consists of three steps:
translating method signature to Persistent Stored Modules routine, translating method source language
to routine source language, translating method invocation to routine invocation. According to our
approach, object-oriented schema can be executed in the relational environment assisted by the frame
model and case statement, which lists all possible cases of binding conditions and actions.

The Object-Oriented Interface is the knowledge representation constructed by frame model. OSQL
(Object Structural Query Language) statements can be translated into SQL (Structural Query Language)
statements from the static data of the frame model. OO operations in method calls can be preformed
from the dynamic data of the frame model. The OFMA consists of Server API. The significance of the
finding in the reengineering of object-oriented database system into relational database system is for
database interoperability and for developing an object-relational database management system.

Keywords : Schema Translation, Method Translation, Object Frame Model Agent, Meta-data,

Knowledge Representation, Persistent Store Modules, Middleware.

1. INTRODUCTION

In the current situation, many companies are using the relational concepts and products for assisting
their business decision. OODB is still immature in the industry due to reliability, performance, cost of
migration, and lack of expertise. Therefore, a legacy system using OODB is our objective. Research
papers have introduced related works regarding the migration from OODB to RDB and vice versa. The
current market has many ORDBMS (Object-Relational Database Management Systems). In this paper,
we have developed an object-relational database using a frame model to handle the object features.
After implementing frame model in a RDB, users can apply object features in their relational database,
by adding an Object-Oriented interface in the relational model. The interface acts as a virtual interface.

1 This paper is funded by Strategic Research Grant 7001078 of City University of Hong Kong

mailto:csjfong@cityu.edu.hk

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 2

It has four classes: Header, Attribute, Method, and Constraint. Users can access the data either in OSQL
or SQL.

By adding up the object technology in relational database, the database can be increased in the
reusability and portability. On the other hand, the existing data of the relational model can be reused
without interrupting daily operations of the existing system. After implementing our interface,
companies can realistically utilize the benefits of both object-oriented and relational database systems.

2. Related Works

Research papers have introduced related works such as schema translation, data type mapping, query
translation and meta-data. In the schema translation, M. Blaha1 discussed converting OO Models into
RDBMS schema. The approach combined OMTool with Schemer. J. A. Orenstein2 designed a schema
mapping gateway for accessing RDB through an OODB interface. In the data type mapping, S. DeFazio3
extended RDBMS for handling complex domains. The approach required applications to integrate
layered products from independent software vendors (ISVs) to deliver specific functionality for a
domain. In the query translation, C. Yu4 discussed the translation from object-oriented queries to
relational queries. They proposed a method that used the extended OODB predicate graphs and
relational predicate graphs to facilitate the query translation. In the meta-data, J. Lim5 used meta-data
and mapping libraries to extend ODBMSs by using metaclasses. It could turn traditional classes into
normal objects, which could receive messages containing attributes and methods that described the
database’s structure and behavior.

Krishnamurthy6 stated that Oracle server can be enhanced by developers to create their own
application-domain-specific data types so as to bring the Object-Relational technology to the
mainstream. It introduced a server-based components called Data Cartridges to integrate these new
domain types as closely as possible with the server so that they could be treated at par with the built-in
types like Number or Varchar.

Informix7 packages a collection of data types. Their associated functions and operators access methods
into DataBlade modules using the metaphor. The DBMS is a razor into which DataBlade modules are
inserted. An Object-Relational Database can be formed using the DataBlade modules.

Software AG’s Bolero provides an enterprise-wide middleware called EntireX for integrating new
generation application components with the existing database systems. Users can apply
Object-Oriented applications in a relational DBMS.

In Informix7, an Object-Relational DBMS has four characteristics including Base Data Type Extension,
Complex Objects, Inheritance, and Rules. These characteristics deal with the domain integrity. It also
introduced how to code user-defined functions. Functions could be written by host language such as C,
VB, and Java. To register a function, we must indicate its name, arguments, and return type. And then,
the function could be freely used in any query statement.

3. FRAME MODEL (Meta-data)

In this paper, we employ the Frame Model Approach8 to form an OO API for handling the OO
operations in a RDBMS.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 3

Advantages of using the Frame Model Approach

The frame model constructs the object-oriented paradigm and acts as meta-classes9. All conceptual
entities are modeled as objects. The same attribute and behavior objects are classified into an object
type. An object belongs to one, and only one class. Both facts and actions are objects in the frame model.
The frame model is implemented with a knowledge representation that includes object structure classes,
user-defined relationships between entities, and structure inheritance classes defined by taxonomies of
structure that support data and behavior inheritance.

Procedural attachment is a useful concept because it allows frames to tie together the procedural and the
declarative knowledge about an entity or class of entities. A complete translation of frame languages
into logic also has to deal with this procedural information. One way of achieving this would be by
providing a translation algorithm into logic in which the routines can be defined10,11.

We employ the Frame Model because the model can easily be modified according to different situations.
It can be formed as a meta-data during the schema translation and can be constructed as an application
program interface for database interoperability. Also, it allows designers to group the rules together into
a class and to associate the classes as a knowledge-based system.

Overview of the Architecture

The approach consists of frame model, schema translation, method translation, transaction translation,
object frame model agent and relational database engine. The architecture of ORDBMS is outlined in
the Figure 1. A relational schema and the frame model will be generated in the process of the schema
translation. All the table definitions will be defined in the relational schema according to the OO
schema. The frame model contains four system classes which are called header, attribute, method, and
constraint. The interoperability between an object message and a relational database engine relies on the
object frame model agent. An object-oriented interface is a virtual interface by combining the
transaction translation and the object frame model agent.

The mechanism of the Schema Translation is that translating the Object Definition Language (ODL)12
to Data Definition Language (DDL) will be run and the result will be stored into the frame model and
the relational schema. The process will also implement a relational schema for a relational database.

In the Method Translation, a methodology is introduced for translating methods of an
object-oriented database into routines (or stored procedures) of a relational database. The approach
consists of three steps. The first step translates the method signature to the Persistent Stored
Modules(PSM) signature. The second step translates the source language of methods to the target
language of routines (consisting of either functions or procedures) including Host Language, OSQL's
Qualification, Query Translation, Update Transaction Translation and Objects Inside Object. The
third step translates method invocation to routine invocation. According to this approach, methods
can be translated to routines and executed in the relational database environment assisted by a frame
model and case statements which list all possible cases of binding conditions and actions.

Since our base engine is a RDBMS, the database will be in the relations. The Transaction Translation
is to convert OSQL statements to SQL statements. Users can apply OSQL on a relational database
because the translator will translate OSQL statements to target SQL statements for the relational engine.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 4

The Object Frame Model Agent (OFMA) receives SQL statement from the result of the transaction
translation. The SQL statement is executed by Server API.

 Figure 1 - Architecture of Object-Oriented Interface

Frame Structure

During the schema translation, the proposed translator will generate two semantics of a frame model5:
static and dynamic semantics. The static semantic consists of Header and Attribute classes and the
dynamic semantic consists of Method and Constraint classes. The Header class includes basic object
information to represent the class entity. The Attribute class represents the properties of classes. The
Method class includes actions to extend the semantics of the data. The Constraints class consists of
properties of data that cannot be captured in the form of structure.

Header Class
 { Class_name // a unique name in all system
 Parents // a list of superclass names
 Operation // program call for operations
 Class_type // active or static class }

Attribute Class
 { Attributes_name // an attribute in this class
 Class_name // reference to header class
 Method_name // a method in this class
 Attributes_type // attribute data type
 Associated_class // linkage class
 Default_value // predefined value
 Cardinality // single or multi-valued
 Description // description of the attributes }

Method Class
 { Method_name // a method component in this class
 Class_name // reference to header class
 Parameters // No. of arguments for the method

User Input

OO Schema
Schema &

Method
Translation

OFMA

Frame
Model

Transaction
Translation

Relational
Schema

RDB

Display
Result

OSQL

SQL

RDBMS

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 5

 Method_type // return type of method
 Condition // the rule conditions
 Action // the rule actions }

Constraint Class
 { Constraint_name // a constraint component of this class
 Class_name // reference the header class
 Method_name // method name constrict
 Parameters // No. of argument for the method
 Ownership // the class name of method owner
 Event // triggered event : create update or delete
 Sequence // method action time : before or after
 Timing // the method action timer }

The Header class includes basic object information to represent the class entity. The header class
includes the class name, parents, operation, and class type attributes. The Class_name is a unique
identifier of the class in the system. The Parents lists the parents of this class. The Operations shows
all the triggered events. The Class_type describes the type of the class.

The Attribute class represents the properties of a class. The structure of the attribute class includes class
name, attribute name, attribute type, default value, cardinality, method name and description attributes.
The Attribute_name is a unique identifier of the attribute in a class. The Class_name is the name of
owner class for this attribute. The Method_name is the method name where the attribute is derived or
calculated from. The Attributes_type describes the data structure type of the attribute. The
Associated_class describes the linkage between classes. The Default_value specifies default value of
an instance. The Cardinality is used to deal with the single-valued or multiple valued attribute situation.
The Description explains the purpose of this attribute.

The Method class includes rules to extend the semantics of the data. The structure of the method class
includes method name, class name, parameters, method type, condition, and action attributes. The
Method_name is a unique identifier of the method in a class. The Class_name is the name of owner
class for this method. The Parameters is the number of parameters to be need for this method. The
Method_type is type of the action of the method. The Condition stores the constraint name for taking
the action. The Action contains the execution statement in the method.

The Constraints class consists of many properties of data that cannot be captured in the form of structure.
The structure of the constraint class includes constraint name, class name, method name, parameters,
ownership, event, sequence, and timing attributes. The Constraint_name is a unique identifier of the
constraint in a class. The Class_name is the name of owner class for this constraint. The
Method_name is the name of method for this integrity constraint and can be found in the method class.
The Parameters represents number of parameters to be used in the method. The Ownership indicates
that the method belongs to the class itself, the system class or another external class. Event shows the
specific condition of the method to be triggered. The Sequence represents the sequence in which the
method will be active. The Timing specifies the life of the method.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 6

4. SCHEMA TRANSLATION

Translating O-O Schema to Relational Schema and Frame Model

For constructing a relational schema and a frame model, we must resolve the object-oriented features
for RDBMS and create relationships among tables.

Step 1 – Classes to Relations/Frame Model
When converting class names in the OODB to table names in the RDB, all the class names will be
mapped to the corresponding table names in the relational model. We define this mapping as follows.

 Class C1 (…) , Class C2 : C1 (…) → Relation Rc1 (…), Relation Rc2 (…)

Step 2 – Inheritance/Generalization Mapping
Identifying a superclass and a subclass relationship, we expand attributes and methods of the superclass
to its subclasses in class hierarchy. For the single inheritance, the attributes of the superclass are
positioned first in the attributes definition list, followed by those that are locally defined. For multiple
inheritance, the attributes of each superclass are concatenated in the order in which the superclasses
were defined for that entity.

Class C1 (A1:type1, A2:type2) with void MC1 (void),
Class C2 : C1 (A3:type3, A4:type4) with void MC2 (void) →

 Relation Rc1 (.. .., A1rc1:type1, A2rc1:type2),
 Relation Rc2 (.. .., A1rc1:type1, A2rc1:type2, A3rc2:type3, A4rc2:type4)

Frame Model - Header Class

Class name Parents Operation Class type

C1 Static

C2 C1 Static

Frame Model – Attribute Class
Attribute name Class name Method name Attribute type Attributed class Default Cardinality

A1 C1 Type1

A2 C1 Type2

A3 C2 Type3

A4 C2 Type4

 Frame Model – Method Class

Method_name Class Parameters Method type Action

MC1 C1 void void C1_MC1

MC2 C2 void void C2_MC2

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 7

Step 3 – Identity Mapping
When creating object identifier for each table and recognizing the object identifier as a key field, the
concept of primary key of the relational database can be established so as to link up the relationships
among tables. The value of an OID is used for object identification for inter-object references. A key of
corresponding relation should be defined to create a unique attribute. Map OID in OODB to key in RDB
by adding extra atomic type attribute, denoted as Krc1. OID for the object of class C1 is represented by
Krc1 as the key in Relation Rc1.

Class C1 (OID) → Relation Rc1 (Krc1)

Step 4 – Attribute Mapping
When translating the attribute names in the OODB to the attribute names in the RDB, we know that the
field of the “attribute names” may contain actual names of attributes or methods. Therefore, we also
extract method signatures from OO schema to the method class of the frame model for creating a
method definition in the RDB. We define this mapping as follows.

Class C1 (A1:type1, A2:type2) with void MC1 (void) →

Relation Rc1 (Krc1:key, A1rc1:type1, A2rc1:type2)

Frame Model – Attribute Class
Attribute name Class name Method name Attribute type Attributed class Default Cardinality

A1 C1 Type1

A2 C1 Type2

 Frame Model – Method Class

Method_name Class Parameters Method_type Action
MC1 C1 void void C1_MC1

Step 5 – Multiple-valued Attribute Mapping
When reorganizing the set attributes and creating new tables for replacing the set values, we map each
element in multiple-valued attribute Sc of class C1 to a new relation Rsc1 which contains key attribute
Krc1:key and the attribute of original type of multiple-valued element. This is 1 : N relationship in the
relational database.

Class C1 (A1:type1, Sc:set(type2)) →
Relation Rc1 (Krc1:key, A1:type1)
Relation Rsc1 (Krc1:key, Sc:type2)

 Frame Model - Header Class

Class name Parents Operation Class type

C1 Static

SC1 Static

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 8

Frame Model – Attribute Class
Attribute name Class name Method name Attribute type Attributed class Default Cardinality

A1 C1 Type1 SC1 M

Sc SC1 Type2 C1 S

Step 6 – Aggregation Attribute Mapping
To atomize the user-defined data types and create object identifier to link the relationship with
composite objects, we map class type attribute Ac of class C2 to a key type attribute as Arc in relation Rc2.
A foreign key references to the relation is mapped from other class C1 where attribute Ac of class C2 is
referred to. This is 1: 1 relationship in relational database

Class C1 (A1:type1, A2:type2), Class C2 (A3:type3, Ac:C1) →
Relation Rc1 (Krc1:key, A1:type1, A2:type2)
Relation Rc2 (Krc2:key, A3:type3, Arc: Krc1)

Frame Model – Attribute Class
Attribute name Class name Method name Attribute type Attributed class Default Cardinality

A1 C1 Type1 C2 S

A2 C1 Type2

A3 C2 Type3

Ac C2 Type4 C1 M

Step 7 – Cardinality/Association Attribute Mapping
Creating two new tables for n:m relationship, the values point to another tables. We define this mapping
as follows.

Class C1 (A1:type1, …, Sc1:set(C2)), Class C2 (A2:type2, …, Sc2:set(C1)) →
Relation Rc1 (Krc1:key, A1:type1, …)
Relation Rc2 (Krc2:key, A2:type2, …)
Relation Rsc1 (Krc1:key, Sc1:Krc2)
Relation Rsc2 (Krc2:key, Sc2:Krc1)

Frame Model - Header Class
Class name Parents Operation Class type

C1 Static

C2 Static

SC1 Static

SC2 Static

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 9

Frame Model – Attribute Class
Attribute name Class name Method name Attribute type Attributed class Default Cardinality

A1 C1 Type1 SC1 M

A2 C2 Type2 SC2 M

Sc1 SC1 Type3 C1 S

Sc2 SC2 Type4 C2 S

We must change the data types in the target relational model; but they depend upon specific product of
the relational model. Different products provide different data types.

5. METHOD TRANSLATION

In the object model, the method definition is defined in the object schema. In the relational model, the
routine definition is not a part of the relational schema. During the schema translation, a method can be
considered as an attribute in which the value is not statically stored in database, but the body is
dynamically calculated by executing from a related program. The method signature must be identified
and stored in meta-data (see Figure 2). A combination of the method name and its parameters within a
class can be identified as a specified method uniquely. This is a feature of the object model. In the
relational schema, there is no such a mechanism that supports user-defined functions and procedures.
Each routine name must be identified a routine uniquely. Commercial SQL products have been offering
such a capability for years13 in the form of stored procedures and the SQL standard has also begun
considering to include this capability of PSM (Persistent Store Modules) routine14, in both user-defined
functions and procedures.

In the object model, source code of methods can be defined by the object definition language (ODL) in
the schema level. A method source can be constructed by combining embedded OSQL and host
language (e.g. C or C++). In the relational model, source code of routines is defined in the operational
level. A routine source is constructed by combining embedded SQL and host language. In this situation,
we do the method translation.

Methods can be operated by OSQL in which a method can be invoked by an object feature of the
navigation. Routines can be either functions or procedures. A user-defined function is invoked by scalar
expressions. A user-defined procedure is invoked by a new SQL statement (typically “do”). During the
method translation, all the object methods will be translated to relational procedures. The routine
invocation is assisted by a case statement which lists all possible cases of binding procedures. The
method/routine invocation is the final step of our approach.

Meta-data (i.e. Frame Model) is created for containing information of the object model during the
schema translation. The frame model in the method translation is composed by Header, Attribute, and
Method classes. The Header class is to represent class relationship. The Attribute class represents the
properties of classes. The Method class contains information of each method.

Architectural of Method Translation

The mapping process consists of three parts. The first is to translate a method signature12 to a frame
model. The second is to translate a method source to a PSM routine source. The third is the invocation

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 10

translation which relies on the meta-data (i.e. frame model). We treat the frame model as the meta-data
during the method translation. A combination of a method name and its parameters within a class can
locate an "action" attribute which can invoke a specified routine call.

The main procedure of the translation can be divided into three steps. Step 1 is the Schema Translation
where the method signature will be mapped to the PSM routine and stored in a frame model. Step 2 is
the Method Source Translation where object methods will be converted to relational routines. Step 3 is
the Invocation where dynamic binding of an object feature can be applied in the relational database.

 Figure 2 – Mapping from Object Method to PSM Routine

Method signature to PSM’s routine

A method signature is composed by three elements of class name, method name, and parameter list. The
class name represents the ownership of the method. The method name is the name for the execution area.
The parameter list contains major elements of the execution. Mapping the method name must avoid the
name conflicts because a routine name is not bound by a specific relation in the relational model,
whereas a method name is bound by a class. It is necessary to assign a unique name for each routine and
the name will be recorded in the meta-data.

Mapping the parameters listed in a method requires each data type of parameter related to class to be
converted to a corresponding data type related to relation that spans the same data content as the class.
This mapping can be determined by observing the data type mapping from classes to relations.

Mapping the return types is the same as mapping the parameters. The return types of methods are stored
in the "method" class as a meta-data. The relational types of the return values are defined by mapping
the object data types and the relational data types. Inside the meta-data, the return types are the
relational preferences.

Step 1
Method Signature

Step 3
Method Invocation

Step 2
Method Source

Relational Schema PSM Routine
Invocation

PSM Routine
Source

Frame Model

Predefined
Process -
Schema

Translation

Schema

Schema Operation

Operation

Relation Definition
in SQL

Class Definition
in OSQL

Host Language +
Embedded OSQL

Host Language +
Embedded SQL Operation in SQL

Operation in OSQL

OODB

RDB

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 11

Method Source Translation

The statements of embedded OSQL must be mapped to the embedded SQL DML (data manipulation
language). The statements of host programming language which deal with the flow control and
operations on volatile data do not need to change (assuming that host languages are the same for both
OODBMS and RDBMS, otherwise only key words and statement formats must be adjusted). The
statements of host programming language which deal with operations on non-volatile data must be
modified according to data type mapping table from classes to relations. Mapping the body of a method
requires distinguishing the above statements and different statements may employ different mapping
rules.
 Rule 1 : Path expression operand translation
 Rule 2 : Set operand translation
 Rule 3 : Query translation
 Rule 4 : Update transaction translation
 Rule 5 : Host language data type translation (for non-volatile data)

Rule 6 : Objects inside object

An object method consists of embedded OSQL statements and host language4. The main problem of the
method translation is on the embedded OSQL statements. There are many issues such as qualification
translation, query translation10, and update transaction translation. We use path elements to handle the
qualification translation (i.e. where-clause). The idea of the path elements is that we will locate the path
expression of an attribute or a method. The meta-data contains all the information of each attribute or
method from the schema translation. The path elements can be located from the meta-data. After
forming a path logic of a specific attribute, we can evaluate all the elements in the path logic. The
elements of the path logic can be translated to a join operation in the RDB system if it has three or more
elements. The qualification translation is not only on the path expression operand, but also on the set
operand.

The set operand in the object model can be treated as an object feature of multiple-valued attribute. The
feature provides a searching algorithm for the multiple values. Our resolution for the multiple-valued
attribute in the relational schema is to create a new individual table in which each value of the
multiple-valued attribute can be stored in each individual tuple. The location of this attribute can be
obtained from the semantic formed by the meta-data.

We must consider the method compiler from two systems (object and relational engine). A common
host language such as C or C++ can be accepted by both systems. The host language may not be
necessary to convert. Variables of the host language which deal with operations on nonvolatile data
must be considered according to data type mapping table from classes to relations. During the schema
translation, classes of the object model are converted to tables of the relational schema. The object
definition and class attributes will no longer exist on the relational database. In this case, we must
extract these variables from the object method and convert the data structures of these variables for
operations on the relational database.

Rule 1 - Path Expression Operand Translation

In path expression, address of a method or an attribute is an important part of the statement. The
translator will go through the path logic for locating the method or attribute and will execute the method
or retrieve the value of the attribute. We must know how to form a path logic and to reconstruct the logic

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 12

for relational SQL statement. The first step is to decompose the object path which consists of composite
attributes or other user-defined methods. The composite attribute will return its value to operator in
comparison with other value. The method will execute its calculation and return the result to operator
for doing the same comparison as the composite attribute. The path logic of a class can be formed
according to the meta-data because important information is stored on the meta-data and on the static
tables. The second step is to organize the path logic for relational SQL statement. If the path logic has
three elements, we must perform a join operation in the relational SQL statement.

The meta-data is a definition of the relational schema and the relational tables are static data. The path
logic can be constructed by these two components. We must know the relationship among tables. The
schema definition can provide a whole picture of linkage of the object model. The static data is an actual
storage. The path logic of the relational database is shown in the following algorithm.

Algorithm :
program path_expression // This is for decomposing path expression//
WHILE not at end of comparison operator’s elements DO // operators in “where-clause”//
begin
 get elements from operator; // left or right side totaling 3 elements (e.g. A.ar.arr = 11)//
 get components of each element; //each element has its components (e.g. A.ar.arr)//

 map components from header & attribute class of frame model;
//collecting table name & association (i.e. A table and ar’s table as a path logic)//

 save table and its sub-ordinate tables to &tables;
//for constructing join operation for SQL statement//

 get data type from attribute class of frame model; //e.g. attribute arr’s data type//

 CASE data type of
 “preliminary data type” : save attribute to &preliminary
 IF attribute in “where-clause”
 THEN begin

put join operator(s) for &tables into SQL if necessary
 put &preliminary into SQL for comparing with “11”
 end;
 “method parameter” : save the name of action attribute to &method
 IF attribute in “where-clause”
 THEN put &method and parameters into SQL;
 END-CASE;
end;

In this path expression translation, we analyse the composite attributes in the where-clause. The
translation can be applied to other composite attributes within the OSQL statements. For instance, you
can apply Rule 1 to analyse the composite attributes in the “select-clause” in query statement and
“set-clause” in update statement. Now, the where-clause has been constructed a true relational syntax
according to the composite attribute of the object-oriented navigation.

Rule 2 - Set Operand Translation

We are focusing to analyze a set attribute on the where-clause. The path logic of the set attribute
involves a new individual table that contains the multiple values of a set attribute. We decompose the

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 13

multiple values into a new table during the schema translation. The new table is created for containing
the multiple values of each multiple attribute. Primary key on the existing table and composite key on
the new table link the connection between the existing table and the new table up. The composite key
consists of two attributes. The following is an algorithm for the path logic of the set attribute.

Algorithm :
program set_operand // This is for decomposing the set operand//
WHILE not at end of comparison operator’s elements DO // operator in “where-clause”//
begin

get elements from operator; // left and right side totaling 3 elements//
get components of each element; //each element has its components//
map components to header and attribute classes of frame model;
//collecting table names & association between existing and new tables//
get data type from attribute class of frame model;
IF attribute data type = table name with prefix of “new” located in header class
// i.e. set attribute by verifying against data type in attribute class//
THEN begin

 save table and sub-tables from attribute class of frame model to &tables;
 get attribute from attribute class of frame model;
 IF attribute type = preliminary data type //.i.e. multiple-value attribute//
 THEN save attribute to &preliminary; // i.e. attribute from new table//
 IF attribute in “where-clause”
 THEN begin

put join operator(s) for &tables into SQL if necessary
 put &preliminary into SQL
 end;
 end;

end;
end;

The &table and &preliminary are temporary variables that are important part in constructing the path
logic. The existing and new tables will be stored in the array named &tables. The name of the
multiple-value attribute in the new table may be changed for internal identification. We use
&preliminary as a temporary storage for this name. The decision of identifying an attribute with
multiple-value is relied upon the prefix with “new” in the “data type” attribute of the “attribute” class.
The name will be confirmed by locating the name in the “header” class. A true relational syntax can be
formed on the SQL statement according to the set operand of the object-oriented navigation.

Rule 3 - Query Translation

A query statement consists of range part (select-clause), target part (from-clause), and qualification part
(where-clause). From the range part, we apply rules 1 & 2 on composite and set attributes. After getting
some relevant tables from the range part, these tables will be placed on the target part. As for the
qualification part, we also need to consider (i) tables to be involved, (ii) methods to be invoked, (iii) join
operations to be executed. Table names on the target part are factor for forming join operations. Rules 1 &
2 are solutions for decomposing the navigation on the qualification part. Methods will execute their
calculations and return results to operator before the comparisons with other values.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 14

Algorithm :
program query_translation
// This is for translating OSQL query statement to SQL query statement//
WHILE not at end of attribute list DO // analyzing the “select-clause” of the OSQL//
begin
 CASE attribute of
 “preliminary data type” : begin
 save table from attribute class of frame model to &tables;
 save attribute from attribute class of frame model to &preliminary;
 end;
 “multiple value” : begin

call set_operand //applying rule 2//
end;

• “composite value” : begin
call path_expression //applying rule 1//
end;

 END-CASE;
end;
put &tables.&preliminary into SQL; //putting in “select-clause”//
put &tables into SQL; //putting in “from-clause”//
WHILE not at end of logical operator’s elements DO // for “where-clause”//
begin //e.g. “A.ar = 11 and”, the logical operator = “and”//

save logical operator to &logical_operator;
CASE attribute of

 “preliminary data type” : begin
 save table from attribute class of frame model to &tables;
 save attribute from attribute class of frame model to &preliminary;
 end;
 “multiple value” : begin

call set_operand //applying rule 2//
end;

• “composite value” : begin
call path_expression //applying rule 1//
end;

END-CASE;
put &tables.&preliminary into SQL
put &logical_operator into SQL; //putting in “where-clause”//

end;

Firstly, we extract the attributes in the “select-clause” one by one for query translation. Some relevant
tables will be stored in a temporary variable named &tables. The attribute name will also be stored in a
temporary variable named &preliminary and will later be printed in the SQL’s “select-clause”.
Secondly, we print all the tables involved from &tables to the “from-clause”. Finally, we analyze the
qualification part (i.e. “where-clause”) that may be divided by several sectors. These sectors will be
broken by the logical operators. Some join operations may be formed according to how many path
elements in the path logic.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 15

Rule 4 - Update Transaction Translation

In the update transaction translation, the target part (update-clause), range part (set-clause), and
qualification part (where-clause) compose an update transaction statement. To identify attributes of the
range part, we apply rules 1 & 2. This part is to determine how many update SQL statements to be
performed. If an attribute contains multiple values, then we execute more than one update SQL
statement. An attribute with single value is easy to update as we do not have to consider the existing
value. We have to consider the existing values before going to update an attribute with multiple values.
These values are stored in an individual table in which the key is a composite key. To update a tuple
with multiple values, we must know the old value and OID value. The qualification part is similar to the
query translation.

Algorithm :
program update_transaction // This is for translating update statement//
WHILE not at end of comparison operator’s element DO //analyzing “set-clause”//
begin
 save comparison operator to &comp_operator;
 get elements from the comparison operator; //left or right side//
 get components from each element;

IF data type = multiple value
THEN call set_operand //applying rule 2//
ELSE IF data type = path expression
THEN call path_expression //applying rule 1//
ELSE IF data type = preliminary data type
THEN begin

 save table from attribute class of frame model to &tables;
 save attribute from attribute class of frame model to &preliminary;

end;
put new value from OSQL to &new_value //It can be a multiple-value attribute//
IF value = multiple value
THEN begin

get oid value and old value from RDB table;
save oid value and old value to &oid_value and &old_value;

 end;
end;
WHILE not at end of logical operator’s elements DO // for “where-clause”//
begin

save logical operator to &logical_operator;
IF “preliminary data type”
THEN begin

save table from attribute class of frame model to &tables;
 save attribute from attribute class of frame model to &preliminary;
 end

 ELSE
call path_expression and set_operand //applying rules 1 and 2//

end;
WHILE not at end value of &new_value DO

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 16

begin
put &tables into SQL; //putting in “update-clause”//
put &preliminary, &comp_operator, &new_value into SQL; //putting in “set-clause”//
put &oid_value and &old_value into SQL; //putting in “where-clause”//

end;

In OSQL’s update statement, a multiple-value attribute can be updated by one statement. In SQL’s
update statement, we need to do many steps when updating a multiple-value attribute. Firstly, we must
know the cardinality of an attribute to be updated. For a multiple-value attribute, we analyze tables to be
involved and attribute names to be changed respectively. The tables and attributes will temporarily be
stored in variables named &tables and &preliminary. We save the new values to an array named
&new_value. Secondly, we extract the old values and an oid value from database and store these values
in variables named &old_value and &oid_value. Thirdly, we check that the “where-clause” is the same
as the query statement. Finally, we can form a SQL statement by grouping all the variables.

Rule 5 - Host Language Data Type Translation (for Non-volatile Data)

The problem is on the data type. We do not know which host variable will be stored data extracted from
the relational database or compared with data from the relational database. We will convert all the data
types of the host variables to the relational model. When the data type of host language is not matched to
the data type of the host variable, the target application will then help us to solve the problem. An error
procedure will be started, when a dismatch message of the data type occurs. The error procedure
consists of a mapping table and a conversion process. The function of the mapping table is to map the
relational data type to a corresponding object data type. And then, the relational data will be converted
to object data (see Figure 3). In this approach, we do not have to worry about the host variable which
deals with nonvolatile data.

Figure 3 – Mapping Data Types

Relational
Database

Host VariableHost Language

Data of string &
varchar

Errorstring

string

void readdate ()
{ string
 :
}

Error
Procedure
[Type
dismatch]

Relational
Data Type
[varchar]

Mapping Table
Relational Object
integer integer
varchar() string
decimal decimal
: :

Data Type
Conversion
Process

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 17

Algorithm :
program host_language // This is for translating data type//
begin
 get value from database;
 get mapping table;
 map source data type to target data type;
 map target data to source data;
 copy the value to source;
 copy the source value to program;
end;

Rule 6 - Objects Inside Object

An object can be a method. The method can invoke itself or other objects. We must convert the
signatures of the object model to relational model so as to invoke the appropriate routines. All the
routine definitions are defined in the “method” class of the frame model instead of the relational schema.
We collect the information of these methods from the case statement. We find the routine names from
the “method” class of the frame model.

Algorithm :
program objects_inside // This is for translating objects inside object//
begin
 get method name from OSQL;
 map the method name from case statement;
 map the method name from frame model;
 get the routine name from frame model;
 put the routine name into SQL;
end;

Invocation

We must enlarge the existing features of the relational database because the RDBMS cannot
dynamically resolve the polymorphism. If we don't change the method name during the schema and the
method translations, the name of routine or stored procedure will not be a unique key in the standard of
the SQL-92 and will not overcome the object effect of the polymorphism. The routine names must be
unique in the relational database. We form an "action" attribute to store the routine name. It can be a
code such as OID stored in the "method" class of the frame model. Since the RDBMS does not have the
dynamic binding, if we translate the method name directly to routine name without any changes, a
specified routine may not be invoked by PSM's “call” or “do” statement. The “call” or “do” statement is
for calling a procedure and the "select" statement is for calling a function.

Methodology of Invocation Translation

The method invocation can appear in two different formats. The first one is like a procedure call, an
invocation statement. The second one is like a function call, an operand in a scalar expression which is
part of an OSQL statement. Mapping the method invocation must consider the polymorphism (dynamic
binding) feature. It is necessary to map a method invocation to a corresponding PSM routine invocation
because RDBMS cannot dynamically resolve PSM routines in the same way that OODBMS can do for

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 18

methods at run time. It requires that mapped target for a method invocation should involve dynamic
resolution of a PSM routine as well as invocation of the routine. One way is to use, in case statement
which lists all possible cases of binding conditions and calls of related PSM routines under each case.

The Polymorphism, the Inheritance, and the Multiple Inheritance are features of the object model. We
are going to discuss each possible case occurred in the relational model.

Polymorphism
Class definition
A (A1,…, M1 (a), M1 (a,b))

Relational definition
A (A1,…) with A_M1_1, A_M1_2

Inheritance
Class definition
A (A1,…, M1 (a), M1 (a,b))
B (B1,…, M1 (a)) subclass of A
C (C1,…, M1 (a,b,c) subclass of A

Relational definition
A (A1,…) with A_M1_1, A_M1_2
B (A1, B1,…) with B_M1_1, A_M1_2
C (A1, C1,…) with C_M1_1, A_M1_1, A_M1_2

Multiple inheritance
Class definition
A (A1,…, M1 (a), M1 (a,b))
B (B1,…, M1 (a)) subclass of A
C (C1,…, M1 (a,b,c) subclass of A, B

Relational definition
A (A1,…) with A_M1_1, A_M1_2
B (A1, B1,…) with B_M1_1, A_M1_2
C (A1, B1, C1,…) with C_M1_1, A_M1_1, A_M1_2

Meta-data (Method class)
method name class name parameters method type condition action
M1 A a void nil A_M1_1
M1 A a,b void nil A_M1_2
M1 B a void nil B_M1_1
M1 C a,b,c void nil C_M1_1

The method invocation in the case of the multiple inheritance : t.M1(a) (“t” is a variable of class C) is a
method with parameter “a”. We use a case statement which lists all possible cases of binding routines.
In this example, the routine name “M1(a)” should be read “A_M1_1”.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 19

switch (t)
{ case t = class A : A_M1_1, A_M1_2
 case t = class B : B_M1_1, A_M1_2
 case t = class C : C_M1_1, A_M1_1, A_M1_2 }

After finishing the schema and the method translations, we have to introduce a translator for
interpreting the incoming message that may be a DML or a method call. The process of the transaction
translation will convert an OSQL statement to a SQL statement and pass it to an Object Frame Model
Agent (OFMA) for executing the statement. The system will evaluate the statement from four frame
classes and invoke the constraint and the action (if necessary).

6. TRANSACTION TRANSLATION

To translate OSQL in OODB to SQL in RDB, we may use the symbolic transformation technique. It
contains two parts, syntax translation and semantic translation. In our model, the syntax descriptions of
source and target languages have been built for the syntax translation. After the syntax of source OSQL
has been verified, we can create a navigation path in the OODB that allows us to navigate the query
graph4 of the OSQL (OODB Class Table). Afterwards, referring to the result of the schema mapping,
the navigation statement of the OSQL can be mapped to that of the SQL by the query graph of the SQL
(RDB Relation Table) and generate the navigation statement of the SQL. Particular semantic rules for
transformating from the OSQL to the SQL will be applied. The target SQL will be produced. The
output SQL should be semantic equivalent to the source OSQL.

Input OSQL

Syntax checking

Build navigation path &
query graph

Map OSQL's
navigation path to

SQL's navigation path
& query graph

Transform OSQL to
SQL with special rule

Access SQL server

Produce SQL result

OSQL result

OODB schema

RDB schema

OSQL navigation
path

SQL navigation path

Figure 4 – Flow Chart of Transaction Translation

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 20

Overview of Transaction Translation

The following section will mainly show the particular semantic rules of transaction applying on
SELECT, UPDATE, INSERT and DELETE transactions. As for the invocation statement, the
process of translation is the same as the method invocation. Each table has its routines bounded by the
case statement and the meta-data. This is a new feature in the relational model. We can apply the
dynamic bounding in the relational database. The syntax shown below is the portion of query or the
DML that can be translated to the SQL during this study. And the following is the flow chart of
transaction translation from the OSQL to the SQL process.

Navigation Path

A navigation path is a function that maps one set of addresses (departure point) into another set of
addresses (arrival point). The concept of the database navigation can help us to build relations access
path in the translation process. To ensure the result is preserved after the translation, the output of the
SQL statement must be the same as that obtained by the OSQL statement.

The Proof of Navigation Path

Let A be a set of addresses, N be a set of data names and V be a set of atomic values. Suppose that A, N
and V are disjoint sets. We consider the content of a database as a database content that is a collection
of addresses, data names and data values such that CON ⊆ A x N x (A ∪ V).

Let S be the set of navigational statements15. We denote by ||S|| the semantics of the statements. The
function ||S|| maps a set of addresses into another set of addresses. ||S|| depends on particular database
content CON, and is regarded as mapping of ||S|| : ρ(A) x CON => ρ(A), from one address of the
database content, we can navigate to another address within the database content through pointers.

Let us consider a navigational statement s ∈ S, where S = S1, S2 .. Sk. If the statement S is applied to the
set of addresses A0 ⊆ A, then we can define a trajectory of navigation in a sequence of address sets:
<A0,A1..Ak> where A1 = ||S1||(A0), A2 = ||S1.S2||(A0), Ak = ||S1.S2…Sk||(A0).

To verify the equivalence between the OSQL and its translated SQL statement, we can show that their
data are the same by expressing them in the same domain of navigation statement.

Assume the schema mapping preserved the nature of database, the domain of navigation is from same
database, then navigation paths should be equivalent.

The technique of creating Navigation Path

The syntax of a navigation path is :

Caluse_content [{; clause_content | inner_clause_content }…]
Where,

Clause_content :
Table_name_list
Attribute_name_list
Expressions_list

Inner_clause_content :

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 21

‘[‘ clause_content { ; clause_content | inner_clause_content … ‘]’
table_name_list :

[path_expression .]table_name [, table_name_list …]
attribute_name_list :

[path_expression .]attribute_name [, attribute_name_list …]
expression_list :

expression [, expression_list …]

Translation of SELECT Statement

The basic syntax of OSQL query transaction is as follows

Step 1 Decompose OSQL query transaction – separating the transaction components into different

listings as follows.

SELECT {attribute-list-1}
FROM {class-list}
WHERE {search-condition-1}
ORDER BY {attribute-list-2}
GROUP BY {attribute-list3}
HAVING {search-condition-2}

Step 2 Build navigation path of OSQL in order to navigate the query graph16 (OODB Class Table) –

based on the input OODB schema, an navigation path can be established to indicate the
relationship between association/composite attribute and the referenced classes it related to.

Step 3 Map the OSQL query graph to SQL query graph – according the navigation path of OSQL, we

locate the class to its corresponding relations in RDB by the pre-process schema mapping (RDB
Relation Table), and generate the navigation path of SQL.

Step 4 Transform OSQL to SQL query transaction – according the navigation path of SQL and the

particular semantic rules, place the target attributes and relations in the corresponding clause,
such as SELECT, WHERE, and FROM clause, and use JOIN query technique to reference the
corresponding relations that listed in SELECT clause_content.

Query with Path Expression

A path expression in OSQL begins with an optional class prefix to identify the class containing the
attribute specified in the expression. Path expression is valid in any part of a query except FROM
clause. The syntax of a path expression is as follow.

[class_prefix.] attr_name1[‘[‘var’]’].attr_name2[‘[‘var’]’]…

the class_prefix is a correlation variable or the name of a user-defined class in the database. The
attr_name1 can be the name of an instance attribute in the prefixed class, or interpreter variable. A
selector variable can optionally be assigned to any attribute referenced in the path expression.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 22

Scalar-valued Expressions (Query with Associate/composite Attributes)

The simplest form of path expression identifies scalar values. It can be specified in SELECT
statements to access scalar attributes of user-defined classes in OODB. The JOIN
query technique is used for translation process.

Set-valued Expression

A path expression can have more than one value if the domain of some attribute in the path expression is
defined as a set. The set of types for any attribute can be a single built-in data type or single
user-defined class. This set type is homogeneous. On the other hand, a set may also be heterogeneous;
that is, the set may contain more than one built-in data type, or more than one user-defined class.

Translation of UPDATE Statement

The UPDATE statement allows you to change values of attributes associated with the instances of a
class. A WHERE-clause can be specified if you want to conditionally update the value of an instance.

Once instances have been inserted into OODB, the attribute values of those instances can be updated.
An update can be applied to a single instance or multiple instances. When you want to update a single
instance, you have to construct one update SQL statement. When you want to update a set-valued
instance, you have to construct more than one update SQL statement.

Translation of INSERT Statement

Instances are created when you insert data into class. In OSQL, when the domain of an attribute is a
user-defined class, values can be inserted using nested INSERT statements.

The general semantic rules of inserting attributes are

1. As the OID of instance in class C1 does not exist in relation Rc1, a unique key value of
corresponding relation Rc1 should be created.

2. When nested INSERT statements exist, there are two cases :
!"Inserting associated attribute – treat the nested INSERT statement as individual INSERT

transaction in SQL, and replace the position of the nested INSERT statement by a unique key value
Kr. It acts as the foreign key of the associate attribute. The key Kr is now the unique key of the
relation that the associated attribute referenced to.

!"Inserting set-value attribute – treat the nested INSERT statement as individual INSERT transaction

in SQL of the derived relation, Rset, (relation for set-valued attribute after schema mapping). The
foreign key Kset in original relation should be equal to the Kset in derived relation Rset.

Translation of DELETE Statement

The DELETE statement allows you to discard data that comprises an instance of a class.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 23

When an instance is deleted from the class C1, its OID is also cancelled. For instance of other class C2,
if its stored associated attribute (its domain as the class C1) is referred to the delete instance, it will also
be cancelled; i.e. set its value to NULL. In order to preserve the data consistence of OODB after the
translation to RDB, the steps must be taken before the DELETE transaction :

1. In Query statement, the value of key attribute of the tuple is deleted.

2. Stored associated attribute – we need to set the foreign key attribute Kr1 (which refers to R1) in

relation R2 to NULL, when the value of the domain in foreign key Kr1 is equal to the key of tuple
being deleted.

3. If the instance being deleted has a set-valued attribute, query the value of foreign key of derived

relation for set-valued attribute of the tuple being deleted.

4. Set-valued attribute – after schema mapping, the set-valued attribute of the class is mapped to the

other relation Rs for set-valued attribute. If the tuple is deleted in relation R1, its corresponding
tuples in relation Rs are also deleted.

The original delete transaction can then be performed.

7. OBJECT FRAME MODEL AGENT (OFMA)

The Object Frame Model Agent (OFMA)17 is constructed by application program interface (API) that
can manipulate both standard SQL and routine operations. The API is incorporated with an RDBMS in
which the Frame Model, Routines (i.e. Store Procedures), and RDB’s Tables are stored. The converted
SQL statement has two ways to go. The first way is to process the relational algebra such as restrict,
project, product, etc. The second way is to process the routine calls. Theoretically, the OFMA consists
of a Server API and a RDBMS.

We can make the process of command scanner simple by illustrating in the following pseudo code. In
this stage, the incoming message is identified for delivering to an API.

Begin

Get input message
Map the message to mapping table
IF no syntax error

 case 1 = DML without data modification
 call DML interpreter in Server API
 case 2 = Query method with DML function type
 call DML interpreter in Server API
 case 3 = Query method with additional method type
 call Method interpreter in Server API
 case 4 = DML with data modification
 call DML command interpreter in Server API

ELSE
 return with error

ENDIF
End

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 24

The Server API Process

The Server API will scan the input message by the Command Scanner. When the message is a DML
command without data modification, OFMA will parse the DML directly to RDBMS. When the
message is a method, OFMA will decode the message and execute the “action name” from the “method
class” of the Frame Model located in the routine file. The process of the Server API is shown in the
Figure 5.

Figure 5 - Process Diagram for OFMA Server API

8. PROTOTYPE

Schema and Method Translation

A prototype is provided for testing our methodology in the object-oriented (Jasmine) and the relational
(FoxPro) systems. We built up same definition and data in the two systems and translated a method to a
routine by our methodology. Then we ran the method and the routine in two systems. As a result, two
systems provided the same output. The data flow (see Figures 6 and 7) is as follows :

Figure 6 – Data Flow of the Prototype

Table A
Table B
Routine File

DML Interpreter

Method Interpreter

Command
Scanner

Query with
Method

Processing
Results Return Result

Frame Model

Constraint Class
Method Class

Attribute Class
Header Class

OFMA (Server API) Process

FoxPro

Jasmine

3
Transaction
Translation

1
Schema

Translation

2
Method

Translation

Meta-Data

OO
Schema OFMA

Display Result

User Input

OSQL

SQL

ResultMethod
Source

Routine
Source

Data

Method
File

Frame
Model

RDB
Schema

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 25

Figure 7 – Data Flow of the Method Translation

The OODBMS (Jasmine)18 contains an OODB schema and a method file. In the first step, a frame model
and RDB schema of the RDBMS (FoxPro)19 are created through the process of the schema translation.
On the other hand, the method file is read and converted to a routine file by the process of the source
code translation. The source code of routines will be kept in the routine file. The last step is the
invocation process. According to the signature, each call can be referred to the frame model and an
action name can be located that is a routine name for executing the specified routine stored on the
routine file. Each routine can be called by other routines within the routine file. The process of the
signature is as follows.

Source Signature
defineClass staff
{ instance :
 String firstname;
 String surname;
 Void findsurname (integer a);
 Void findsurname (string name, integer a);
 Void findsurname (string b);};

Frame Model (Target Signature)
Method_name Class Parameters Method_type Action
findsurname staff varchar void staff_findsurname1
findsurname staff varchar,integer void staff_findsurname2
findsurname staff integer void staff_findsurname3

During the schema translation, we also generate the following classes for working on the source code
translation. The details are as follows :

FoxPro

2.3
Invocation
Process

2.2
Method
Source

Translation

Run
Routine

Routine
Source

Method
SourceMethod

File
Routine

File

Get
Data

Require
Data

Frame
Model

2.1
Signature

Translation
OFMA

Routine
Name

Signature Invoke
Result

SQL

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 26

Example
This example shows that in the “staff” table, the “staff.id_no” and “staff.name” are attributes copying
from the superclass (i.e. “person” object). The “staff.dept.dept_name” is a composite attribute
connecting to the “department” object. In the where-clause, the “staff.dept.dept_no” is a composite
attribute as well.

Source Jasmine Method
void findsurname (integer a)
{ $string s <sval,sstat>;

 $staff p;
 $p = staff from staff where staff.dept.dept_no == a;
 $s = p.name;
 if (sstat == ODB_STATNIL)

 { printf ("Surname is NIL"); }
 else
 { printf ("Surname is %s", sval); }}

Translated Target FoxPro Routine
procedure staff_findsurname1
parameters a
use staff
use department
s = space(30)
sval = space(30)
sstat = space(1)
select * from staff, department;
where (staff.dept_oid = department.department_oid and department.dept_no = a);
into table p
s = p.name
IF s <> null THEN
 sval = s
 sstat = "Y"
ENDIF
Print_surname (sval, sstat)
close all
endproc

void print_surname (string sval, string sstat) && C Language

 { if (sstat == ODB_STATNIL) && Host Language
 { printf ("Surname is NIL"); }
 else
 { printf ("Surname is %s", sval); }}

As for the invocation, the action name on the frame is created by the system according to the class name
and the method name. Since the routine model name is the same as the action name, a specified routine
can be called by the frame from the routine file. The process of the invocation translation is as follows :

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 27

 Source Invocation
 $staff p && Table “staff” is subclass of table “person

$p.findage (AP123)

switch (p)
{ case p = class person : person_findage

 case p = class staff : staff_findsurname, person_findage }

 Meta-data (Target Signature)

Method_name Class Parameters Method_type Action
findage person varchar integer person_findage
findsurname staff varchar void staff_findsurname

 Translated Target Invocation
 do person_findage with AP234

Transaction Translation

Single Class Query

The basic form consists of the three clauses, namely the SELECT clause, the FROM clause, and the
optional WHERE clause. In the single class query, we SELECT one ore more attribute names or
expressions involving attributes FROM a single class in the database. For example, ‘find the department
that staff ‘123’ is working in’.

Input :
OSQL : SELECT dept.detp_name FROM staff WHERE staff_no = 123;

Result :
SQL : SELECT department.dept_name FROM staff, department WHERE staff.staff_no = ‘123’ and

staff.dept_oid = department.dept_oid;

Nested Insert Transaction

A nested INSERT statement is given in the value list at the position that corresponds to the attribute
whose domain is a user-defined class. The class name as the domain of the attribute is the class_name
that is referenced in the nested INSERT statement. If the attribute is a set of user-defined classes, then
each element that is placed into the set must have an INSERT statement associated with it.

Input :
OSQL : INSERT INTO staff (staff_id_no, post, office, dept) VALUES (22344, ‘Mick’, 3333, (INSERT

INTO department (dept_name, head) VALUES (‘Compute’,’Ken’))

Result :
SQL : INSERT INTO staff (staff_id_no, post, office, dept_no) VALUES (22344, ‘Mick’, 3333, 809);

INSERT INTO department (dept_no, dept_name, head) VALUES (809, ‘Compute’,’Ken’)

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 28

Delete Transaction
The DELETE statement allows you to discard data that comprises an instance of a class.

Input :
OSQL : DELETE FROM student WHERE student_id_no = ‘10’

Result :
SQL : SELECT student_oid FROM student WHERE student_id_no = ‘10’ into cursor oid ;

DELETE FROM grade WHERE student_oid = oid;

10. CONCLUSION AND FUTURE WORK

Object-Relational Database on a Relational Database Management System can be developed according
to our methodology. Our future research will be directed towards creating an ORDBMS as we solve the
conflicts between the Object-Oriented Database and Relational Database in this paper. During our
research on this topic, we have found that other developers have their ideas regarding Object-Relational
Database. They have applied their methodologies implementing the OO interfaces such as Informix’s
DataBlade, Software AG’s Bolero, and Oracle’s Data Cartridge. We use the frame model approach20 to
implement the OO interface because we do not have to change the existing system (i.e. Relational
Model) and can easily modify the model for different situations. It can be formed as a meta-data during
the schema translation and can be constructed as an application program interface for database
interoperability. Also, it allows designers to combine the rules together into a class and to associate the
classes in frame model as a knowledge-based system. We add the OO interface on top of the existing
system. Users can easy apply OO concepts21 in the relational system without interrupting their daily
operations.

REFERENCES

1. M. Blaha et al., "Converting OO Models into RDBMS Schema", IEEE Software, May

1994, pp. 28-39.

2. J.A. Orenstein and D.N. Kamber, "Accessing a Relational Database through an Object-Oriented

Database Interface, Proc. of VLDB 95, pp. 702-705.

3. S. DeFazio and J. Srinivasan, "Database Extensions for Complex Domains", Proc. of IEEE Data

Engineering, 1996, pp. 200-202.

4. C. Yu et al., "Translation of Object-Oriented Queries to Relational Queries", IEEE

Proc. of IEEE on Data Engineering, 1995, pp. 90-97.

5. J. Lim and D. Shin, "A Methodology of Constructing Canonical Form Database Schemas in a
Multiple Heterogeneous Database Environment", Journal of Database Management, Vol.9 No.4,
Fall 1998, pp. 4-11.

6. V. Krishnamurthy, S. Banerjee, and A. Nori, “Bringing Object-Relational Technology

to the Mainstream”, Proceedings of the 1999 ACM SIGMOD, pp513-514, 1999.

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1

 29

7. M. Stonebraker, P. Brown, and D. Moore, “Object-Relational DBMSs Tracking the Next
Great Wave”, Second Edition, Morgan Kaufmann Publishers Inc., 1999.

8. J. Fong and S. Huang, "Information Systems Reengineering", Springer Verlag, 1997.

9. O. Diaz and N.W. Paton, “Extending ODBMSs Using Metaclasses”, IEEE Software, May

1993

10. R.G.G. Cattell, "The Object Database Standard : ODMG-93", Morgan Kaufmann

Publishers, 1996.

11. H. Reichgelt, "Knowledge Representation", Ablex Publishing Corporation, 1991, pp. 143-176

12. R.G.G. Cattell, "The Object Database Standard : ODMG-2.0", Morgan Kaufmann

Publishers, 1997.

13. C.J. Date & H. Darwen, "A Guide to the SQL Standard", Addison-Wesley, 4th edition, pp. 453-493.

14. J. Melton, "An SQL3 Snapshot", Proc. of IEEE Data Engineering, 1996, pp. 666-672.

15. J. Fong & P. Chitson, "Query Translation from SQL to OQL for Database Reengineering",

International Journal of Information Technology, Vol. 3, No.1(1997), pp. 83-101

16. S. K. Cheung, “Adding an Object-Oriented Interface to Relational Database Using Frame Model”,

Proceedings of the 9th International Database Conference, 1999, pp.138-154, ISBN 962-937-046-8.

17. J. Fong and S. K. Cheung, “An Architectural Framework for Translating OODB Method to RDB
Routine for ORDBMS”, Proceedings of the 2nd ACM HKPRD Conference, 1999.

18. Computer Associates Int., Inc./Fujitsu Ltd., "Jasmine User's Manual", Release 1.1, 1997.

19. J.L. Hawkins, "FoxPro Programmer's Reference", QUE, 1996.

20. R. Fikes and T. Kehler, "The Role of Frame-based Representation in Reasoning", Communications

of the ACM, Volume 28, No.9, 1985,pp. 904-920.

21. M. J. Carey, N. M. Mattos, and A. K. Nori, “Object-Relational Database Systems: Principles,

Products and Challenges”, Proceedings of the 1997 ACM SIGMOD, p502, 1997

	1.	INTRODUCTION
	2.	Related Works
	Header Class
	Attribute Class
	Method Class
	Constraint Class

	Step 1 – Classes to Relations/Frame Model
	Step 2 – Inheritance/Generalization Mapping
	Step 3 – Identity Mapping
	Step 4 – Attribute Mapping
	Step 5 – Multiple-valued Attribute Mapping
	Step 6 – Aggregation Attribute Mapping
	Step 7 – Cardinality/Association Attribute Mapping

