
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 1 

Optimized Design of Materialized Views 
in a Real-Life Data Warehousing Environment 

 
Gorettiv K.Y. Chan 

 
Computer & Information Systems 

Rix Pumps Limited, Tai Po 
Industrial Estate,N.T., 
Hong Kong, China 

       g.chan@rix.com.hk  

Qing  Li 
 

Dept of Computer Science 
City University of Hong Kong 

Tat Chee Ave, Kowloon, 
Hong Kong, China 
csqli@cityu.edu.hk 

Ling Feng 
 

InfoLab, Tilburg University 
B 302, PO Box 90153  

5000 LE Tilburg 
The Netherlands 

ling@kub.nl 
 

Abstract 
In this paper, we describe the design of a data warehousing system for an engineering company ‘R’.  
This system aims to assist users in retrieving data for business analysis in an efficient manner.  The 
structural design of this data warehousing system employs the dimensional modeling concepts of star 
and snowflake schemes.  Furthermore, frequently accessed dimension keys and attributes are stored in 
various summary views (materialized views) in order to minimize the query processing cost.  A cost 
model was developed to enable the evaluation of the total cost and benefit involved in selecting each 
materialized view.  Using the cost analysis methodology for evaluation, an adapted greedy algorithm 
has been implemented for the selection of materialized views.  This algorithm takes into account all of 
the cost variables associated with the materialized views selection method, including query access 
frequencies, base-data update frequencies, query access costs, view maintenance costs and the 
availability of the system’s storage.  The algorithm and cost model have been applied to a set of real-
life database items extracted from company ‘R’.  By selecting the most cost effective set of 
materialized summary views, the total cost of the maintenance, storage and query processing of the 
system is optimized, thereby resulting in an efficient data warehousing system. 

 
Keywords:  Data warehouse, materialized views selection, query processing cost, storage 

cost, maintenance cost,  query and update frequencies. 
 
 

1. Introduction 

 
A data warehouse is an information base that stores a large volume of extracted and summarized data 
for On-Line Analytical Processing and Decision Support Systems [1].  The basic architecture of a data 
warehousing system given in [2] is shown in Figure 1.  To reduce the cost of executing aggregate 
queries in a data warehousing environment, frequently used aggregates are often pre-computed and 
materialized into summary views so that future queries can utilize them directly.  Undoubtedly, 
materializing these summary views can minimize query response time.  However, if the source data 
changes frequently, keeping these materialized views updated will inevitably incur a high maintenance 
cost.  Furthermore, for a system with limited storage space and/or with thousands of summary views, 
we may be able to materialize only a small fraction of the views.  Therefore, a number of parameters, 
including users’ query frequencies, base relation update frequencies, query costs, view maintenance 
costs and the availability of the system’s storage, should be considered in order to select an optimal set 
of summary views to be materialized. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 2 

To motivate the discussion of data warehouse design and materialized view selection, consider a data 
warehouse which contains the following fact and dimension tables:  

INV (Co_no, Inv_no, Inv_date, P_no, Qty, Amt) 
CO (Co_no, Co_name, R_no) 
PD (P_no, P_name, Mfr_no, Type_no, Cat_no) 

 
 

 
 
Figure 1: The basic architecture of a data warehousing system 
 
Assume the sizes of the fact and dimension tables ‘INV’, ‘CO’ and ‘PD’ are 114B, 12B and 6B, 
respectively, where B denotes the data block size which is 2K in the database system (e.g., Oracle).  

Given a subset of typical user queries as illustrated in Table 1, we can calculate the total cost Ctotal  and each 
cost component (i.e. query processing, maintenance and storage costs) for the following three view 
materialization strategies: 

• the all-virtual-views method 
• the all-materialized-views method 
• the selected-materialized-views method 
 
Table 5 illustrated the storage cost calculation for summary table ‘CO-P-DAY’.  Table 2 presents the 
calculation results, from which we make the following observations: (i) The all-virtual-views method 
requires the highest query processing cost but no view maintenance and storage costs are incurred.  (ii) 
The all-materialized-views method can provide the best query performance since this method requires 
the minimum query processing cost.  However, its total maintenance and storage expenses are the 
highest.  (iii) The selected-materialized-views method requires a slightly higher query processing cost 
than the all-materialized-views method, but its total cost Ctotal is the least.   

Source 1
Database

Source 2
Database

Source n
Database

.......

 Source Data

E
xt

ra
ct

,
Fi

lte
r,

In
te

gr
at

e,
up

da
te

Query,
Data Analysis,
  Data Mining

Users

Metadata

Data Warehouse

Invoice

Company

Product

Date

Salesman

Data warehouse base-data

 Virtual and Materialized Summary Views



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 3 

Based on the above cost analysis, apparently, the selected-materialized-views method is the most 
effective in terms of both query performance and maintenance cost of data warehousing systems.   

Users’ Queries 
 

Query 
Frequency 

fqi 

Summary 
Views  

No. of 
records in 
summary 

table 

Size of 
Summar
y View  
(in B) 

SELECT  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO,  
 CAT_NO,  MFR_NO, R_NO, INV_DT, SUM(AMT) AMT, 
 SUM(QTY) QTY   
FROM  INV , CO,  PD 
WHERE INV.CO_NO=CO.CO_NO    AND   INV.P_NO = PD.P_NO 
GROUP BY  INV.CO_NO,CO_NAME,INV.P_NO,P_NAME,TYPE_NO, INV_DT 
 
ORDER BY TYPE_NO 

2 CO-P-DAY 3845 240.00 

SELECT  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO,  
 CAT_NO,  MFR_NO, R_NO, TO_CHAR(INV_DT,'MM-YY'),
 SUM(AMT) AMT, SUM(QTY)QTY 
FROM  INV , CO,  PD 
WHERE INV.CO_NO=CO.CO_NO AND INV.P_NO = PD.P_NO 
GROUP BY  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO, 
 TO_CHAR(INV_DT,'MM-YY') 
ORDER BY TYPE_NO 

1 CO-P-MTH 3560 209.00 

SELECT  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO,  
 CAT_NO,  MFR_NO, R_NO, TO_CHAR(INV_DT,'Q-YY'), 
 SUM(AMT) AMT, SUM(QTY)QTY 
 FROM  INV , CO,  PD 
WHERE INV.CO_NO=CO.CO_NO  AND  INV.P_NO = PD.P_NO 
GROUP BY  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO, 
 TO_CHAR(INV_DT,'Q-YY') 
ORDER BY TYPE_NO 

1 CO-P-QTR 3331 196.00 

SELECT  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO,  
 CAT_NO,  MFR_NO, R_NO, TO_CHAR(INV_DT,'YY'),
 SUM(AMT) AMT, SUM(QTY) QTY  
FROM  INV , CO,  PD 
WHERE INV.CO_NO=CO.CO_NO      AND INV.P_NO = PD.P_NO 
GROUP BY  INV.CO_NO, CO_NAME, INV.P_NO, P_NAME, TYPE_NO, 
 TO_CHAR(INV_DT,'YY') 
ORDER BY TYPE_NO 

1 CO-P-YR 1087 64.00 

 
Table 1: A subset of users’ queries.  Note fqi denotes the query frequency between every two 

updates.1 
 
 

 Total query 
processing cost 

Total(Cqr) 
 

Total maintenance 
cost Total(CmT) 

 

Total storage 
cost Total(CstoreT) 

 

Ctotal  = 
Total(Cqr) + 
Total(CmT) + 
Total(CstoreT) 

All-virtual-views  
10920 

 
0 

 
0 

 
10920 

All- materialized-views  
949 

 
2829 

 
709 

 
4487 

Selected-materialized- 
views 

 
1200 

 
2184 

 
240 

 
3624 

 
Table 2: The query, maintenance and storage costs for three view materialization strategies 

 
Recently, materialized view selection problem has sparked vigorous discussions in the database 
research community.  Harinarayan, Rajaraman and Ullman [3] presented a greedy algorithm for the 
selection of materialized views so that query evaluation costs can be optimized in the special case of 

                                                                 
1 A complete list of annotations used in our case study can be found in the appendix of the paper. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 4 

“data cubes”.  However, the costs for view maintenance and storage were not addressed in this piece 
of work.  Yang, Karlapalem and Li [4] proposed a heuristic algorithm which utilizes a Multiple View 
Processing Plan (MVPP) to obtain an optimal materialized view selection, such that the best 
combination of good performance and low maintenance cost can be achieved.  However, this 
algorithm did not consider the system storage constraints.  Gupta [5] further developed a greedy 
algorithm to incorporate the maintenance cost and storage constraint in the selection of data warehouse 
materialized views.  “And-Or” view graphs were introduced to represent all the possible ways to 
generate warehouse views such that the best query path can be utilized to optimize query response 
time.  In this paper, we discuss our experiences in designing and selecting appropriate materialized 
views for data warehousing systems.  The latest dimensional modeling methodologies are applied in 
our case study to design an efficient data warehousing system for an engineering company ‘R’.  The 
greedy algorithm presented by Gupta [5] has been adopted and modified for the selection of 
materialized views.  A cost model was developed to enable the evaluation of the total cost and benefit 
involved in selecting each materialized view.  We apply the algorithm and cost model to a set of real-
life database items extracted from this company.  Due to the constraints in data storage and 
computational costs involved, a subset of sales records (i.e. the yearly sales records of 1996) was 
adopted to estimate the size of each summary view.  Based on the cost analysis, a set of materialized 
views are selected to optimize the total cost including the query, maintenance and storage costs of the 
warehousing system.  This view selection methodology was tested and proved to be very cost effective 
for the optimization of the data warehouse.  General guidelines for data warehouse design and 
materialized views selection based on this work are presented. 

The reminder of the paper is organized as follows.  Section 2 describes  the schema design of the data 
warehousing system.  The cost model and adapted greedy algorithm for the selection of materialized 
views are presented in section 3.  In section 4, various view materialization strategies are analyzed and 
their performances are tested.  Guidelines for the design and selection of materialized views for data 
warehousing systems are discussed in section 5.  Section 6 concludes the paper with a brief discussion 
of future work. 

 
 

2. Data Warehouse Design 

 
In this section, the application characteristics and performances of star, fact constellation and 
snowflake schemes [6] are reviewed and discussed, based on which the benefit of integrating these 
schemes into the design of our data warehousing system is then examined. 

 
2.1 Star, fact constellation and snowflake schemes 

2.1.1  Star schema 
 
The two major components of the star schema are fact and dimension tables, as shown in Figure 2.  
The center of this star schema is represented by the fact table ‘INV’ and the points of the star schema 
are represented by dimension tables.  The attributes of these dimension tables can often be organized 
into hierarchies [7]. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 5 

Co_No
Inv_No
INV_Date
Product_No
Qty
Amount

Co_No

Co_Name
Co_Desc
Region_No
Region

Product_No

Product_Name
Power_rating
Type_no
Type
Cat_ No
Category
Mfr_No
Mfr

Company

I  NV

Date

Day
Month
Quarter
Year

Date

Product  
 

Figure 2: The star schema for data warehousing systems 
 
In order to maintain a simple data structure, the fact table of this star schema keeps both base-data and 
summarized data, while the dimension tables are un-normalized.  As a result, the number of joins 
required for processing each query can be effectively reduced.  However, when large volumes of new 
data and pre-calculated data are added to the data warehouse, the fact table can become extremely 
large.  Likewise, if the un-normalized dimension tables have many records, their sizes will increase 
significantly because of the repeated attribute values.  Thus, large disk storage and long query 
processing time will be required due to the large data quantity in the fact and dimension tables. 
 
 
2.1.2  Fact constellation schema 
 
The fact table of the fact constellation schema is partitioned horizontally according to the group-by 
attributes in order to reduce query processing time, as shown in Figure 3.  Furthermore, the amount of 
summarized data to be materialized can be adjusted according to the users’ query frequencies and the 
system’s storage constraint.  The main disadvantages of this design are: 1) the structure of the fact 
constellation schema is more complex.  Therefore, it is very difficult to maintain a large number of 
summary views; and 2) various views may have to be accessed in order to process one user’s query. 

Co_No

Inv_No
Day
Prod_No
Qty
Amount

Co_No

Month
Prod_No
Qty
Amount

Co_No

Quarter
Prod_No
Qty
Amount

Co_No

Year
Prod_No
Qty
Amount

R_No

Day
Prod_No
Qty
Amount

R_No

Month
Prod_No
Qty
Amount

R_No

Quarter
Prod_No
Qty
Amount

R_No

Year
Prod_No
Qty
Amount

CO-P-DAY

CO-P-YR

R-P-YR

R-P-Day

Co_No

Co_Name
Co_Desc
Region_No
Region

Company

Product_No

Product_Name
Power_rating
Type_no
Type
Cat_ No
Category
Mfr_No
Mfr

Product

P_No
Day
Qty
Amount

P_No
Month
Qty
Amount

P_No
Quarter
Qty
Amount

P_No
Year
Qty
Amount

Cat No
Day
Qty
Amount

Cat_No
Month
Qty
Amount

Cat_No
Quarter
Qty
Amount

Cat_No
Year
Qty
Amount

P-sale-Day
P-sale-YR

Cat-sale-Day Cat-sale-YR

Mfr No
Day
Qty
Amount

Mfr_No
Month
Qty
Amount

Mfr_No
Quarter
Qty
Amount

Mfr_No
Year
Qty
Amount

Mfr-sale-Day

Mfr-sale-YR

Type No
Day
Qty
Amount

Type_No
Month
Qty
Amount

Type_No
Quarter
Qty
Amount

Type_No
Year
Qty
Amount

Type-sale-Day
Type-sale-YR

Date

Day
Month
Quarter
Year

Day

(Inv-

Month

(Inv-total)

Quarter

(Inv-total)

Year

(Inv-total)

Total Sale-Day

Date

Total Sale-YR

 
 

Figure 3: The fact constellation schema for data warehousing systems 
 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 6 

2.1.3  Snowflake schema 
 
The snowflake schema was developed in an attempt to further improve query performance by 
normalizing the dimension tables since smaller dimension tables can effectively reduce the cost of join 
operations.  This schema is illustrated in Figure 4.  The main disadvantages of this design are: 1) it is a 
very complex data structure, with many summary views and normalized dimension tables; and 2) 
various summary views and dimension tables may also need to be accessed in order to process one 
user’s query. 

 
Product_No

Product_Name
Power_rating
Type_no
Type
Cat_ No
Category
Mfr_No
Mfr

Product

P_No
Day
Qty
Amount

P_No
Month
Qty
Amount

P_No
Quarter
Qty
Amount

P_No
Year
Qty
Amount

Cat No
Day
Qty
Amount

Cat_No
Month
Qty
Amount

Cat_No
Quarter
Qty
Amount

Cat_No
Year
Qty
Amount

P-sale-Day

P-sale-YR

Cat-sale-Day
Cat-sale-YR

Mfr No
Day
Qty
Amount

Mfr_No
Month
Qty
Amount

Mfr_No
Quarter
Qty
Amount

Mfr_No
Year
Qty
Amount

Mfr-sale-Day

Mfr-sale-YR

Type No
Day
Qty
Amount

Type_No
Month
Qty
Amount

Type_No
Quarter
Qty
Amount

Type_No
Year
Qty
Amount

Type-sale-Day

Type-sale-YR

Co_No

Inv_No
Day
P_No
Qty
Amount

Co_No

Month
P No
Qty
Amount

Co_No

Quarter
P_No
Qty
Amount

Co_No

Year
P_No
Qty
Amount

R_No

Day
P No
Qty
Amount

R_No

Month
P_No
Qty
Amount

R_No

Quarter
P_No
Qty
Amount

Region_No

Year
P_No
Qty
Amount

CO-P-DAY

CO-P-YR

R-P-YR

R-P-Day

Co_No

Co_Name
Co_Desc
Region_No
Region

Company

Date

Day
Month
Quarter
Year

Day

(Inv-total)

Month

(Inv-total)

Quarter

(Inv-total)

Year

(Inv-total)

Total Sale-Day
Date

Total Sale-YR

Region_No

Region

Region Type

Mfr_No

Mfr

Cat_No

Category

Mfr

Type_No

Type

Category

 
 
Figure 4: The snowflake schema for data warehousing systems 
 

 

2.2 The application requirements of company `R’  

The database system of company ‘R’ actually contains a large number of tables.  However, in this case 
study, analysis is conducted mainly on the sales data of the invoice database system.  The ER diagram 
of this system is illustrated in Figure 5.  The data warehousing design methodology developed based 
on this simplified data model can be easily incorporated into the company’s present system. 

 
Figure 5: ER diagram for the invoice database system 
 

INVOICE

PRODUCT
COMPANY

1

N

N

N1
N

M

INV.
ITEMHAS

1

Type

N

Has MFR

By

N

Region

In

Category

Has

1

1



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 7 

After the user requirements were collected, it was found that the measures of sales in relation to each 
dimension attribute needed to be analyzed.  The measures of sales are in terms of the amount charged 
for each invoice item and the quantity of products sold.  The information required by users can be 
obtained by aggregating the sales data with various dimension attributes, including Co_no and R_no 
of the Company dimension, Product_no, Type_no, Category_no and Mfr_no of the Product 
dimension, and day, month, quarter and year of the Date dimension.  For example, the summary view 
‘Co-P-Yr’ is calculated by summing up numbers of each product sold to different companies in a year.  
Furthermore, these aggregated sales data will be sorted by various dimension attributes for generating 
reports. 

The summary views which aggregate sales data with various group-by attributes and the estimated 
query frequencies between every two updates are listed in Table 3.  Table 4 gives the notations used in 
these summary views. 

 

Summary views generated by  
users' queries 

Query Frequency 
fqi 

 Summary views generated by 
 users' queries 

Query Frequency 
 fqi 

CO-P-DAY 2  CO-SALE-DAY 5 
CO-P-MTH 1  CO-SALE-MTH 5 
CO-P-QTR 1  CO-SALE-QTR 5 
CO-P-YR 1  CO-SALE-YR 5 
R-P-DAY 1  R-TYPE-DAY 0.5 
R-P-MTH 1  R-TYPE-MTH 0.5 
R-P-QTR 1  R-TYPE-QTR 0.5 
R-P-YR 1  R-TYPE-YR 0.5 
P-SALE-DAY 6  TYPE-SALE-DAY 1 
P-SALE-MTH 6  TYPE-SALE-MTH 1 
P-SALE-QTR 6  TYPE-SALE-QTR 1 
P-SALE-YR 6  TYPE-SALE-YR 1 
CO-MFR-DAY 0.5  R-CAT-DAY 0.5 
CO-MFR-MTH 0.5  R-CAT-MTH 0.5 
CO-MFR-QTR 0.5  R-CAT-QTR 0.5 
CO-MFR-YR 0.5  R-CAT-YR 0.5 
R-MFR-DAY 1  CAT-SALE-DAY 2 
R-MFR-MTH 1  CAT-SALE-MTH 2 
R-MFR-QTR 1  CAT-SALE-QTR 2 
R-MFR-YR 1  CAT-SALE-YR 2 
MFR-SALE-DAY 3  R-SALE-DAY 2 
MFR-SALE-MTH 3  R-SALE-MTH 2 
MFR-SALE-QTR 3  R-SALE-QTR 2 
MFR-SALE-YR 3  R-SALE-YR 2 
CO-TYPE-DAY 1  TOT-SALE-DAY 3 
CO-TYPE-MTH 1  TOT-SALE-MTH 3 
CO-TYPE-QTR 1  TOT-SALE-QTR 3 
CO-TYPE-YR 1  TOT-SALE-YR 3 
CO-CAT-DAY 1  CO-CAT-QTR 1 
CO-CAT-MTH 1  CO-CAT-YR 1 

 
Table 3: Summary views generated by users’ queries and related query frequencies 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 8 

 
 
Notations in summary views Group-by attributes 

 
Names of group-by attributes 

Co Co_no Company_number 
R R_no Region_number 
P P_no Product_no 
Mfr Mfr_no Manufacturer_no 
Type Type_no Type_no 
Cat Cat_no Category_no 
Day Inv_dt  Invoice_date 
Mth To_char(Inv_dt,'mm-yy') Invoice_date 
Qtr To_char(Inv_dt,'Q-yy') Invoice_date 
Yr To_char(Inv_dt,'yy') Invoice_date 
Amt Amt Amount 
Qty Qty Quantity 
 
Table 4: Notations in summary views  
 
2.3 Storing frequently accessed dimension keys and attributes in the summary views  

Long query processing time is required for joining large fact and dimension tables.  However, when 
the frequently accessed dimension keys and attributes are stored into summary views, the number of 
joins and query processing time can be effectively reduced. The storage cost, benefit and storage 
effectiveness associated with adding various frequently accessed dimension keys and attributes into 
the fact table ‘INV’ are calculated and listed in Table 5.  The cost analysis here assumes that the 
difference in maintenance cost is negligible.  The query frequencies used for calculating the total 
query cost are listed in Table 3.  The set of dimension attributes (P_name, Co_name,  R_no, Type_no, 
Cat_no, and Mfr_no) are chosen for storage in ‘CO-P-DAY’ and various summary views to speed up 
query processes, since this set yields the greatest benefit (i.e., total query cost savings) and storage 
effectiveness. Detailed calculations of benefit and effectiveness in our case study will be given in 
Section 3.1.4. 

Fact table Table size 
(in B) 

Extra storage 
space 
(in B) 

Total Cost  for 
evaluating 115 
queries (in B) 

Benefit 
   (in B) 

Effectiveness 
(in B) 

‘INV’ (Co_no, Inv_no, Inv_date, P_no, Qty, Amt) 
 

114  126270.00   

The following dimension keys and attributes are 
added to the fact table ‘INV’ 

     

X ={R_no, Type_no, Cat_no, Mfr_no} 154 40 99754.60 26515.40 662.89 

{P_name} ∪ X 
 

197 83 107858.36 18411.64 221.83 

{Co_name}  ∪ X 
 

197 83 63902.36 62367.64 751.42 

{P_name, Co_name} ∪∪  X 
 

240 126 30087.12 96182.88 763.36 

{Region, P_name, Co_name} ∪ X 
 

269 155 33478.40 92791.60 598.66 

{Type, P_name, Co_name}  ∪ X 
 

280 166 33779.22 92490.78 557.17 

Category, P_name, Co_name} ∪ X 
 

280 166 34785.20 91484.80 551.11 

{Manufacturer, P_name, Co_name}  ∪ X 
 

280 138 34088.32 92181.68 667.98 

Table 5 : The  costs of adding various dimension keys and attributes to the fact table ‘INV’. (X 
represents a set of dimension keys { R_no, Type_no, Cat_no, Mfr_no}.) 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 9 

 
2.4 System design and characteristics 

In our case study, the data warehouse structural design is based on a combination of star and 
snowflake schemes.  Source data from the invoice database is integrated into the data warehousing 
system to form its base-data.  These base-data are stored in fact and dimension tables in the form of a 
star schema.  The fact table is horizontally partitioned into many summary views.  Furthermore, 
frequently accessed dimension keys and attributes are stored in the summary views so that query 
processing costs can be reduced.  The dimension tables are normalized according to various dimension 
attributes in order to reduce the table sizes.  The sizes of these normalized tables are listed in Table 6.  
Figure 6 illustrates the hybrid schema of the data warehousing system for company ‘R’.  

 
Dimension 
tables 

Record 
number  

Attributes in dimension table  Table size 
S(Vi)        (in 

B) 
CO 760 Co_no, Co_name, R_no 12 
COMPANY 760 Co_no, Co_name, Co_desc, R_no, Region 45 
REGION 4 R_no, Region 0.045 
PRODUCT 190 P_no, P_name, P_desc,  Power_rating, 

Type_no, Type, Cat_no, Cat, Mfr_no, Mfr 
102 

PD 190 P_no, P_name, Mfr_no, Type_no, Cat_no 6 
PD_MFR 14 Mfr_no, Mfr 0.2 
PD_TYPE 31 Type_no, Type, Cat_no 0.47 
PD_CAT 6 Cat_no, Cat 0.08 
P_MFR 190 P_no, Mfr_no, Mfr 3 
P_TYPE 190 P_no, Type_no, Type, Cat_no 3 
P_CAT 190 P_no, Cat_no, Cat 3 
 
Table 6:  Sizes of different dimension tables 
 
 

3. Materialized Views Selection 

 
We now move on to address the related issue of data warehouse design for our case study, namely, the 
selection of summary views to be stored/materialized in the data warehouse.  Benefits of materializing 
summary views selectively have been articulated in the literature [5, 8].  For our case study, a cost 
model is established to enable the evaluation of query cost, maintenance cost, storage cost and benefit 
associated with materializing each summary view in the data warehouse.  An adapted greedy 
algorithm using the cost analysis methodology for evaluation is then presented for selecting an optimal 
set of materialized views. 

 
3.1 Cost model 

The estimated query, maintenance and storage costs in the following descriptions will be calculated in 
terms of data block size B.  For simplicity, other factors such as computational cost and 
communication cost are ignored in our estimation. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 10 

 
Figure 6: The hybrid schema of the data warehousing system for company ‘R’ 
 
 
3.1.1   Query processing cost for selection, aggregation and joining 

 
The analysis assumes that there is no index or hash key in any of the summary views, therefore linear 
search and nested loop approach are used for the selection and join operations, respectively.  In the 
worst case, the analysis estimates that all the records in a summary view will be scanned once in order 
to process one user’s query which involves selection and aggregation. Thus, to access a summary view 
Vi, the estimated query processing cost in terms of block access is equal to the size of Vi, i.e.,  

C g (V i ) = S (V i)  

The estimated query cost involving the joining of n dimension tables [9] with the summary view Vi  is:   
C j (V d 1, V d 2, ..., V d n, V i ) = (S (V d 1) + S ( V d 1) * S ( V i)) + ( S ( V d 2 ) + S (V d 2) * S ( V i )) + ... +

( S ( V d n) + S ( V d n) * S (V i))
 

Co_No
Inv_No
Inv_Date
Product_No
Qty
Amount

Co_No

Co_Name
Region_No

Product_No

P_Name
Type_No
Cat_ No
Mfr_No

Co

INV

Date

Day
Month
Quarter
Year

Co_No
Co_Name
Inv_No
Day
Prod_No
P_name
Qty
Amount
R_No
Type_No
Cat_No
Mfr_No

Co_No
Co_Name
Month
Prod_No
P_Name
Qty
Amount
R_No
Type_No
Cat_No
Mfr_No

Co_No
Co_Name
Quarter
Prod_No
P_Name
Qty
Amount
R_No
Type_No
Cat_No
Mfr_No

Co_No
Co_Name
Year
Prod_No
P_Name
Qty
Amount
R_No
Type_No
Cat_No
Mfr_No

P_No
P_Name
Day
Type_No
Cat_No
Mfr_No
Qty
Amount

P_No
P_Name
Month
Type_No
Cat_No
Mfr_No
Qty
Amount

P_No
P_Name
Quarter
Type_No
Cat_No
Mfr_No
Qty
Amount

P_No
P_Name
Year
Type_No
Cat_No
Mfr_No
Qty
Amount

Type No
Type
Day
Cat_no
Qty
Amount

Type_No
Type
Month
Cat_no
Qty
Amount

Type_No
Type
Quarter
Cat_no
Qty
Amount

Type_No
Type
Year
Cat_No
Qty
Amount

R_No
Region
Day
Prod_No
P_Name
Qty
Amount
Type_No
Cat_No
Mfr_No

R_No
Region
Month
Prod_No
P_Name
Qty
Amount
Type_No
Cat_No
Mfr_No

R_No
Region
Quarter
Prod_No
P_Name
Qty
Amount
Type_No
Cat_No
Mfr_No

Region_N
o
Region
Year
Prod_No
P_Name
Qty
Amount
Type_No
Cat_No
Mfr_No

Co_No
Co_Name
Day
Cat_No
Category
Qty
Amount
R_NO

Co_No
Co_Name
Month
Cat_No
Category
Qty
Amount
R_NO

Co_No
Co_Name
Quarter
Cat_No
Category
Qty
Amount
R_NO

Co_No
Co_Name
Year
Cat_No
Category
Qty
Amount
R_NO

Day

(Inv-total)

Month

(Inv-total)

Quarter

(Inv-total)

Year

(Inv-total)

R_No
Region
Day
Cat_No
Category
Qty
Amount

R_No
Region
Month
Cat_No
Category
Qty
Amount

R_No
Region
Quarter
Cat_No
Category
Qty
Amount

Region_No
Region
Year
Cat_No
Category
Qty
Amount

CO-P-DAY

R-Cat-YR

R-Cat-Day

CO-P-YR

R-P-YR

R-P-Day

Co-Cat-YR

Co-Cat-Day

P-sale-Day

P-sale-YR

Type-sale-Day
Type-sale-YR

Total Sale-Day

Total Sale-YR

Pd

Mfr_No

Mfr

Type_No

Type
Cat_No

Pd_Type

Pd_Mfr

Mfr No
Mfr
Day

Qty
Amount

Mfr_No
Mfr
Month

Qty
Amount

Mfr_No
Mfr
Quarter

Qty
Amount

Mfr_No
Mfr
Year

Qty
Amount

Mfr-sale-Day
Mfr-sale-YR

Co_No
Co_Name
Day
Mfr_No
Mfr
Qty
Amount
R_NO

Co_No
Co_Name
Month
Mfr_No
Mfr
Qty
Amount
R_NO

Co_No
Co_Name
Quarter
Mfr_No
Mfr
Qty
Amount
R_NO

Co_No
Co_Name
Year
Mfr_No
Mfr
Qty
Amount
R_NO

R_No
Region
Day
Mfr_No
Mfr
Qty
Amount

R_No
Region
Month
Mfr_No
Mfr
Qty
Amount

R_No
Region
Quarter
Mfr_No
Mfr
Qty
Amount

Region_No
Region
Year
Mfr_No
Mfr
Qty
Amount

R-Mfr-YR

R-Mfr-Day

Co-Mfr-YR

Co-Mfr-Day

R_No
Region
Day
Qty
Amount

R_No
Region
Month
Qty
Amount

R_No
Region
Quarter
Qty
Amount

Region_No
Region
Year
Qty
Amount

R-sale-YR
R-sale-Day

Co_No
Co_Name
Day
Amount
R_NO

Co_No
Co_Name
Month
Amount
R_NO

Co_No
Co_Name
Quarter
Amount
R_NO

Co_No
Co_Nam
e
Year
Amount
R_NO

Co-sale-YR

Co-sale-Day

Date

Region_No

Region

Region

Cat No
Category
Day

Qty
Amount

Cat_No
Category
Month

Qty
Amount

Cat_No
Category
Quarter

Qty
Amount

Cat_No
Category
Year

Qty
Amount

Cat-sale-Day
Cat-sale-YR

Cat_No

Category

Pd_Cat

Co_No
Co_Name
Day
Type_No
Type
Cat_no
Qty
Amount
R_NO

Co_No
Co_Name
Month
Type_No
Type
Cat_no
Qty
Amount
R_NO

Co_No
Co_Name
Quarter
Type_No
Type
Cat_no
Qty
Amount
R_NO

Co_No
Co_Name
Year
Type_No
Type
Cat_no
Qty
Amount
R_NO

R_No
Region
Day
Type_No
Type
Cat_no
Qty
Amount

R_No
Region
Month
Type_No
Type
Cat_no
Qty
Amount

R_No
Region
Quarter
Type_No
Type
Cat_no
Qty
Amount

Region_No
Region
Year
Type_No
Type
Cat_no
Qty
Amount

R-Type-YR
R-Type-Day

Co-Type-YR
Co-Type-Day

Co_No

Co_Name
Co_Desc
Region_No
Region Desc

Company

Product_No

P_Name
Product_Desc
Power rating
Type_No
Type
Cat_ No
Category
Mfr_No
Manufacturer

Product

Dimension
Table

 Fact Table



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 11 

To process a user’s query qi, which requires not only selection and aggregation of the summary view 
Vi, but also the joining of Vi with other dimension tables, the query cost Cq (qi) is:   
C q (q i ) = C g (V i) + C j( V d 1, V d 2 , ..., V dn , V i)

= S (V i) + ( S (V d 1) + S ( V d 1) * S ( V i)) + (S ( V d 2) + S ( V d 2) * S (V i)) + ... +
( S (V d n) + S ( V dn) * S ( V i))

 

Thus, the total query cost Total(Cqr) for processing r users’ queries between every two updates is: 

 

 
3.1.2   Data warehouse maintenance cost  

 
As the source data set of the invoice system is subject to constant changes, these changes are recorded 
by a set of auxiliary views and conveyed to the ‘INV’ fact table and dimension tables during the 
maintenance window [10].  Based on the updated ‘INV’ fact table and dimension tables, all the sales 
summary views within the data warehouse need to be re-computed.  There are usually many ancestor 
views from which a sales summary view can be evaluated.  However, the best choice is the smallest 
possible ancestor view that requires the least number of joining processes for the computation of its 
descendant views.  As illustrated in Figure 7, the summary view of product monthly sales ‘P-sale-
Month’ can be evaluated by aggregating the summary view of either the regional product monthly 
sales ‘R-P-Month’ or the product daily sales ‘P-sale-Day’.  However, aggregating ‘R-P-Month’ will 
result in the least query cost.  The optimal query and maintenance paths for these summary views are 
illustrated in Figure 7. 

Assume that re-computation of each summary view Vi requires selection and aggregation from its 
ancestor summary view Vai, and the joining of Vai with n dimension tables Vd1, Vd2, …, Vdn. Thus, the 
cost for re-computing summary view Vi can be calculated by : 

C m(V i) = C g(V ai ) + C j(V d 1, V d 2 , ..., V dn , V ai )

= S (V ai ) + ( S (V d 1) + S (V d 1) * S (V ai )) + ( S ( V d 2) + S (V d 2) * S (V ai )) + ... +
(S (V dn) + S (V d n) * S (V ai ))

 

If there are j summary views in the warehouse which are materialized, the total maintenance cost 
Total(Cm) for these materialized views is then: 

where fui  is the update frequency of summary view Vi.  In our case study, we assume that all sales 
summary views are updated once within a fixed time interval, thus  fui = 1 for any 1 < i < j.  
 
 
 
 
 
 

Total (C qr ) = f qi * C q( q i )
i=1

r

∑

Total ( C m ) = f u i * C m ( V i)
i = 1

j

∑



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 12 

 
 

Co-Cat-Month

Co-P-Day

Co-Mfr-DAY

CO-P-QTR

CO-P-YEAR

group by Co_No & Mfr_No, date

P-sale-DAY

R-Mfr-DAY
group by R_no, Mfr_No, date

Mfr-sale-DAY
group by Mfr_No, Date

P-sale-Month

group by Co_No & Cat_No, month R-Mfr-Month
group by R_no, Mfr_No, month

Mfr-sale-Month
group by Mfr_No, month

R-P-QtrCo-Mfr-Qtr
group by R_no, P_no, Qtr

group by Co_No, Mfr_No, Qtr
group by Co_no, P_no, Qtr

P-sale-Qtr

Co-Cat-Qtr
group by Co_No & B_No, Qtr

R-Mfr-Qtr
group by Mfr_No, P_no, Qtr

Mfr-sale-Qtr
group by Mfr_No, Qtr

R-P-YrCo-Mfr-Yr
group by R_no, P_no, Yr

group by Co_No, Mfr_No, Yrgroup by Co_no, P_no, Yr

P-sale-Yr

Co-Cat-Yr
group by Co_No & Cat_No,Yr R-Mfr-Yr

group by R_no, Mfr_No, Yr

Mfr-saleYr
group by Mfr_No, Yr

group by P_no, date

group by P_no, month

group by P_no, Qtr

group by P_no, Yr

13B

45B

74B

184B

142B

144B

118B

120B

109B

110B

35B

35B64B

196B

209B

fq=2

CO-P-MONTH

R-P-DAY

R-P-MonthCo-Mfr-Month

fq=5

Co-sale-DAY
group by Co_no, date

Co-sale-Month

group by Co_no, month

fq=5

group by Co_No  Mfr_No, month

group by Co_No, P_No, month

group by R_no, P_no, date

group by R_no, P_no, month

Co-Cat-DAY
group by Co_No & Cat_No, date

240B

fq=5Co-sale-Qtr
group by Co_no, Qtr

Co-sale-Yr
group by Co_no, Yr

fq=5

98B

76B

67B

21B

1.14B

4.2B

9.5B

71B

0.28B

6B

22B1.1B

34B 140B

2.8B 41B

Co-Type-DAY

Co-Type-Qtr

Co-Type-Yr

Co-Type-Month

R-Type-DAY
group by R_no, Type_No, date

R-Type-Month
group by R_no, Type_No, month

R-Type-Qtr
group by Type_No, P_no, Qtr

R-Type-Yr
group by R_no, Type_No, Yr

120B

26B

11.1B

3.0B

R-Cat-Month

Total-sale-Month
group by month

Total-sale-Qtr
group by Qtr

Total-sale-Yr
group by Yr

R-sale-DAY
group by R_No, Date

group by R_no, Cat_No, month

R-sale-Month
group by R_No, month

R-Cat-Qtr

R-sale-Qtr
group by R_No, Qtr

R-Cat-Yr
group by R_No & Cat_No, Yr

R-sale-Yr
group by R_No, Yr

Totalsale-Day
group by date

78B

7.3B

2.9B

0.77B

fq=3

fq=3

fq=3

fq=3

fq=2

Cat-sale-DAY
group by Cat_no, date

Cat-sale-Month

group by Cat_no, month

fq=2

R-Cat-DAY

fq=2
Cat-sale-Qtr
group by Cat_no, Qtr

Cat-sale-Yr
group by Cat_no, Yr

fq=2

22.2B

1.1B

0.36B

0.09B

36B

1.7B

0.56B

0.14B

6B

0.17B

0.057B

0.0143B

Type-sale-DAY
group byType_No, Date

Type-sale-Month
group by Type_No, month

Type-sale-Qtr
group by Type_No, Qtr

Type-sale-Yr
group by Type_No, Yr

76B

group by Type_No, Yr

group by Type_No, Qtr

group by Type_No, month

group by Type_No, Date

group by R_no, Cat_No, date

group by R_no, Cat_No, Qtr

INV

157B

136B

8.1B

127B

41B

0.77B

3B

fq=2

fq=2

fq=2

fq=2

fq=3

fq=3

fq=3

fq=3

fq=6

fq=6

fq=6

fq=6

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

114B

Summary
View

B= 2K Data block size

fq = 1, except where specifically stated otherwise.

 
 
 
Figure 7: The optimal query and maintenance paths for sales summary views.  
 
 
3.1.3 Storage cost 

 
The analysis estimates that the cost for storing materialized views depends on the availability of hard 
disk space within the data warehousing system.  The storage factor U represents the estimated ratio of 
the storage capacity required by the data warehouse to the availability of hard disk space: 

 U = (Total(Cstore) + (1+Q) * Y * Sa)  / Total available storage capacity 

where ‘(1+Q) * Y * Sa’ estimates the total increase in storage capacity for accommodating new data 
during the estimated life cycle of the data warehouse. Here, ‘Q’ denotes the estimated increase rate in 
data volume per year within the data warehouse, ‘Y’ denotes the estimated life cycle of the data 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 13 

warehouse, and ‘Sa’ denotes the storage space required to store yearly added new data and their 
summarized data. 

The storage cost of summary view Vi  in terms of data block B is: 

Cstore (Vi) = U * S (Vi) 

In our case study, U = 1, meaning that storage space is readily available for storing materialized views, 
thus, Cstore (Vi) =  S (Vi). 

 

3.1.4   The net benefit and storage effectiveness  

 
In order to determine an optimal set of materialized summary views,  the net benefit Net(Bi) and the 
storage effectiveness ηi (i.e. the net benefit per unit of storage space occupied by a materialized view) 
associated with each summary view (cf. Figure 7) need to be calculated.  

i) The Net Benefit of materializing view Vi can be calculated using the following formula:  

Net Benefit = Benefit – Maintenance cost – Storage cost       

 
       where benefit measures the total query cost savings  that a materialized summary view brings to all its   
       descendent views, i.e., 

 

Here, Vni (1  < n < m) represents one of the descendent views of Vi,  and m  denotes the total 
number of descendent views of Vi .  fq(Vni) is the query frequency of Vni. For simplicity, we use Ct 

(Vni ←←  Vai) to denote the cost of accessing Vni  from Vai,  the ancestor of Vi,  in case that Vi has not 
been materialized, and Ct (Vni ←←  Vi) the cost of accessing Vni  from Vi directly.  

Therefore, we can calculate and get the net benefit for a materialized view Vi, as follows: 

 

 
 

ii) The storage effectiveness of summary view Vi can be obtained by the formula: 
η i = Net ( B i) / S (V i)  

  

Table 7 lists the storage effectiveness ηi, net benefit Net (Bi), storage cost Cstore (Vi), maintenance cost 
Cm(Vi), and query frequencies fqi of summary view Vi. These views are sorted in a descending order of 
storage effectiveness. For easy explanation, we name an ordered sequence of views using V1, V2, …, Vi 
without loss of generality. In other words, ηi+1 �  ηi  for any i > 0. 

 

B i = f q(V ni ) * [ C t(V ni ← V ai ) − C t(V ni ← V i )]
n=1

m

∑

Net ( B i ) = B i − C m (V i ) − C store (V i)

= { fq(V ni ) * [C t (V ni ← V ai ) − C t (V ni ← V i )]} − C m (V i ) − C store (V i)
n=1

m

∑



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 14 

The Ctotal in Table 7 is the total cost in the presence of one or more materialized views. It includes the 
total query cost for processing r number of users’ queries, total maintenance cost and total storage cost 
for all the materialized views. 

Let Total(Cqall) denote the total cost for processing r number of users’ queries when no views are 
materialized in the data warehouse. Initially, Ctotal = Total(Cqall ). Each time, when a view Vi  is 
materialized, we calculate and obtain a new value for Ctotal , i.e.,  

Ctotal  = Ctotal  - Bi + Cm(Vi) + Cstore (Vi ). 

Based on i),  Net (Bi) =  BI  - Cm(Vi) + Cstore (Vi ),  we have  Ctotal  = Ctotal  - Net (Bi).   

Hence, after materializing a series of views V1, V2, …, Vi,  the total cost will become  

  

The minimum value of the total cost Ctotal obtained is underlined in Table 7. As shown, as long as the 
Net (Bi) of view Vi is greater than 0, the total cost Ctotal  will continuously decrease after materializing 
summary view Vi. 
 
  

Cost evaluation for one materialized view  
 

 Vi   Summary View  ηi BI Net (Bi) Cstore(Vi) 
 

Cm (Vi) fqi Total cost 
Ctotal  

  Storage 
Effectiveness 

Benefit Net Benefit Storage 
Cost 

Maintenanc
e Cost  

Query 
Frequency 

 

1 CO-P-DAY 396.96 97694.88 95270.88 240 2184 2 30999.12 

2 R-TYPE-MTH 92.09 2540.40 2394.40 26 120 0.5 28604.72 

3 R-SALE-MTH 76.91 93.00 84.60 1.1 7.3 2 28520.12 

4 R-MFR-MTH 69.21 738.00 657.50 9.5 71 1 27862.62 

5 R-CAT-MTH 55.00 436.95 401.49 7.3 28.16 0.5 27461.13 

6 TOT -SALE-MTH 41.76 8.37 7.10 0.17 1.1 3 27454.03 

7 CO-TYPE-DAY 32.33 5586.48 5076.21 157 353.27 1 22377.82 

8 R-P-MTH 27.73 2310.00 2052.00 74 184 1 20325.82 

9 MFR-SALE-MTH 17.14 60.30 48.00 2.8 9.5 3 20277.82 

10 CO-MFR-DAY 15.14 2612.88 2180.68 144 288.2 0.5 18097.14 

11 CAT-SALE-MTH 14.47 33.60 24.60 1.7 7.3 2 18072.54 

12 R-MFR-DAY 13.70 1194.10 972.58 71 150.525 1 17099.97 

13 P-SALE-MTH 11.68 594.00 479.00 41 74 6 16620.97 

14 P-SALE-YR 11.33 96.00 68.00 6 22 6 16552.97 

15 R-SALE-DAY 8.05 279.00 178.80 22.2 78 2 16374.17 

16 TOT -SALE-QTR 7.91 0.68 0.45 0.057 0.17 3 16373.71 

17 P-SALE-QTR 7.50 228.00 165.00 22 41 6 16208.71 

18 CO-SALE-YR 6.76 230.00 142.00 21 67 5 16066.71 

19 CO-SALE-DAY 6.53 880.00 640.00 98 142 5 15426.71 

20 R-P-DAY 6.39 1611.38 1176.54 184 250.845 1 14250.18 

21 R-TYPE-DAY 5.99 1002.92 718.81 120 164.11 0.5 13531.37 

22 MFR-SALE-QTR 5.73 10.20 6.30 1.1 2.8 3 13525.07 

23 R-SALE-QTR 4.17 2.96 1.50 0.36 1.1 2 13523.57 

C total = Total ( C qall ) − Net ( B x)
x =1

i

∑



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 15 

24 CAT-SALE-QTR 4.11 4.56 2.30 0.56 1.7 2 13521.27 

25 TOT-SALE-YR 3.97 0.13 0.06 0.0143 0.057 3 13521.21 

26 MFR-SALE-YR 3.86 2.46 1.08 0.28 1.1 3 13520.13 

27 TOT -SALE-DAY 3.40 48.60 20.40 6 22.2 3 13499.73 

28 TYPE-SALE-MTH 2.42 53.70 19.60 8.1 26 1 13480.13 

29 CO-SALE-MTH 2.05 330.00 156.00 76 98 5 13324.13 

30 R-CAT-DAY 1.46 321.20 113.52 78 129.68 0.5 13210.61 

31 R-SALE-YR 1.00 0.54 0.09 0.09 0.36 2 13210.52 

32 CAT-SALE-YR 1.00 0.84 0.14 0.14 0.56 2 13210.38 

33 CO-CAT-DAY 0.70 410.56 98.92 142 169.64 1 13111.46 

34 MFR-SALE-DAY 0.18 111.00 6.00 34 71 3 13105.46 

35 TYPE-SALE-QTR -0.30 10.20 -0.90 3 8.1 1 13106.36 

36 P-SALE-DAY -0.43 264.00 -60.00 140 184 6 13166.36 

37 R-MFR-QTR -0.74 10.60 -3.10 4.2 9.5 1 13169.46 

38 CO-SALE-QTR -0.79 90.00 -53.00 67 76 5 13222.46 

39 CAT-SALE-DAY -0.83 84.00 -30.00 36 78 2 13252.46 

40 R-P-QTR -1.36 58.00 -61.00 45 74 1 13313.46 

41 CO-CAT-MTH -1.59 72.00 -188.00 118 142 1 13501.46 

42 CO-TYPE-MTH -1.69 63.00 -230.00 136 157 1 13731.46 

43 CO-P-MTH -1.70 93.00 -356.00 209 240 1 14087.46 

44 CO-MFR-MTH -1.90 36.00 -228.00 120 144 0.5 14315.46 

45 CO-CAT-QTR -1.92 18.00 -209.00 109 118 1 14524.46 

46 CO-TYPE-QTR -1.93 18.00 -245.00 127 136 1 14769.46 

47 CO-P-QTR -1.93 26.00 -379.00 196 209 1 15148.46 

48 R-MFR-YR -2.00 3.06 -2.28 1.14 4.2 1 15150.74 

49 R-CAT-QTR -2.00 4.40 -5.80 2.9 7.3 0.5 15156.54 

50 CO-P-YR -2.00 132.00 -128.00 64 196 1 15284.54 

51 R-P-YR -2.00 32.00 -26.00 13 45 1 15310.54 

52 CO-MFR-QTR -2.00 10.00 -220.00 110 120 0.5 15530.54 

53 CO-TYPE-YR -2.00 86.00 -82.00 41 127 1 15612.54 

54 CO-CAT-YR -2.00 74.00 -70.00 35 109 1 15682.54 

55 R-TYPE-QTR -2.00 14.90 -22.20 11.1 26 0.5 15704.74 

56 TYPE-SALE-DAY -2.00 44.00 -152.00 76 120 1 15856.74 

57 TYPE-SALE-YR -2.00 2.23 -1.54 0.77 3 1 15858.28 

58 CO-MFR-YR -3.07 37.50 -107.50 35 110 0.5 15965.78 

59 R-TYPE-YR -3.35 4.05 -10.05 3 11.1 0.5 15975.83 

60 R-CAT-YR -3.38 1.07 -2.61 0.77 2.9 0.5 15978.44 

 
Table 7: Cost evaluation for selecting an optimal set of materialized views. The minimum value 

of Ctotal (Vi) is underlined. 
 
 
3.2   Adapted greedy algorithm for materialized summary view selection  

Let T be the set of all sales summary views involved in users’ queries, and |T| be the number of sales 
summary views in T.  Based on the greedy algorithm of [5], we develop an adapted greedy algorithm 
for determining an optimal set of materialized summary views L, a subset of T, such that the total cost 
Ctotal is minimized. The algorithm is based on the cost model presented in Section 3.1. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 16 

 

Materialized views selection algorithm:  

1. Determine the optimal query and maintenance paths for computing all summary views in the data 
warehouse (as illustrated in Figure 7). 

 

2. Calculate the net benefit and storage effectiveness for each summary view  in T.    
 foreach  Vi in T  do 
                Calculate the Net (Bi) and storage effectiveness ηi of Vi :  

ηi = Net (Bi) / S(Vi) 

endfor.  
 
 
3.   Sort the summary views in T in a descending order of storage effectiveness such that those views 

with the best storage effectiveness will be chosen first (as shown in Table 7). Without loss of 
generality, assume V1, V2, …, V|T|  represents an ordered list of summary views.     

 
 
4. Calculate the total cost Ctotal  when a summary view is materialized, and get Min(Ctotal) as the 

optimal cost for materialized views selection.  
 
 Ctotal = Total(Cqall);                      /* Initially, no views are materialized. */ 
           for  ( i = 1;  i ≤ |T|;  i ++)  do 
                if  (Net (Bi) > 0)  then   Ctotal  = Ctotal – Net (Bi); 
               else   break;                             /* The minimum Ctotal  has been found, exit for loop. */            
          Min(Ctotal) = Ctotal. 
 
 

5.   Select the best materialized view set L. 
 L = ∅; 
          Ctotal = Total(Cqall); 
          for  ( i = 1;  i ≤ |T|;  i ++)  do 
         select Vi  from the summary view set  T – L  with the highest storage effectiveness; 
               if  (S(L) + S(Vi) < S) and (Ctotal – Net (Bi) > Min(Ctotal))  then 
          L = L ∪ {Vi}; 

              else   break;                                          
           endfor; 
  return L. 

 

Figure 8 shows the set L of optimal materialized views (shadowed boxes) thus chosen. 

Net ( B i ) = B i − C m( V i ) − C store ( V i )

= { f q ( V ni ) * [ C t ( V ni ← V ai ) − C t ( V ni ← V i )]} − C m( V i ) − C store ( V i )
n =1

m

∑



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 17 

 

Co-Cat-Month

Co-P-Day

Co-Mfr-DAY

CO-P-QTR

CO-P-YEAR

group by Co_No & Mfr_No,  date

P-sale-DAY

R-Mfr-DAY
group by R_no, Mfr_No, date

Mfr-sale-DAY
group by Mfr_No, Date

P-sale-Month

group by Co_No & Cat_No, month
R-Mfr-Month
group by R_no, Mfr_No, month

Mfr-sale-Month
group by Mfr_No, month

R-P-QtrCo-Mfr-Qtr
group by R_no, P_no, Qtr

group by Co_No, Mfr_No, Qtrgroup by Co_no,  P_no, Qtr

P-sale-Qtr

Co-Cat-Qtr
group by Co_No & cat_No, Qtr

R-Mfr-Qtr
group by Mfr_No, P_no, Qtr

Mfr-sale-Qtr
group by Mfr_No, Qtr

R-P-YrCo-Mfr-Yr
group by R_no, P_no, Yr

group by Co_No, Mfr_No, Yrgroup by Co_no, P_no, Yr

P-sale-Yr

Co-Cat-Yr
group by Co_No & Cat_No, Yr

R-Mfr-Yr
group by R_no, Mfr_No, Yr

Mfr-saleYr
group by Mfr_No,  Yr

group by P_no, date

group by P_no, month

group by P_no, Qtr

group by P_no,  Yr

13B

45B

74B

184B

142B

144B

118B

120B

109B

110B

35B

35B64B

196B

209B

fq=2

CO-P-MONTH

R-P-DAY

R-P-MonthCo-Mfr-Month

fq=5

Co-sale-DAY
group by Co_no, date

Co-sale-Month

group by Co_no, month

fq=5

group by Co_No  Mfr_No,  month

group by Co_No, P_No,  month

group by R_no, P_no, date

group by R_no, P_no, month

Co-Cat-DAY
group by Co_No & Cat_No, date

240B

fq=5Co-sale-Qtr
group by Co_no, Qtr

Co-sale-Yr
group by Co_no, Yr

fq=5

98B

76B

67B

21B

1.14B

4.2B

9.5B

71B

0.28B

6B

22B1.1B

34B 140B

2.8B 41B

Co-Type-DAY

Co-Type-Qtr

Co-Type-Yr

Co-Type-Month

R-Type-DAY
group by  R_no, Type_No,  date

R-Type-Month
group by R_no, Type_No, month

R-Type-Qtr
group by Type_No, P_no, Qtr

R-Type-Yr
group by R_no, Type_No,

Yr

120B

26B

11.1B

3.0B

R-Cat-Month

Totalsale-Month
group by month

Totalsale-Qtr
group by Qtr

Total-sale-Yr
group by Yr

R-sale-DAY
group by  R_No,  date

group by R_no, Cat_No, month

R-sale-Month
group by R_No, month

R-Cat-Qtr

R-sale-Qtr
group by R_No, Qtr

R-Cat-Yr
group by R_No & Cat_No,  Yr

R-sale-Yr
group by R_No, Yr

Totalsale-Day
group by date

78B

7.3B

2.9B

0.77B

fq=3

fq=3

fq=3

fq=3

fq=2

Cat-sale-DAY
group by Cat_no,
date

Cat-sale-Month

group by Cat_no, month

fq=2

R-Cat-DAY

fq=2
Cat-sale-Qtr
group by Cat_no, Qtr

Cat-sale-Yr
group by Cat_no, Yr

fq=2

22.2B

1.1B

0.36B

0.09B

36B

1.7B

0.56B

0.14B

6B

0.17B

0.057B

0.0143B

Type-sale-DAY
group byType_No, date

Type-sale-Month
group by Type_No, month

Type-sale-Qtr
group by Type_No, Qtr

Type-sale-Yr
group by Type_No, Yr

76B

group by Type_No, Yr

group by Type_No, Qtr

group by Type_No, month

group by Type_No, Date

group by R_no, Cat_No, date

group by R_no, Cat_No, Qtr

INV

157B

136B

8.1B

127B

41B

0.77B

3B

fq=2

fq=2

fq=2

fq=2

fq=3

fq=3

fq=3

fq=3

fq=6

fq=6

fq=6

fq=6

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

fq=0.5

114B

Materialized
View

B= 2K Data block size

fq = 1, except where specifically stated otherwise.

 
Figure 8: The set of optimum materialized summary views and their query paths 
 
 
3.3   Cost analysis 

The summary views to be materialized are sorted in a descending order according to the corresponding 
storage effectiveness ηi  listed in Table 7.  The top thirty-four summary views listed in this table 
constitute the optimal set of materialized views L.  The total cost Ctotal and cost components versus 
overall storage size of  the materialized views are plotted in Figure 9.   

 

We observe that the Ctotal is dominated by the Total(Cqr) before reaching the optimum point.  This 
optimal point occurs at a cost of 13105.46B and is designated as the minimum total cost Min(Ctotal).  
The Total(Cqr) drops drastically after materializing the first summary view ‘CO-P-DAY’, reducing by 
more than 75% while utilizing only 15% of the total storage space required by the set of optimal 
materialized views L.  Therefore, materializing summary view ‘CO-P-DAY’ is very cost effective for 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 18 

improving the query performance of the data warehouse.  After this first view has been chosen, there is 
little reduction in the Total(Cqr) when more summary views are materialized.   

The sum of total maintenance and storage costs, Cm(Vi)+Cstore(Vi), increases linearly as the number of 
materialized summary views increases.  However, its magnitude is relatively small compared with the 
Total(Cqr) before reaching the optimum point Min(Ctotal).  After reaching this optimal point, Ctotal is 
dominated by the sum Cm (Vi)+Cstore(Vi).  This is because materializing additional summary views 
(i.e. summary views with negative net benefit Net (Bi)) beyond the optimal point Min(Ctotal) cannot 
reduce query cost, but increases the storage and maintenance costs.  Therefore, it is not cost effective 
to materialize additional views after reaching Min(Ctotal).  

Figure 9: Total costs Ctotal, total query processing cost and the sum of maintenance and 
storage costs vs. storage size of the materialized views. 

 
If all the summary views of the data warehouse are materialized, query performance can be optimized.  
However, this method requires the highest maintenance and storage cost. For a data warehouse with 
limited hard disk storage space and small maintenance window, materializing a few summary views 
which have the greatest storage effectiveness ηi (e.g., ‘CO-P-DAY’ for this case study) can effectively 
reduce query response time since they yield the greatest benefit yet require the least amount of storage 
space and maintenance costs.  In the situation of a data warehouse which can be taken off-line for view 
maintenance and can have very large disk space available for the storage of materialized views, storing 
the set of optimal materialized views L can minimize query and maintenance cost while achieving 
good query performance.  

 
 
4. Implementation and Testing 
 
As part of this study, we have implemented a prototype system based on the Windows NT 4.0 server 
and Oracle Workgroup Server 7.3.4 [11], running on a Pentium PC.  Data records were extracted from 

13105.46

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

0.
00

26
7.

10

28
4.

07

51
7.

87

73
4.

57

80
3.

77

84
6.

83

12
48

.8
3

12
50

.8
5

12
57

.1
4

14
19

.2
4

15
61

.4
7

17
38

.4
7

18
45

.6
7

21
44

.6
7

25
82

.6
7

29
06

.8
1

29
86

.7
1

31
72

.7
1

32
60

.5
8

32
99

.3
5

Storage size in B (B=2K block size)

 Query cost 'Cq'

Maintenance and storage cost 'Cm+Cstore'

Total cost



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 19 

a Paradox database and a Peach Tree accounting database, and imported to the Oracle database 
system.  Various table spaces were created for storing the base-data and summary views of this data 
warehouse.  Due to the constraints in data storage and computational costs involved, a data sampling 
method was adopted to estimate the size of each summary view [12].  A subset of sales records (i.e. 
the yearly sales records of 1996) was extracted from the existing database.  Based on these sales 
records, the required summary views were generated and the sizes of these summary views are listed 
in Table 7.  In this section, we describe both analytical and empirical testing results obtained in our 
case study. 

 
4.1 Analytical Testing 

The Ctotal under five test conditions, composed of different query patterns and frequencies, was 
evaluated for three different view materialization strategies, i.e., all-virtual-views method, all-
materialized-views method, and selected-materialized-views method.  The results are summarized in 
Table 8 and pictorially plotted in Figure 10.  Clearly, the Ctotal of the all-virtual-views method is much 
greater than those of the other two methods.  This is because the latter two methods utilize the pre-
calculated data in the materialized summary views, thus avoiding accessing and processing a large 
quantity of base-data.  On the other hand, the total cost evaluated for the selected-materialized-views 
method is the smallest under all five test conditions (cf. Table 8). 
 
The storage and maintenance costs, and the query processing cost versus  query frequency are 
plotted in Figures 11 and 12 respectively for the all-materialized-views and the selected-materialized-
views methods.  The maintenance cost Cm(L) and storage cost Cstore(L) of the selected-materialized-
views method in Figure 11 are less than that of the all-materialized- views method in all cases.  This is 
because the summary views which are not cost effective (i.e. summary views with negative benefit Net 
(Bi)) will not be materialized in the data warehouse when the selected-materialized-views method is 
applied, hence resulting in a smaller value of Ctotal than the all-materialized-views method.  

As shown in Figure 12, the total query processing costs for both methods increase steadily as the query 
frequency increases.  However, the selected-materialized-views method requires a slightly higher 
query processing cost than the all-materialized-views method. The reason is obvious, as the latter 
stores all the materialized views in the data warehouse.   

 
Query 

frequency fqi 
all-materialized-views  
Total Cost Ctotal (in B)  

All-virtual-views  
Total Cost Ctotal  (in B)   

Selected-materialized-views 
Total Cost Ctotal (in B)  

3 3030.00 4482.00 3018.00 
31 7236.44 31479.00 6201.44 

57.5 13251.28 63135.00 9510.60 
115 15978.44 126270.00 13105.46 
230 21432.75 252540.00 19516.51 

 
Table 8: Total cost for three different view materialization strategies 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 20 

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

3 31 57.5 115 230

Query frequency

T
o

ta
l 

C
o

st
 i

n
 B

 (
B

lo
ck

 o
f 

d
at

a 
ac

ce
ss

)

All materialized views
method

All virtual views  method 

Selection of materialized
views method

 
 
 
Figure 10:Total cost Ctotal for three view materialization strategies. 

 
 

Figure 11:Storage and maintenance costs for all -materialized-views and selected-materialized-
views methods  

 
 

0

2000

4000

6000

8000

10000

12000

14000

3 31 57.5 115 230

Q u e r y  f r e q u e n c y

C
os

t i
n 

B
 (B

lo
ck

 o
f d

at
a 

ac
ce

ss
) To ta l  que ry

p rocess ing  cos t  fo r
a l l  ma te r ia l i zed
v i e w s  m e t h o d

To ta l  que ry
p rocess ing  cos t  fo r
se lec t ion  o f
ma te r ia l i zed  v iews
m e t h o d

 
 
Figure 12:Query processing cost for all -materialized-views and selected-materialized-views 

methods 

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

3 31 5 7 .5 1 1 5 230

Q u e r y  f r e q u e n c y

C
os

t i
n 

B
 (B

lo
ck

 o
f d

at
a 

ac
ce

ss
)

S t o r a g e  c o s t  f o r  s e l e c t i o n
o f  m a t e r i a l i z e d  v i e w s
m e t h o d
S t o r a g e  c o s t  f o r  a l l
m a t e r i a l i z e d  v i e w s  m e t h o d

M a i n t e n a n c e  c o s t  f o r
s e l e c t i o n  o f   m a t e r i a l i z e d
v i e w s  m e t h o d
M a i n t e n a n c e  c o s t  f o r  a l l
m a t e r i a l i z e d  v i e w s  m e t h o d



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 21 

 
4.2   Empirical Testing  

Our second test results come from an experimental prototype we have developed for the case study.  
The experiment was set up to simulate the view maintenance (i.e. re-computation of materialized 
summary views) and query processing of the data warehouse.  The program execution times of the 
three view materialization strategies for computing 115 queries and completing maintenance processes 
were recorded.  We conducted each test on an Oracle PL/SQL work sheet [13] 4 times so as to obtain a 
normalized result. 

Figure 13 shows the average execution times under three view materialization methods.  The shortest 
total query and maintenance time was recorded by using the selected-materialized-views method.  The 
difference in execution time between the all-materialized-views method and the selected-materialized-
views method is about 25 seconds.  Even though the all-materialized-views method requires the 
shortest query processing time, the maintenance time required for re-calculating all the summary 
views is much longer than for the selected-materialized-views method.  Therefore, the sum of view 
maintenance and query processing times for the all -materialized-views method is longer compared 
with that for the selected-materialized-views method.  The all-virtual-views method requires the 
longest program execution time.  This is because processing a large amount of base-data requires 
longer query processing time.  In summary, the results obtained from this experiment is coincident 
with the analytical results discussed in the previous section. 

1768

838863

0

200

400

600

800

1000

1200

1400

1600

1800

2000

All virtual views method All materialized views method Selection of materialized views
method

E
xe

cu
ti

o
n

 t
im

e 
(s

ec
)

 
Figure 13: The average execution time of three view materialization strategies 
 
 
 

Guidelines for warehouse schema design and materialized views selection 

 
Our experiences gained from this case study can be summarized into the following guidelines for both 
data warehouse design and materialized view selection. 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 22 

 
On Data Warehouse Design 
 

i. Use the smallest size of integer or numerical values for the key attributes in dimension tables to 
minimize storage space and query processing time (cf. Section 2.1). 

ii. Normalize dimension tables with large amount of records and hierarchy levels to achieve smaller 
dimension tables. Thus, the storage size and  joining cost can be reduced substantially (cf. 
Section 2.1). 

iii. De-normalize dimension tables with relatively few records and attributes to minimize the number 
of joins required  (cf. Section 2.1). 

iv. Horizontally partition the fact table, which has a lot of records, into smaller summary views 
according to its dimension key attributes so as to improve query performance, and further enable 
users to select various summary views for materialization based on the query access frequency  
(cf. Section 2.1). 

v. Store foreign keys of dimension tables in the summary views, especially those dimension tables 
that are frequently accessed to help improve the query performance.  Furthermore, data in these 
summary views can also be easily used by other queries  (cf. Section 2.3). 

vi Store frequently accessed dimension attributes (e.g. Co_name and P_name in our case study) in 
the summary views, especially for the dimension tables which have very many records, so as to 
minimize the number of joins and query processing costs  (cf. Section 2.3). 

 

On M aterialized Views Selection 

 

i. Materialize summary views that are frequently accessed by users  (cf. Section 3.1 and Section 
3.3). 

ii. Materialize those commonly shared views which are used for generating other summary views 
(cf. Section 3.1 and Section 4.2). 

iii.  Materialize those views whose sizes have been substantially reduced from their ancestor’s views 
(cf. Section 3.1). 

iv When the storage factor is very small (i.e. large amount of disk storage is available), materializing 
a set of optimal materialized views ‘L’ by the selection method as illustrated in Section 3 can 
achieve the best combination of good query performance and low maintenance cost. 

 

5. Conclusions  

 
In this case study, methods for designing an efficient data warehousing system based on the 
application requirements of an engineering company ‘R’ have been investigated.  A hybrid schema 
was designed for this data warehouse by applying dimensional modeling concepts.  A cost model was 
developed to calculate the costs and benefits associated with materializing each data warehouse view.  



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 23 

The total cost under five test conditions, composed of different query patterns and frequencies, were 
evaluated for three different view materialization strategies: 1) all-virtual-views  method, 2) all-
materialized-views method, and 3) selected-materialized-views method.  The total cost evaluated from 
using the selected-materialized-views method was proved to be the smallest among the three strategies 
in all cases.  Further, an experiment was conducted to record different execution times of the three 
strategies in the computation of a fixed number of queries and maintenance processes.  Again, the 
selected-materialized-views method requires the shortest total processing time.  

An adapted greedy algorithm using the cost analysis methodology for evaluation was developed for 
materialized views selection.  This view selection methodology was tested both analytically and 
experimentally and proved to be very cost effective for the optimization of the data warehouse.  
General guidelines for data warehouse design and materialized views selection based on this work are 
presented and a prototype of the data warehouse system was implemented using a commercially 
available data warehousing software “Oracle-Discoverer” [14, 15]. 

We plan to apply the cost evaluation methodology and views selection algorithm developed in this 
case study to other data warehousing applications, such as inventory, production and purchasing 
analyses, etc.  In addition, warehouse view self-maintenance methods [10, 16] other than the view re-
calculation method adopted by this work will also be investigated in order to further reduce system 
maintenance cost and achieve data warehouse optimization. 

 
 

6. References 

 
[1] S. Chaudhuri and U. Dayal. “An Overview of Data Warehousing and OLAP Technology”. SIGMOD 

Record, 26(1):65-74, 1997. 

[2] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. "TheStanford Data Warehousing Project". 

IEEE Data Engineering Bulletin, June 1995. 

[3] V. Harinarayan, A. Rajaraman, and J. Ullman. “Implementing data cubes efficiently”. Proceedings of 

ACM SIGMOD 1996 International Conference on Management of Data, Montreal, Canada, June 1996, 

pages 205--216. 

[4] J.Yang, K. Karlapalem, and Q. Li. “A framework for designing materialized views in data warehousing 

environment”. Proceedings of 17th IEEE International conference on Distributed Computing Systems, 

Maryland, U.S.A., May 1997. 

[5] H. Gupta. “Selection of Views to Materialize in a Data Warehouse”. Proceedings of 1997 International 

Conference on Database Theory, Athens, Greece 1997. 

[6] Red brick systems, Star Schemes and Starjoin Technology, White Paper, http://www.redbrick.com /rbs 

/whitepapers/star_wp.html#fig1. 

[7] I. Mumick, D. Quass, B. Mumick. “Maintenance of Data Cubes and Summary Tables in a Warehouse”. 

Proceedings of the ACM SIGMOD 1997 International Conference on Management of Data,, Tuscon, 
Arizona, May, 1997. 

[8] J.Yang, K. Karlapalem, and Q. Li. “Algorithms for Materialized View Design in Data Warehousing 
Environment”. Proceedings of the 23rd International Conference on Very Large Data Bases, Athens, 



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 24 

Greece 1997, P.136-145. 

[9] Ramez Elmasri, Shamkant B. Navathe. “Fundamentals of Database Systems”. 2nd edition. The Benjamin/ 

Cumming Publishing Co. 

[10] D.Quass, A. Gupta, I.S. Mumick, J. Widom. “Making Views Self Maintainable for Data Warehouse”. 

Proceedings of the 4th International Conference on Parallel and Distributed Information Systems, 1996. 

[11] Oracle WorkGroup  Server Administration Guide, Oracle. 

[12] A. Shukla, P. Deshpande, J. Naughton and K. Ramasamy. “Storage Estimation for Multidimensional 
Aggregates in the Presence of Hierarchies.” Proceedings of 22nd International Conference on Very Large 

Data Bases, Mumbai, Bombay, India, 1996. 

[13] Oracle PL/SQL User’s Guide and Reference, Oracle. 

[14] Oracle Discoverer 3.0 User’s Guide, Oracle. 

[15] Oracle Discoverer 3.0 Administration Guide, Oracle. 

[16] N.Huyn. “Efficient View Self-Maintenance”. Proceeding of ACM Workshop on Materialized Views: 

Techniques and Applications, Montreal, Canada. 1996. 

 
 

7. Annotations 

 

: Data block size ( B =2K, one data block size of the Oracle database system 
setup in our case study). 

T : The set of all sales summary views grouped by various dimension key attributes. 
|T| : The number of sales summary views in T. 
Vi : A sales summary view in T. 
Vd : A dimension table (e.g., Co, Region, Pd, Pd_Cat, Pd_Mfr in the data 

warehouse). 
Vai : The ancestor view of Vi. 
Vni : The descendent view of Vi. 
S (Vd) : The size of dimension table Vd  in terms of data block B.  
S (Vi) : The size of summary view Vi in terms of data block B. 
S (Vai) : The size of Vai in terms of data block B.  
S (Vni) : The size of Vni in terms of data block B.  
Cg (Vi) : The query processing cost which involves selection and aggregation of 

summary view Vi. 
Cj (Vd, Vi) : The processing cost for joining dimension table Vd with sales summary view Vi. 
Cstore (Vi) : The storage cost for storing summary view Vi in terms of data block B. 
Cm (Vi) : The maintenance cost for re-computing Vi. 
Ct (Vni ← Vi) : The cost for evaluating the descendent view Vni from the materialized view Vi. 
Ct (Vni ← Vai) : The cost for evaluating the descendent view Vni from Vai, the ancestor view of 

Vi. 
L : An optimal set of materialized summary views (L ⊆ T). 
Cstore (L) : The total storage cost for storing all the materialized summary views in L.    



INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY Vol 7, No 1 
 

 25 

Cm (L) : The total maintenance cost for re-computing all the materialized summary views 
in L.  

Ctotal : The total cost (i.e. the sum of total query processing cost, maintenance cost, and 
storage cost) in the presence of zero or more materialized views. 

Min (Ctotal) : The minimum total cost Ctotal evaluated in Table 7. 
qi : A user’s query which involves selection and aggregation of summary view Vi, 

and  the joining of Vi with dimension tables.   
Cq (qi) : The query processing cost for qi   
fqi : The query frequency of summary view Vi between every two updates. 
fq (Vni) : The query frequency of summary view Vni, the descendent view of Vi. 
fui : The update frequency of summary view Vi. 
m : The average number of descendant views of a materialized summary view. 
Bi : The benefit of materializing summary view Vi. 
Net (Bi) : The net benefit of materializing summary view Vi.  
ηi : The storage effectiveness of view Vi (i.e. net benefit per unit of occupied storage 

space). 
r : The total number of user’s queries between every two updates. 
Total(Cqr) : The total cost for processing r number of users’ queries between every two 

updates. 
Total(Cqall) : The total cost for processing r number of users’ queries between each update 

time interval when all the views are kept virtual (i.e. no summary views are 
materialized).  

j : The number of materialized summary views in the data warehouse. 
Total(Cm) : The total maintenance cost for j numbers of materialized summary views.  
Total(CmT) : The total maintenance cost for all the summary views in T. 
Total(Cstore) : The total storage cost required to store both base-data and all the materialized 

summary views in the existing system. 
S : System storage space constraint for the existing data.   
Total(CstoreT) : The total storage cost required to store all the summary views in  T. 
U : Storage factor:  U = (Total(Cstore) + Q * Y * Sa ) / Total available storage space 

(In our case study, U = 1; thus Cstore(L) = U * S(L) = S(L).)  
Y : Estimated life cycle of the data warehouse (Y=10 years for our case study). 
Q : Estimated increase rate in data volume per year within the data warehouse  (for 

our case study, Q=1.2 ). 
Sa : Storage space required to store yearly increased new data and their summarized 

data. 
 


