
Semantic Query Optimization … IJIT vol. 7, No. 2

Semantic Query Optimization based on Class
Partitioning Techniques in an Object Relational

Data Warehousing Environment*

Vivekanand Gopalkrishnan
itvivek@cityu.edu.hk

Qing Li

itqli@cityu.edu.hk
City University of Hong Kong

Hong Kong, CHINA

Kamalakar Karlapalem
kamal@iiit.net

International Institute of Information Technology
Hyderabad, INDIA

Abstract
The conventional star schema model of Data Warehouse (DW) has its limitations due
to the nature of the relational data model. Firstly, this model cannot represent the
semantics and operations of multi-dimensional data adequately. Due to the hidden
semantics, it is difficult to efficiently address the problems of view design. Secondly,
as we move up to higher levels of summary data (multiple complex aggregations),
SQL queries do not portray the intuition needed to facilitate building and supporting
efficient execution of complex queries on complex data. In light of these issues, we
propose the Object-Relational View (ORV) design for DWs. Using Object-Oriented
(O-O) methodology, we can explicitly represent the semantics and reuse view (class)
definitions based on the generalization hierarchy (is-a) and the class composition
hierarchies (cch), thereby resulting in a more efficient view mechanism. Part of the
design involves providing a translation mechanism from the star/snowflake schema to
an O-O representation. Associated Horizontal Class Partitioning (AHCP) technique
can next be applied upon this O-O schema to further increase the efficiency of query
execution by reducing irrelevant disk access. Several indexing methods can be
implemented on this partitioned schema to facilitate complex object retrieval and to
avoid using a sequence of expensive pointer chasing (or join) operations. Finally, we
present the analytical results, based on a cost model we have developed, to
demonstrate the effectiveness of our approach vis-a-vis the unpartitioned, pointer-
chasing approach.

Keywords: data warehouse design, object relational views, primary partitioning,
associated horizontal partitioning, semantic query optimization.

1. Introduction
Data warehouse (DW) equips users with more effective decision support tools by integrating
enterprise-wide corporate data into a single repository from which business end-users can run reports
and perform ad hoc data analysis [CD97]. As DWs contain enormous amount of data, often from
different sources, we need highly efficient Indexing structures [OQ97], [Sar97], [GHRU97],
[VLK00a], materialized (stored) Views [Rou97], and query processing techniques [VLK99] to
efficiently answer on-line analytical processing (OLAP) queries. Materialized Views represent
integrated data based on complex aggregate queries, and should be available consistently and

* This work has been supported by City University of Hong Kong under grant no.7001120.

Copyright © SCS 2001 1 November 2001

mailto:itvivek@cityu.edu.hk
mailto:itqli@cityu.edu.hk
mailto:kamal@iiit.net

Semantic Query Optimization … IJIT vol. 7, No. 2

instantaneously. Maintaining the integrity of these Indexes and Views imposes a challenging problem
when the source data changes frequently, when the size of the DW keeps growing, and/or when the
user queries become more and more complex [GM95], [MK99]. An extensible framework that can
accommodate dynamic warehousing [Dayal99] of changing data gracefully, and have adaptive handles
for processing OLAP queries efficiently is needed.

1.1 ORV framework

In [VLK98], we examined issues involved in developing the Object-Relational View (ORV)
mechanism for the data warehouse. Here, OR means an object-oriented front-end or views to
underlying relational data sources. So, the architecture and examples we provide follow our
interpretation of OR. It must be noted though, that the merits of this proposal can be applied to views
in Object-Relational Databases (ORDBs) [CMN97] also. The layered architecture of the ORV is as
shown in figure 1.

Data DataData

Wrapper/Monitor
(Relational / OO)

OLAP

Integrated database
(Relational / OO)

Summarizing /
Indexing

Star / Snowflake
Schema

Schema
Translator

Base Warehouse
Schema

View Warehouse
Schema

Query Processing
Engine

Data
Mining

Ad
Hoc

Query driven
controlMetadata

repository

Metadata
repository

CWS

Virtual
Views

Legend
Control

Data

Application
level

Translation
level

O-O / Rel
DW level

(External)
Database level

ORV
level

Fig. 1. A Layered Architectural Framework

In this framework, two models are captured; both have a multi layer architecture, consisting of
wrapper/monitors, integrator and summarizing units. In the first model, relational - OO translation is
done after database integration, hence the warehouse data is built on the underlying integrated
framework. In the second model, we perform translation into the O-O model at the wrapper level, so
that the canonical model for the integrated schema is the O-O model, offering more flexibility in
dealing with diverse semantics of the underlying data [NS96].

The Complete Warehouse Schema (CWS) in both models contains Base classes (BWS) which include
some directly mappable classes and some derived View classes (VWS) based on the OLAP queries.
The CWS views can be implemented as partitions, indexes and aggregate views, as will be described
in the next sections. Further more, views (Virtual classes) can be inherited from this CWS. These
views may be partially or completely materialized.

Copyright © SCS 2001 2 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

1.2 An Iterative ORDW design methodology

In [VLK98], we showed that besides establishing a semantically richer framework for multi-dimension
hierarchies, the ORV model provides excellent support for complex object retrieval. Here we illustrate
this iterative design methodology for the ORDW.

Our view design methodology depends on the type and pattern of queries that access the DW
frequently. By incorporating these access patterns, we can form an efficient framework for retrieving
popular queries. Note though that as the queries change, the O-O schema may require changes in terms
of partitioning and indexing, but the underlying schema is fairly dynamic because of embedded
semantics, viz. nested containment relationships, references, is-a types, multi-valued objects & object
identity. This implicit support of semantics also enables efficient traversal of multiple query paths
along the same dimension hierarchy. For example in the Time dimension, multiple paths could be
along the Week, Month & Season compositions. These are supported by the Class Composition
Hierarchy (CCH) framework as shown in figure 2.

Date

Month

Week

Year

Quarter

Season

Phase-1

Phase-2

Phase-3

Translate Snowflake to OO schema:
This results in creation of BWS

Enhance the OO schema : Partition using
query information.This creates the VWS.

Index (with SJIH): Create an efficient indexing
framework on the CWS.

Refine

Conceptual
Design

Logical & Physical
Design

Fig. 2. The Time Hierarchy Fig. 3. The ORV Design methodology

As shown in figure 3, we illustrate our methodology in three phases. Phase 1 is the Conceptual level
design, in which we translate the underlying schema from the snowflake schema model to the O-O
model, using the Primary Query Set (PQS) which contains queries that are fairly stable and most
frequently asked. Conceptual schema is generally static and does not reflect internal optimization,
hence this phase is outside the refinement loop. The Logical & Physical design consisting of Phase-2
(AHCP partitioning) & Phase-3 (indexing) are constructed based on the Secondary Query Set (SQS)
containing the other queries that are less frequently asked but are still significant enough for
optimization. These two phases are repeated until the ORV schema and indices are optimized.
Aggregate Views could be further built on this refined schema and materialized if needed. These
phases are explained in detail in the following sections.

1.3 Paper contribution and organization

In this paper, we present the Object Relational Data Warehousing (ORDW) methodology as an
approach to address many of the issues associated with data warehouse schema design [VLK98].

To put our research in perspective, we review some related work in section 2 and briefly outline our
previous work in the contexts of ORDW, Class Partitioning and Indexing on OODBs; we further
motivate our study by presenting a sample DW schema and some OLAP query characteristics. In
section 3, we create basic sub-query expressions (out of PQS) and utilize a Multiple Query
Optimization (MQO) approach to trigger our schema design processes. We further explain the
Conceptual level design of the iterative ORDW design methodology, viz., translation from Star to OO
schema and refinements. Section 4 deals with the Logical & Physical design aspects, which comprises

Copyright © SCS 2001 3 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

of obtaining an optimal AHCP partitioning scheme (4.1), and indexing schemes (4.2). In section 5, we
provide a walkthrough of our design algorithms and performance analysis of our iterative
methodology. Section 6 illustrates some innovative applications of the ORDW framework, viz. Multi-
fact aggregate queries, recursive OLAP, and parameterised queries. Finally we conclude in section 7,
and briefly state our future work.

2. Motivations and related work
Here we provide a need for adopting a new methodology viz. Object Relational Data Warehousing.
We motivate it by building on the very popular "Sales" Data Warehouse schema, and introduce
complexities by means of normalising and range queries. Further, we state work done in the realm of
logical and physical design, with encouraging results that justify this approach.
2.1 Motivations

OrderNo
ProdNo
CustomerNo
RetailerNo
DateKey
CityName
Quantity
TotalPrice

CustomerNo
CustomerName
CustomerDOB
City

ProdNo
ProdName
ProdDescr
Category
UnitPrice

DateKey
Date
Month
Year

Fact Table

Date

Customer

Product

Year

Month
Year

Year

Month
CategoryName
CategoryDescr
Grade

Type
Type

Category

CityName
State
Country

Country State
Country

City
Country State

OrderNo
OrderDate

Order

RetailerNo
RetailerName
City

Retailer

Fig. 4. A Sample Snowflake Schema

Let us consider the sample snowflake schema for a Sales DW (taken from [CD97]), with one fact table
and dimension tables representing Time, Product, Customer, and Address hierarchies, as shown in
figure 4. As shown in table 4, OLAP queries could be posed on various predicates along a single
hierarchy, as well as on predicates along multiple hierarchies. Summary tables could be defined along
a predicate or set of predicates by separate fact tables and corresponding dimension table(s). These
summary tables could be materialized depending on various materialization selection algorithms to
improve querying cost. As seen in the figure, the dimension tables in the snowflake schema (along
with schema for summary tables) are in a composition hierarchy.

For the purpose of this paper, queries involving Nested Facts can be considered as sub-sets of inter-
Fact queries. They are distinguished by the presence of a semantic disjoint-ness between the Facts
involved. It must be noted though that this disjoint-ness does not preclude the Facts from sharing the
same component objects. A query processing scheme that is built on separate Facts will inadvertently
need costly joins. This inefficiency is amplified for queries with low selectivity and high frequency.
This calls for a need for a partitioning scheme that transcends Facts and is not restricted by the
hierarchies mentioned. It must be noted that such a partitioning scheme may well be overlapping and
hence will suffer due to storage space restrictions.

For the example in the figure, some OLAP queries could be on the entire range of Sales and would
need to access multiple dimensions for the commonly used Group By clauses. However, other queries

Copyright © SCS 2001 4 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

could also have a predicate range in place (such as "Categ=Elec" or "Country=US"). In such cases, the
search space on the Fact "Sales" is reduced by a factor equal to the selectivity of the predicate.
However, this does not help during query processing (normal unpartitioned case), as the entire Fact
table is processed while searching for relevant tuples. Even in cases where indexes are built
[VLK00a], the benefit could be reduced, as index creation takes up more time due to the enormity of
the Fact. Further, as the OLAP queries involve multiple paths (multiple selections and group bys), the
size of the Forward and Reverse Joins is dependent on the size of the Root (Fact). This calls for the
need to partition the Fact according to the query characteristics [VLK00b].

On the other hand, indexing is definitely a complementary means (to class partitioning) for efficient
query processing. As noted above, the dimension tables in the snowflake schema (along with schema
for summary tables) are in a composition hierarchy, hence they can be naturally represented as an
Object-Oriented schema. Therefore, querying costs (join) on complex predicates along this snowflake
schema should be analogous to querying costs by pointer chasing mechanism in an O-O framework.
From [FKL98], we see that the Structural Join Index Hierarchy (SJIH) mechanism is far superior to
pointer chasing operations for Complex Object retrieval, especially in queries involving predicates
from multiple paths. Experimental results [Won98], [VLK00a] conform to the analytical results of this
cost model. It therefore makes sense to incorporate the semantic-rich SJIH into our ORDW framework
[VLK00a]1, as an additional step to embed query semantics for efficient query processing (cf., Fig. 3).

2.2 Related work

Partitioning has been vastly researched in Relational and OO database systems. Excellent work has
been done in Vertical Partitioning (VP) and Horizontal Partitioning (HP) in both systems, but the
unique features of OO systems have made it possible to experiment with different variations such as
Derived Horizontal Class Partitioning (DHCP) [BK98], Associated Horizontal Class Partitioning
(AHCP), Path Partitioning (PP) and Method Induced Partitioning (MIP). [KL00] presents a
comprehensive framework for devising partitioning schemes based on different types of methods and
their classification. The issue of fragmentation transparency is addressed by considering appropriate
method transformation techniques. While those methods were extremely successful in the transactional
environment of an OODB, to the best of our knowledge, no work has been done in partitioning of an
Object Relational DB. Our research in partitioning an Object Relational Data Warehouse (ORDW)
[VLK00b] is the first work in this direction.

Recently, we have conducted some preliminary studies on developing the ORDW framework. In
[VLK98], we showed that the ORV (Object Relational View) model offers inherent features that are
conducive to managing a data warehouse. We listed the various issues that arise during the design of
an OR-DWMS (Object Relational Data Warehouse Management Systems). Here, OR means an object-
oriented front-end or views to underlying relational data sources. Based on the issues discussed in
[VLK98], we articulated a three-phased design approach in [VLK99], which also provided a query-
driven translation mechanism from the star/snowflake schema to an object oriented (O-O)
representation. Some query processing strategies utilizing Structural Join Index Hierarchy (SJIH)
techniques for complex queries on composite objects were addressed in [VLK00a]. In this paper, we
focus on the efficacy of class partitioning techniques in the context of our ORDW framework, for the
purpose of semantic query optimization.

3. Conceptual Design
As seen in figure 3, the Conceptual level design of the iterative ORDW design methodology consists
of Phase-1, i.e. the translation from Star schema to OO schema. Conceptual schema is generally static
and does not reflect internal optimization, hence this phase is outside the refinement loop, which
operates only on phases 2 and 3. The schema at the conceptual level should be immune to changes in
query patterns and frequency. As mentioned in section 1.2, we use the Primary Query Set (PQS) as

1 In this paper we omit further coverage and evaluation of the SJIH indexing scheme on the ORDW, due to space
limitations. The reader may refer to [VLK00] for further details.

Copyright © SCS 2001 5 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

input for the construction of the ORV schema (the translation phase). In order to implement this, we
create atomic sub query expressions by utilizing a Multiple Query Optimization (MQO) approach.
Assigning weights to the intermediate nodes based on frequency and degree of sharing of the query
sub-expressions, we derive ORV schema from the snowflake schema.

It must be noted here that as the queries change, the ORV schema may require changes in terms of
partitioning and indexing, but the underlying schema is fairly static because of embedded semantics.
This implicit support of semantics also enables efficient retrieval of multiple query paths along the
same dimension hierarchy.

3.1 MQO hierarchy (MVPP)

To illustrate the derivation of our ORV schema, we assume the Primary Query Set (PQS) giving three
sub-queries that have the highest frequency and degree of sharing that induce ORV schema range
derivation:

Q1 : Sales to Customers whose age is no more than 19 years (i.e. Teenager).
Q2 : Sales to Customers whose age is at least 20 years old (i.e. Adult).
Q3 : Sales to Customers whose age is more than 50 years, group by Product.

selection
minus

LEGEND

Customer Sales Product

high weight
node

Q 1 Q 2 Q 3

σ
teenager adult

age>50σ

−

σ
−

join

Fig. 5. MQO on the Primary Query Set

From this simple sub-query set, we create a sample MQO as shown in figure 5. The MQO is a DAG
(Directed Acyclic Graph) from the ORDW classes to the sub-queries in PQS. Each node represents an
operation (e.g., select, project, join), and is given weights according to the frequency of the queries
accessing it and the degree by which it is shared. In the above queries, we see that pushing down the
select operation on the age of Customer creates nodes for “adult” and “teenager” that are most
frequently accessed and are thereby assigned higher weights.

3.2 ORV schema derivation

The fundamental star schema model consists of a single Fact Table (FT) and multiple Dimension
Tables (DTs). This can be further sub-classed as snowflake (normalizing along DTs) and multi-star
(normalizing along FTs) and combinations of multi-star & snowflake schema models. We illustrate
our translation mechanism here on the single star / snowflake schema model. Note that a generic
extension to include multi-star schema models can be easily derived due to advantages of the O-O
model as stated in section 2.

Star / Snowflake Schema

A snowflake schema consists of a single Fact Table (FT) and multiple Dimension Tables (DT). Each
tuple of the FT consists of a (foreign) key pointing to each of the DTs that provide its
multidimensional coordinates. It also stores numerical values (non-dimensional attributes, and results

Copyright © SCS 2001 6 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

of statistical functions) for those coordinates. The DTs consist of columns that correspond to attributes
of the dimension. DTs in a star schema are denormalized, while those in snowflake schema are
normalized giving a Dimension Hierarchy. A generalized view of the snowflake schema is presented
in figure 6.

D1k
D2k
D3k
...

Dxk
m1
...
my
f1
...
fz

Fact Table.

Dimension
hierarchy

..

. C x
Dxk
a1
...
an
Dx

1

...
Dx

m

pOID1
pOID2
pOID3
...

pOIDx
m1
...
my
f1
...
fz

 C0 .

Component
Objects Complex

Object
CCH

CCHDimension
hierarchy

.

..

.

C 1
OID1k
a1
...
an
pOID1

1

...
D1

m

Dimen
sion x
Dxk
a1
...
an
DxR1k
...
DxRmk

Dimen
sion 1
D1k
a1
...
an
D1R1k
...
D1Rmk

Fig. 6. Generalized view of snowflake schema Fig. 7. Corresponding O-O schema

Preliminaries

Every tuple in the FT consists of the fact or subject of interest, and the dimensions that provide that
fact. So each tuple in the FT corresponds to one and only one tuple in each DT, whereas one tuple in a
DT may correspond to more than one tuple in the FT. So we have a 1:N relationship between FT :
DTs.

Let the snowflake schema be denoted as SS.

No. of FT = 1; No. of DT = x.

We denote the relations between the FT and DTs as:

Rel (FT, DTi) = Ri

1 ≤ i ≤ x ; where x is the no. of DTs

Let the Relations between DTs in a dimension hierarchy be denoted as:

Rel (DTi
r, DTi

r+1) = Ri
r

0 ≤ r ≤ m ;

where m is the no. of relations in the hierarchy under DTi.

and DTi
0

 = DTi

Table 1. Elements of the Fact Table (FT) Table 2. Elements of the Dimension Table (DTi)

{Dik} set of Dimension keys, each
corresponding to a Dimension Table
(DT). 1 ≤ i ≤ x ; where x is the no. of
DTs

 Dik Index of the DT

{mj} set of member attributes.
0 ≤ j ≤ y ; where y is the no. of
attributes

 {aj} Set of member attributes.
0 ≤ j ≤ n ; where n is the no. of
attributes.

{fs} set of results of statistical functions.
1 ≤ s ≤ z ; where z is the no. of

 {Rirk} set of keys of relations that form
its Dimension Hierarchy.

Copyright © SCS 2001 7 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

function results. 0 ≤ r ≤ m ; where m is the no. of
relations in the hierarchy under
DTi

3.2.1 Translation Algorithm
Our methodology intends to capture the hidden semantics behind a DW schema design, by
incorporating the star / snowflake schema information with the query type and pattern information.
Frequent Data warehousing queries can be thought of being decomposed and categorized into the
following form:

Q → { Qn ∪ Qr }

where Qn is the set of sub-queries that leads to normalising the schema, and Qr is the set of sub-queries
(from the MQO hierarchy) that act on a range of the schema, with the highest weights (cf. figure 5).

Based on this classification, we can refine the resultant schema in two complementary ways:
Refinement-1, involving normalising sub-queries Qn, and Refinement-2, involving range sub-queries
Qr.

Refinement 1 - normalising

In the ORDW environment, normalising can be regarded as a technique for refining the ORDW
schema through utilizing the query semantics to generate a finer class composition hierarchy of any
class. The refinement can be accomplished in a step-by-step manner, as shown below.
We note that in terms of predicates accessed in the DTs, queries of type Qn can be defined as

Qn → (DTir. {aj }) where {aj}is a set of attributes of DTi
r.

Step N1. For the Fact Table FT in the snowflake schema, create a class C0 in the O-O schema.
Create Co

Step N2. For each Dimension Table DTi in the snowflake schema, create a class Ci in the O-O schema.

∀ DTi Create Ci
Step N3. For each relation Ri in the snowflake schema, create a pointer to OID, pOIDi in class C0 in
the O-O schema.

∀ Ri Create C0 . pOIDi = OID(Ci)
Step N4. For each member attribute mj in FT in the snowflake schema, create an attribute mj in class
C0 in the O-O schema.

∀ mj in FT Create C0 . mj
Step N5. For each result-value attribute fs in FT in the snowflake schema, create an attribute fs in class
C0 in the O-O schema.

∀ fs in FT Create C0 . fs
Step N6. For each relation Ri

r in the snowflake schema, create a class Ci
r in the O-O schema.

∀ Ri
r Create Ci

r

Step N7. For each member attribute aj in DTi
r in the snowflake schema, create an attribute aj in class Ci

in the O-O schema.

∀ i(∀r DTir. aj Create Ci. aj)
Step N8. For each relation Ri

r in the snowflake schema, create a pointer to OID, pOIDi
r in class Ci in

the O-O schema.

This is a recursive step, as it navigates through the dimension hierarchy. The relations between the
various nodes of the DT are explicitly captured, so steps 6-7 can be repeated in the hierarchy loop.

∀ Rirk Create Cir . pOIDir = OID(Cir)
Step N9. For each Query Qi in Qn, which accesses a set of {aj} belonging to a DT in Di, vertically
partition the corresponding class Ci in the O-O schema.

Copyright © SCS 2001 8 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

∀ Qi (∀d DTn. {aj} Create Cnj ← Cn)
Refinement 2 - range derivation

In terms of values of predicates accessed in the DTs, queries of type Qr, can be defined as

Qr → (DTir. aj . {vk }) where vk is a set of values of attribute aj of DTi
r.

Step R1. For each Sub-Query Qi in Qr, which accesses a record containing a range of values {vk} for
attribute aj belonging to a DT in Di, derive the range of corresponding class Ci in the O-O schema.

∀ Qi (∀d DTd. aj . {vk } Create Cdjk :: Cd)

This forms the primary is-a hierarchy of the O-O schema. Here, the classes mapping to the DTs are
divided into range groups according to the queries acting on them. This range derivation ensures that
specific subsets of classes are available while maintaining a high degree of reusability. As seen in
figure 7, the generalized view of the O-O schema is similar to that of the snowflake schema. The class
corresponding to FT is C0 .

3.2.2 Resultant schema

Product

Sales

City Customer

State

Product Retailer

Category

Country

Address Time

Type

Order

Date

Month

Year

Season

Week

QuarterAdultTeenager

Customer

Fig. 8. The OO Schema.

The figure shows the class composition hierarchy for the Time dimension after refinement 1, and the is-a
hierarchy (shaded area) for the Customer dimension after refinement 2.

Figure 8 (without the shaded area) shows the translated O-O schema for the Sales example taken in
previous sections, which is generated by tracing the steps of the above algorithm step-by-step: Note
that this hierarchy is not a mere mapping of FTs and DTs from the snowflake schema. The classes
mapping to the DTs are further vertically partitioned according to the queries acting on them. For an
example of multiple paths within a single dimension hierarchy, let us consider the Time (Date)
hierarchy. If the queries access Date by multiple paths like Day_of_Week, or Day_of_Month or
Week_of_Quarter, they must be supported within the same path, instead of having to access disjoint
entities (classes).

4. Logical & Physical Design
As seen in figure 3, the Logical & Physical level design of the iterative ORDW design methodology
consists of Phase-2, i.e. enhancing the ORV schema (VWS) with query-driven Associated Partitioning
and Phase-3, i.e. creating indexing mechanisms on the Complete Warehouse Schema (CWS). These
two phases are repeated until the ORV schema and indices are optimized, as shown in the refinement
iteration loop (cf. figure 3). Aggregate Views could be further built on this refined schema and
materialized if needed. This design level is influenced by the Secondary Query Set (SQS) containing

Copyright © SCS 2001 9 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

the queries that are less frequently asked (as compared with PQS), but are still significant enough for
optimization.

Based on classifications by DW operations & by OO concepts, we consider the following queries
listed in Table 3 as our sample SQS for subsequent discussions.

Table 4. Sample OLAP queries - SQS

No. Query Query type
Q1 Sales by Prod by State in US Only along cch (pivot)
Q2 Sales by Prod by State by Year in US -> Drill-down
Q3 Sales by Prod for Categ=Elec -> Roll-up
Q4 Sales by Prod by City for Categ=Elec Only along cch, Drill-down
Q5 Sales by Prod by Country for Categ=Elec Only along cch, Roll-up
Q6 Sales by Prod to Teenagers by State for Categ=Elec &

in US
Only along cch, Slice_and_dice

Q7 Sales of Prod 1 compared with Sales of Prod 2 to
Teenagers for Categ=Elec

Only along cch, Drill-down,
Slice_and_dice

Q8 % increase in Sales to Teenagers over Sales to Adults,
of Prod 1 / 2 for Categ=Elec & in US

Combination of is-a & cch,
Drill-down, Slice_and_dice

4.1 Phase - 2 : Associated Horizontal Class Partitioning (AHCP)

The Associated Horizontal Class Partitioning (AHCP) methodology creates semantic-rich hybrid class
partitions for efficient query processing. It is a technique by which several classes can be partitioned
according to the semantics of another class in its aggregation hierarchy. We employ the AHCP on our
ORDW schema, and propose to extend its applicability from class composition hierarchies to also
include is-a hierarchies and links quantified by partial participation, thereby encompassing the
Complete Warehouse Schema (CWS) in the ORDW.

4.1.1 AHCP preliminaries
The total cost of the AHCP framework can be broadly categorized as partition storage cost, partition
retrieval cost and partition maintenance cost. In this paper, we also incorporate query-centric
information including selectivity and frequency to determine the selection of minimal complete set of
partition fragments for optimal storage, maintenance and retrieval costs.

Primary Horizontal Partitions (PHP) :

Classes in the ORDW schema can be denoted as Ci
p, indicating the i th class in the p th path. The root

class (FC) is denoted as C0. Primary Horizontal Partitions on these classes can be denoted as sub-
classes and placed in the is-a hierarchy under the original partitioned class. Note that the (sub) is-a
hierarchy in our examples is denoted by the subscript i.j , denoting the j th sub-class of the i th class (in
the p th path). The Primary Horizontal Partitioning (PHP) operation can be denoted as:

PHP(Cip)p1 → { Ci.1p , Ci.2p ,..., Ci.np }

where (Ci
p) is the Class that is Primary Horizontally Partitioned according to a predicate (p1),

resulting in n fragments which are treated as classes {Ci.n
p}. Note however, that since FC is the only

root in the realm of our OLAP query sets, any primary partition of the root need not display the path
suffix; i.e. (C0.1

0 = C0.1).

The example in figure 9 shows classes C0, C2
1 and C1

2 in the class composition hierarchy (CCH).
Some of the PHPs are { C21.1

2 , C21.2
2 and C21.3

2 }, connected by dashed lines (is-a) to the super-class
C1

2 which was partitioned.

As the PHPs can be considered as subclasses of the class on which the PHP were performed, they are
placed in the is-a hierarchy of the schema. We can have any no. of PHPs on a single class based on a
number of predicates. For a single simple predicate, the PHPs are disjoint, i.e. they do not share any

Copyright © SCS 2001 10 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

objects. PHP schemes based on multiple or complex predicates on the same class, may induce
overlapping fragments, however we do not consider such schemes in this work to avoid complexity.

Associated Horizontal Class Partitions (AHCP) :

C0

C1.2
2

C1
2 C1

3C1
1

C2
3C2

1

C1.1
2 C1.3

2

Is-a

CCH

LEGEND

C2.1
1 C2.2

1

C0.21
1 C0.22

1

C0.11
2 C0.12

2 C0.13
2

C0.1
0 C0.2

0

C3
2.21

1 C3
2.22

1

Ci.j
p AHCP

Fragment
ation Join

Fig. 9. An AHCP example on the Fact and Dimension Classes

After the PHPs are created, the AHCP operation may be performed on some other classes in the
schema. As noted above, most queries in the SQS access the root (FC) for its value based attributes,
and hence this paper deals primarily with AHCP of the root class. The AHCP operation can be
denoted as follows:

AHCP (Cjq, PHP(Cip)p1) → { Cqj.i1p , Cqj.i2p ,..., Cqj.imp } and

where (Cj
q) is the Class that is Associate Horizontally Class Partitioned (AHCP) according to the PHP

on class Cip, resulting in m fragments which are treated as classes { Cqj.imp }. Here again since FC is
the only root in the realm of our OLAP SQSs, any AHCP of the root need not display the path suffix;
i.e. (C0

0.11
2 = C0.11

2).

As seen in the figure, the examples indicate that two sets of AHCPs are created from the root C0. They
can be created by:

AHCP (C0, PHP(C12)p1) → { C0.112 , C0.122 , C0.132 } and

AHCP (C0, PHP(C21)p1) → { C0.211 , C0.221 }

These partition fragments are denoted as subclasses in the figure by means of the shaded boxes to
indicate Associate Partitioning.

The AHCP operation can also be preformed on classes other than the root, i.e. the Dimension Classes.
For example, as seen in the figure, C2

3can be AHCPed based on the PHPs of C2
1.

AHCP (C23, PHP(C21)p1) → { C3.211 , C3.221 }

The result is also shown in shaded boxes under C2
3 in the figure.

Copyright © SCS 2001 11 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

An important point to be noted here is that while the Fragments obtained by any single AHCP
operation on the root are always disjoint, the same cannot be said about Fragments obtained by AHCP
on any other (Dimension) class. This indicates the storage overhead to be incurred while performing
AHCPs on the Dimension classes, and must be taken into account by the cost model.

4.1.2 AHCP cost model
In an ORDW, partitioning can be implemented by means of Method Induced Partitioning techniques
[KL98]. Moreover due to the structural and cardinal differences inherent between Dimension Classes
(DC) and the Fact Class (FC), we can assume that the DCs need not be physically partitioned as they
may be wholly or partially stored in memory (under both medium and large memory hypothesis).
Hence the cost of the traditional join between the PHP fragments and the AHCP fragments can be
ignored. This join can be achieved by employing the methods of the FC.

Storage Cost :

The Storage cost (SC) has two components: Primary Horizontal Partition (PHP), and the Associated
Horizontal Class Partition (AHCP). It can be stated as:
SC = SCPHP + SCAHCP

They are given as follows:

1. SCPHP (C1) :

We assume that in most cases, and especially in this paper, we consider only one PHP per class. This
ensures that the partitions are disjoint for simple predicates. In such cases, there is negligible overhead
for storage cost as SCPHP (C1) = | C1 | (no. of pages occupied by the class C1 + catalog entries for the
no. of PHPs of C1). These catalog entries give details of the partitioned Class structure, extent and
qualifying rules. Hence they are very small and can easily be accommodated in memory (in both the
medium and large memory hypothesis).

In case of multiple complex predicates on a Dimension (C1), resulting in overlapping fragments, we
propose not to replicate the entire class extent, but rather only replicate the Class OIDs (and some
frequently accessed attributes) in the separate Partitions.

In this case the storage overhead can be estimated as:
SCPHP(C1) = || C1 || x NoAttr x (sizeof(Attr)) x NoPHP

where NoAttr = No. of Attributes replicated.

where NoPHP = No. of Partition schemes.

Given a maximum of 2 replicated attributes or 20% of the class structure, and a uniform size of
attributes, we can accommodate upto 5 different Partitioning schemes for an increase of 100% in
SCPHP (C1).

2. SCAHCP (C0) :

This is by far the biggest increment for storage cost in the AHCP ORDW. As noted above, the root
(C0) would be the widely used as the candidate for performing AHCP. Since any predicate on a single
dimension can only induce disjoint partitions in the root, the partitioning overhead is negligible for
multiple partitioning schemes in a single DC.
SCAHCP (C0) = | C0 | + NoPHP x SizeCat(PHPi).

where SizeCat = Catalog entry size (structure, extent, qualifying rules).

But as we incorporate multiple predicates on different dimension classes, SCAHCP (C0) grows linearly
as the no. of dimensions (assuming only single complex predicates on each dimension). This can be a
large overhead, as C0 as the FC, is very large (~order of Gigabytes).

Hence we intend to reduce this overhead by means of a Multiple Partition Processing Plan (MP3),
based on MVPP [YKL97]. This would entail a compromise between duplication and efficiency of the

Copyright © SCS 2001 12 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

partitions, as sub-fragments will have to be created to support the AHCPs. The Join needed to produce
the final result from these sub-fragments constitutes the increase in retrieval cost.

Maintenance cost :

As noted above, since inter-fragment join is avoided between the PHP and AHCP fragments,
maintenance cost is considerably simplified due to the AHCP operation.

As the ORDW is a read_mostly and append_only environment, we can safely estimate the
maintenance cost even though the schema is vastly enhanced (and complicated) by semantics. For
example, once the Warehouse has achieved full functionality, in each update cycle of the ORDW, we
can expect upto 0.5% addition of the FC (this is a very conservative estimate based on our same DW,
maintaining 10 years worth of "Sales" data and updated daily). The updates to DCs can be ignored
mainly because their percentage will be even smaller and also because most of the DCs will be in
memory anyway. Only these 0.5% FC objects have to be processed in order to maintain the
Partitioning scheme.

The Maintenance cost for the AHCP partitioning scheme (MC) can be defined as the extra cost of
maintaining the AHCPs and the PHPs catalogs.
MC = MCCat(AHCPi) + MCCat(PHPi)

Since MCCat(PHPi) is negligible as the PHPs are in memory, the main cost is on the AHCP
maintenance, which is comprised of maintaining catalog entries of the AHCP, Generally this meta-
information is small enough to be stored completely in memory.

Retrieval cost :

To determine retrieval cost, we break up the complex queries into smaller atomic sub-query
expressions. We denote this by means of a MQO (Multiple Query Optimization) graph in the MP3,
which is further explained in section 3.3.

The Retrieval Cost (RC) is the cost of parsing the catalog, accessing the relevant AHCPs (as union)
and the cost of the join with corresponding PHPs.
RC = RCCat + RCAHCP + RCPHP + RCjoin

However, as we store the PHPs and the join in memory, and the Catalog is relatively small, RC is
mainly composed of AHCP loading cost. Since this is smaller than the complete FC by a factor of min
(selpi), where selpi indicates the selectivity of the predicates on query Qi , we achieve a considerable
savings in retrieval cost.

This saving is also obtained when indexing schemes like the SJIH [VLK00a] are built on top of the
AHCPs, and also when aggregate views have to be developed.

4.1.3 AHCP selection procedure
We approach the problem of performing AHCP in the ORDW in a different manner from the case of
DHCP in a normal OODB [BKS98]. IN [BKS98], various techniques (candidates) were considered to
decide the best PHP candidate for performing DHCP. Here we consider all the PHP candidates, and
our AHCP algorithm generates an optimal combination of complete and minimal set of AHCPs.

AHCP Algorithm (also called MP3 algorithm)

The algorithm can be broken into three parts:

1. Generating an exhaustive set of AHCPs based on query characteristics (selectivity, fan-out)
obtained from the entire query space.

1.1 For each query Qi in the SQS, generate logical associated fragments {C0.j
p} from {Cj

p}, that
satisfy sub-expressions of Qi completely.

Copyright © SCS 2001 13 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

1.2 Perform an intersection of the C0.j
p fragments for all Qi . This creates the complete disjoint

AHCP set, on which the queries will be based.

2. Assigning query weights depending on priority and importance (frequency).

2.1 For each query Qi , evaluate the minimal set of query processing fragments : QPFi = { C0.j1
p1

, C0.j2
p2 , … , C0.jm

pm }

2.2 Create query plans for each Qi having nodes involving unions of fragments that exist in
multiple QPFi .

2.3 Assign cumulative weights to the nodes depending on their utility to consecutive Qi (based
on frequency and cardinality).

3. Selecting a minimal complete set of AHCPs based on the query weights, subject to storage and
maintenance cost. This part is similar to the Algorithm for selecting views to be materialized given
in MVPP [YKL97].

3.1 For each Qi , perform top-down evaluation of nodes in its query plan.

3.2 Select lower nodes (breakup) if the retrieval cost is lesser.

Figure 10 shows examples of AHCPs (AHCP-1, AHCP-2) and PHPs (PHP-1) on the Fact Class (C0).
These fragments are then merged by intersecting them and obtaining a complete disjoint set of
Partitions. It must be noted that this is obtained from the query characteristics, and are very
exhaustive. Due to this reason, it may not be feasible to materialize them all, and hence the MP3 is
used to determine which fragments should be materialized and which should be kept virtual [VLK98].
The cost model is based on the MVPP [YKL97], and incorporates SC and MC besides RC. As shown
in the figure, the shaded classes are materialized.

Copyright © SCS 2001 14 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

C0

Is-a
CCH

LEGEND

C0.21
1 C0.22

1

C0.11
2 C0.12

2 C0.13
2

C0.1
0 C0.2

0

C0.21.11.1
120

C0.22.11.1
120

C0.21.12.1
120 C0.21.13.1

120

C0.22.12.1
120 C0.22.13.1

120

C0.21.11.2
120

C0.22.11.2
120

C0.21.12.2
120 C0.21.13.2

120

C0.22.12.2
120 C0.22.13.2

120

materialized
fragments

Q 1 Q 4Q 2 Q 3 Q 5 Q 6

AHCP - 1 PHP - 1

Complete
disjoint AHCP

AHCP - 2

MQO -
Intermediate nodes

Step 1.2

Step 1.1

Steps 2-3

Fig. 10. Multiple Partition Processing Plan (MP3).

4.2 Phase - 3: Indexing

Though not a direct topic of this paper, we have incorporated the indexing scheme as part of our
ORDW design methodology due to its complementary nature to partitioning. In particular, several
indexing methods as illustrated in [OQ97], [Sar97], can be implemented on the partitioned ORV
schema to facilitate complex object retrieval and to avoid using a sequence of expensive pointer
chasing (join) operations. As shown in [VLK00a], a query-driven indexing approach based on the
structural join index hierarchy (SJIH) mechanism [FKL98] can be very effectively devised, which can
demonstrate a tremendous efficiency over plain pointer chasing approach. We omit further coverage
and evaluation of the SJIH indexing scheme in this paper due to space limitation; further details can be
found from [VLK00a].

5. Sample evaluation and analysis
In this section, we analyze the fragment retrieval cost for processing queries in SQS using AHCP. A
comparison of the results with that of plain query processing approach using pointer chasing is then
conducted.

5.1 Fragment retrieval cost

In order to evaluate the AHCP methodology, we use the sample ORDW schema and queries as
detailed in section 4. Here we note that there are 8 eight queries in the SQS, and we assume them all to
be of equal importance.

Copyright © SCS 2001 15 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

Running our example through the algorithm given in section 4.1.3 :

Step 1.1 : For each query Qi in the SQS, generate logical associated fragments {C0.j
p} from {Cj

p} that
satisfy sub-expressions of Qi completely.

We see that there are 4 main predicates, by which the Dimensions are partitioned,

viz. p1 : "Country = US", p2a : "Customer = Teen " , p2b : "Customer = Adult", p3a : "Product = P1
", p3b : "Product = P2", and p4 : "Categ = Elec". Performing the AHCP function wrt. these PHPs as
shown in section 3.1, we arrive at an exhaustive set of AHCPs of the Sales Class (FC).

Step 1.2 : Perform an intersection of the C0.j
p fragments for all Qi .

Consequently, by intersection, we see that a complete set of 16 different AHCPs of the FC (Sales) can
be created based on these 4 predicates, encompassing all possible and non-empty fragments:

F1 p1 ^ p2a ^ p3a ^ p4 F9 !p1 ^ p2a ^ p3a ^ p4

F2 p1 ^ p2a ^ p3b ^ p4 F10 !p1 ^ p2a ^ p3b ^ p4

F3 p1 ^ p2a ^ !p3a ^ !p3a ^ p4 F11 !p1 ^ p2a ^ !p3a ^ !p3a ^ p4

F4 p1 ^ p3a ^ !p4 F12 !p1 ^ p3a ^ !p4

F5 p1 ^ p2a ^ p3a ^ p4 F13 !p1 ^ p2a ^ p3a ^ p4

F6 p1 ^ p2a ^ p3b ^ p4 F14 !p1 ^ p2a ^ p3b ^ p4

F7 p1 ^ p2a ^ !p3a ^ !p3a ^ p4 F15 !p1 ^ p2a ^ !p3a ^ !p3a ^ p4

F8 p1 ^ p3a ^ !p4 F16 !p1 ^ p3a ^ !p4

Step 2.1: For each query Qi of the SQS, evaluate the minimal set of query processing fragments.

The query processing fragments (QPF) are shown in the following table:

QPF1 , QPF2 F1, F2, F3, F4, F5, F6, F7, F8
QPF3 , QPF4, QPF5 F1, F2, F3, F4, F5, F6, F7, F9, F10, F11, F13,

F14, F15
QPF6 F1, F2, F3
QPF7 F1, F2, F9, F10
QPF8 F1, F2, F5, F6

Step 2.2 : Create query plans for each Qi having nodes involving unions of fragments which exist in
multiple QPFi .

The intermediate nodes are created by a combination of fragments noting their affinity in the QPFs.
For the sake of completeness, we also create un-accessed nodes, for example, N12 (F12 U F16),
though these fragments are not accessed by any query in the SQS.

Node Definition Node Definition
N1 F1 U F2 N7 N2 U N6 U N9
N2 N1 U F3 N8 F9 U F10
N3 F5 U F6 N9 N1 U N8
N4 N2 U N3 N10 F11 U F13 U F14 U F15
N5 N3 U F7 N11 N5 U N8 U N10
N6 N5 U F4 U F8 N12 F12 U F16

Step 2.3 : Assign cumulative weights to the nodes depending on their utility to consecutive Qi (based
on frequency and cardinality).

 For each of the queries Qi, we know the optimal query processing plan opi , which is an
ordered list of nodes and fragments. We also know the frequency (fqi) of each query, and the

Copyright © SCS 2001 16 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

selectivity (selpj of the clause that its (sub-query) is based on. Depending on those parameters, we give
weights to the nodes in the opi of each query.

For example, in processing for Q1, we have:

<op1> = <N7, N6, N2, N9, N3, N5, N8, N1, F1, F2, F4, F5, F6, F7, F8, F9, F10>

∴ the weights for all these nodes (and fragments) is f1 * sel1 .

Processing for Q6, we have:

<op6> = <N2, N1, F1, F2, F3>

∴ the weights for all these nodes (and fragments) is f6 * sel6 .

.. and so on.

For simplification, we consider equal frequencies and 100% selectivity in the fragments; hence at the
end of this step, we have weights:

Frag Weight Frag Weight Node Weight Node Weight
F1 4 F9 3 N1 4 N7 1
F2 4 F10 3 N2 2 N8 3
F3 2 F11 1 N3 3 N9 2
F4 1 F12 0 N4 1 N10 1
F5 3 F13 1 N5 2 N11 1
F6 3 F14 1 N6 1 N12 0

F7 1 F15 1
F8 1 F16 0

Step 3.1 : For each Qi , perform top-down evaluation of nodes in its query plan.

 As the <opi> are ordered (tree structured), for each Qi, we can traverse the list in a top-down
manner. Initially all top -level nodes can be considered marked for materialization.

Step 3.2 : Select lower nodes (breakup) if the retrieval cost is lesser.

 This is a recursive step, in which the node is unmarked (for materialization) if any node under
it has a weight higher than itself. In that case the lower nodes are considered marked for
materialization, and the process is repeated with them.

For example, processing for Q8, we mark N4 as it is the first node:
but the weights are : N4 : 1, N2 : 2, N3 : 3.
hence N4 is discarded for N2 and N3.

Now N2 : 2, N1 : 4, F3 : 2.

So N2 is discarded for N1 and F3.
.. and so on.

Repeating this process for all the queries, the following nodes are materialized:
F3, F4, F7, F8, N1, N3, N8, N10.

This is our optimal minimal AHCP set.

Comparing HCF retrieval cost with pointer traversal cost

In this section, we evaluate our AHCP scheme for its performance gain over the un-partitioned case
during query retrieval. As noted in the previous section, we have derived an optimal complete minimal
AHCP set of the Sales FC.

The DCs and associated joins are in memory and evaluating a query branch dealing with them would
involve CPU cost. This is ignored here, as the disk i/o cost is the major component of response time in
most query retrieval costs.

Copyright © SCS 2001 17 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

The following study shows disk i/o cost ratios for varying relative frequencies of queries in the SQS.

cost ratio (CR) = cost of disk i/o for unpartitioned case

 cost of disk i/o after AHCP

The query frequencies are varied from 10% to 90%. As these are relative frequencies, it must be noted
that the frequencies of the other queries in SQS are modified equally in each case. The parameters for
the study are stated in the Appendix.

Observations

Relative frequency 10% 30% 50% 70% 90%
Q1 0.05 0.15 0.25 0.35 0.45
Q2 0.05 0.15 0.25 0.35 0.45
Q3 0.03 0.09 0.15 0.21 0.27
Q4 0.03 0.09 0.15 0.21 0.27
Q5 0.03 0.09 0.15 0.21 0.27
Q6 0.02 0.06 0.1 0.14 0.18
Q7 0.01 0.03 0.05 0.07 0.09
Q8 0.01 0.03 0.05 0.07 0.09

As can be seen from the above table, there is always a minimum gain obtained when the ORDW is
partitioned; the range of the gain varies from 1% to 50% in this case study.

Note that the above results appear to exhibit a linear relation between the selectivity of the query and
the cost gain obtained from the AHCP operation. However this should be interpreted only as the best-
case scenario, because in real-world cases some level of data replication is expected which can cause
redundant data access. This may lead to higher cost for the partitioned case than what this example
indicates, although the difference will not be too significant.

Copyright © SCS 2001 18 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

5.2 Resultant schema

Is-a
CCH

LEGEND

materialized
fragments

Q 6

Step 1

Steps 2-3

Sales

Customer
Date

Product

MonthCategory Teenager AdultCategelec

Categnon_elec

Salescateg=elec

Type

Salescateg=non_elec

City

State

Country

CountryUS Countrynon_US

Salescountry=non_USSalescountry=US

Salescust=teen

Salescust=adult

Year

Quarter

σprod=P1, P2

Q 8Q 7

σprod !=P1, P2

fragmentation
join

Fig. 11. The OO Schema.

The figure shows the MP3 algorithm's partial results (for queries Q6, Q7, Q8 only).

Figure 11 shows the O-O schema for the Sales example, which is generated by tracing the steps of the
MP3 algorithm step-by-step, for queries Q6, Q7 and Q8. Due to the exhaustive nature of the algorithm,
it is not possible to depict all internal nodes and fragments obtained in the intermediate steps, hence
only these three queries are selected without loss in generality. This schema shows PHPs on the DCs
(Category, Customer and Country), while Sales (FC) is Associate Horizontally Class Partitioned. Step
1, shows first level AHCPs of Sales, viz. Salescateg=elec, Salescountry=US, etc. The fragmentation links
between PHPs and the corresponding AHCPs are also shown. Now in the next two steps of the
algorithm, the intermediate nodes are created, and weighted according to selectivity and degree of
sharing. As indicated in the above figure, three intermediate nodes are materialized for queries Q6, Q7
and Q8.

6. Applications of ORDW framework
Current research work on data warehouses has only focused on Single Fact schemas. Moreover, most
work is concentrated in SPJ queries, some on queries with Aggregates, and very little on aggregates in
the presence of hierarchies. To the best of our knowledge, no work has been done in recursive queries,
or in true Multi-Fact queries, i.e. involving multiple Measures. In this paper we have presented a
methodology towards efficient query processing in an object-relational data warehousing (ORDW)
environment, through devising and incorporating Associated Horizontal Class Partitioning (AHCP)
techniques over the ORDW schema. Our methodology starts with a given set of data warehouse
queries, comes up with a near-optimal AHCP scheme for the queries, and selects AHCP fragments as
materialized views to facilitate efficient evaluation of these queries. Through an initial analytical

Copyright © SCS 2001 19 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

study, we are already able to demonstrate the gains of our approach vis-a-vis the unpartitioned
approach in terms of disk i/o in the ORDW environment.

The query space on DWs can be shown as in Figure 12:
Recursive Aggregate Views Parameterized Aggregate Views

 | | | | |
 | Aggregate Views | |
 | | | | |
 | | SPJ Views |
 | | | | |
 | | | | |

Multi – Fact : Star / Snowflake schema

Figure 12. ORDW inter-cube/view relationships

1.1 Benefited applications

Based on the query characteristics, we present some new and innovative applications that benefit from
our ORDW methodology. Specifically, these applications arise out of queries that are complex,
hierarchical, or ad-hoc.

Multi-Fact queries

Consider the following multi-Fact OLAP queries that are based on two distinct facts FT1 and FT2

FT1 (Product, Supplier, Date, Sales)

FT2 (Category, Region, Excise_Duty)

DT1 (Product, Category, Type)

Product (Name, Size, Colour, Weight, …)

Q1 : (Product_by_Size, Month, ΣSales)

Q2 : (Category, State, %of Duty)

A multi-fact OLAP query is one that has to be resolved by one or more Views, whose schema
definition includes Dimensions from more than one Fact. This also implies that the Measure of interest
may involve attributes from the multiple FTi 's.

Recursive OLAP queries

Consider a Census Data Warehouse whose typical applications include birth control, health/ hygiene
advertising, forecasting or target marketing would involve aggregate queries on entire family trees. For
example, the DW stores Personal details such as Parents, Siblings, Address, Salary, Tax paid, etc.
Now, a hierarchical query, which needs to recursively navigate the Parent attribute, could be of great
interest in determining a Measure (say, Salary earned) over generations of different ethnic groups
determined by family ties.

Such a nested recursive query is extremely difficulty (and virtually impossible) to achieve with
standard SQL, and would involve redundant temporary storage structures, and call for "external"
routines (e.g., stored procedures and/or embedded approach). Whereas in an OODW, we can easily
formulate a recursive query based on the expressive power of, e.g., OQL [Cat94].

Ad-hoc (parameterised) queries

Furthermore, there is also Ad-hoc Query, which need to be evaluated efficiently:

Q3 : Get ΣSales of Large Products whose %of Duty > p% in Eastern States

In this case the Ad-hoc query also needs to access both Facts. In the ORDW, this query can be
answered by Oids assigned to the cells of materialised views V1 & V2, and with a navigation of the
Category→Product hierarchy. The Ad-hoc query is based on (selectivities of) distinct Measures

Copyright © SCS 2001 20 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

present in two (or more) Facts, and correspondingly two (or more) Cubes. Hence determination /
computation of the ad-hoc query cannot be done by a single Cube. It is also impossible with a join of
the two Cubes (in Relational sense using Views), because each cell in Q1 is based on a range of
Products that overlaps with the range of Products (Category) along cells in Q2. Since this query is
parameterised, i.e. the user (analyst) can specify different values for “p”, materialisation has to be
optimised, and view-sharing strategies have to be decided at run-time.

7. Future work & conclusion
In this paper we have presented a methodology towards efficient query processing in an object-
relational data warehousing (ORDW) environment, through devising and incorporating Associated
Horizontal Class Partitioning (AHCP) techniques over the ORDW schema. Our methodology starts
with a given set of data warehouse queries, comes up with a near-optimal AHCP scheme for the
queries, and selects AHCP fragments as materialized views to facilitate efficient evaluation of these
queries. Through an initial analytical study, we are already able to demonstrate the gains of our
approach vis-a-vis the unpartitioned approach in terms of disk I/O in the ORDW environment.

Note that the work we have described in this paper (hence the result obtained) should be only regarded
as an intermediate stage towards efficient ORDW query processing; further advanced techniques and
mechanisms should and can be naturally added. In particular, an adaptive and extensible indexing
framework is currently being developed, so as to better accommodate the requirements of dynamic
data warehousing [Dayal99] which demands the incorporation of more semantics into the data
warehouse schemata. As shown in [VLK00a], a query-driven indexing mechanism built on the SJIH
(structural join index hierarchy) [FKL98] seems to be very effective, and is supplementary to the
AHCP work on materialised views [VLK00b]. We are extending the ORDW framework to include the
notion of an Object Cube, where the Cube or aggregated view in the presence of dimensions, is treated
as a Class. Currently we are in the process of combining these complementary approaches into the
same framework, and are building an experimental ORDW prototype system, which will be validated
by empirical studies based on, example, TPC-H benchmark queries.

References
[BK98] L. Bellatreche, K. Karlapalem and A. Simonet, “Algorithms and Support for Horizontal Class Partitioning in Object-

Oriented Databases”, Distributed and Parallel Databases, Kluwer Academic Publishers, accepted in 1998.
[Cat94] Cattell, R. et al., The Object Database Standard: ODMG-93, release 1.1, Morgan Kaufman, 1994.
[CD97] Surajit Chaudhuri and Umeshwar Dayal, “An Overview of Data Warehousing and OLAP Technology”, ACM

SIGMOD Record, 26(1), March 1997, pp. 65-74.
[CMN97] Michael J. Carey, Nelson Mendonça Mattos, Anil Nori, “Object-Relational Database Systems: Principles,

Products, and Challenges (Tutorial)”, SIGMOD Conference 1997.
[Dayal99] Umeshwar Dayal, “Dynamic Data Warehousing”, Proc. First International Conference on Data Warehousing and

Knowledge Discovery (DaWaK), Florence, Italy, 1999.
[FKL98] Chi-wai Fung, Kamalakar Karlapalem, Qing Li, “Structural Join Index Hierarchy: A Mechanism for Efficient

Complex Object Retrieval”, Proc. FODO Conference 1998, pp. 127-136.
[KL00] K. Karlapalem and Q. Li, “A Framework for Class Partitioning in Object-Oriented Databases”, Distributed and

Parallel Databases, 8(3): 317-350, Kluwer Academic Publishers, 2000.
[GHRU97] H. Gupta, V. Harinarayanan, A. Rajaraman, and J.D. Ullman, “Index Selection for OLAP”, Proc. ICDE 1997,

pp. 208-219.
[GM95] A. Gupta, and I. S. Mumick, “Maintenance of Materialized Views: Problems, Techniques, and Applications”, IEEE

Data Engineering Bulletin, June 1995.
[MK99] Mukesh Mohania and Y. Kambayashi, “Making Aggregate Views Self-Maintainable”, Data and Knowledge

Engineering, 32(1), 2000, pp: 87-109.
[NS96] Shamakant Navathe, Ashoka Savasere, “A Schema Integration facility Using Object-Oriented Data Model”, in

Omran A. Bukhres, Ahmed K. Elmagarmid (eds.), Object-Oriented Multidatabase Systems: A solution for Advanced
Applications, Prentice Hall, 1996, pp. 105-128.

[OQ97] P. O'Neil, D. Quass, “Improved query performance with variant indexes”, Proc. ACM SIGMOD '97, pp. 38-49.
[Rou97] Nick Roussopoulos, “Materialized Views and Data Warehouses”, Proc. KRDB 1997, pp. 12.1-12.6.

Copyright © SCS 2001 21 November 2001

Semantic Query Optimization … IJIT vol. 7, No. 2

[Sar97] Sunita Sarawagi, “Indexing OLAP Data”, IEEE Data Engineering Bulletin, 1997, 20:36-43.
[VLK98] Vivekanand Gopalkrishnan, Qing Li, Kamalakar Karlapalem, “Issues of Object-Relational View Design in Data

Warehousing Environment”, Proc. IEEE SMC Conference 1998, pp. 2732-2737.
[VLK99] Vivekanand Gopalkrishnan, Qing Li, Kamalakar Karlapalem, “Star/Snow-flake Schema Driven Object-Relational

Data Warehouse Design and Query Processing Strategies”, Proc. First International Conference on Data Warehousing
and Knowledge Discovery (DaWaK), LNCS 1676, Florence, Italy, 1999, pp. 11-22.

[VLK00a] Vivekanand Gopalkrishnan, Qing Li, Kamalakar Karlapalem, “Efficient Query Processing with Structural Join
Indexing in an Object Relational Data Warehousing Environment”, Proc. 11th Information Resources Management
Association International Conference (IRMA'00), Anchorage, Alaska, May 21-24, 2000 (to appear).

[VLK00b] Vivekanand Gopalkrishnan, Qing Li, Kamalakar Karlapalem, “Efficient Query Processing with Associated
Horizontal Class Partitioning in an Object Relational Data Warehousing Environment”, DMDW 2000, pp. 4-1 – 4-9.

[Won98] Wong Hing Kee, “Empirical Evaluation of Vertical Class Partitioning & Complex Object Retrieval in Object
Oriented Databases”, M.Phil. thesis, HKUST, 1998.

[YKL97] Jian Yang, Kamalakar Karlapalem, Qing Li, “Algorithms for Materialized View Design in Data Warehousing
Environment”, Proc. VLDB 1997, pp. 136-145.

Appendix
Table A. Query Parameters
fo = fan-out
R - reference (reverse links)
||Ci|| - cardinality

Reference (i→j) fo R ||Ci|| ||Cj||
Sales→Product 1 100 50M .5M
Sales→Customer 1 50 50M 1M
Sales→Teenager 1 250 50M .2M
Sales→Date 1 500 50M 36.5K
Prod→Category 1 10 .5M 1K
Product→Retailer 50 100 .5M 50K
Category→Type 100 5 1000 10
Retailer→City 1 4 50,K 12.5K
Customer→City 1 80 1M 12.5K
Year→Mon 12 1 10 120
Mon→Date 30 1 120 3.6K
Year→Date 365 1 10 3.6K
Country→State 25 1 10 250
State→City 5 1 250 1.2K
Country→City 125 1 10 1.2K

Table B. Selectivity (%).

Country = 'US' 50
Category = 'Elec' 30
Product = 'P1' 5
Product = 'P2' 5
Customer = 'Teen' 20

Copyright © SCS 2001 22 November 2001

	Introduction
	ORV framework
	An Iterative ORDW design methodology
	Paper contribution and organization

	Motivations and related work
	Motivations
	Related work

	Conceptual Design
	MQO hierarchy (MVPP)
	ORV schema derivation
	Translation Algorithm
	Resultant schema

	Logical & Physical Design
	Phase - 2 : Associated Horizontal Class Partitioning (AHCP)
	AHCP preliminaries
	AHCP cost model
	AHCP selection procedure

	Phase - 3: Indexing

	Sample evaluation and analysis
	Fragment retrieval cost
	Resultant schema

	Applications of ORDW framework
	Benefited applications

	Future work & conclusion
	References
	Appendix

