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Abstract 
The conventional star schema model of Data Warehouse (DW) has its limitations due 
to the nature of the relational data model. Firstly, this model cannot represent the 
semantics and operations of multi-dimensional data adequately. Due to the hidden 
semantics, it is difficult to efficiently address the problems of view design. Secondly, 
as we move up to higher levels of summary data (multiple complex aggregations), 
SQL queries do not portray the intuition needed to facilitate building and supporting 
efficient execution of complex queries on complex data. In light of these issues, we 
propose the Object-Relational View (ORV) design for DWs. Using Object-Oriented 
(O-O) methodology, we can explicitly represent the semantics and reuse view (class) 
definitions based on the generalization hierarchy (is-a) and the class composition 
hierarchies (cch), thereby resulting in a more efficient view mechanism. Part of the 
design involves providing a translation mechanism from the star/snowflake schema to 
an O-O representation. Associated Horizontal Class Partitioning (AHCP) technique 
can next be applied upon this O-O schema to further increase the efficiency of query 
execution by reducing irrelevant disk access. Several indexing methods can be 
implemented on this partitioned schema to facilitate complex object retrieval and to 
avoid using a sequence of expensive pointer chasing (or join) operations. Finally, we 
present the analytical results, based on a cost model we have developed, to 
demonstrate the effectiveness of our approach vis-a-vis the unpartitioned, pointer-
chasing approach. 
 
Keywords:  data warehouse design, object relational views, primary partitioning, 
associated horizontal partitioning, semantic query optimization. 

1. Introduction 
Data warehouse (DW) equips users with more effective decision support tools by integrating 
enterprise-wide corporate data into a single repository from which business end-users can run reports 
and perform ad hoc data analysis [CD97]. As DWs contain enormous amount of data, often from 
different sources, we need highly efficient Indexing structures [OQ97], [Sar97], [GHRU97], 
[VLK00a], materialized (stored) Views [Rou97], and query processing techniques [VLK99] to 
efficiently answer on-line analytical processing (OLAP) queries. Materialized Views represent 
integrated data based on complex aggregate queries, and should be available consistently and 
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instantaneously. Maintaining the integrity of these Indexes and Views imposes a challenging problem 
when the source data changes frequently, when the size of the DW keeps growing, and/or when the 
user queries become more and more complex [GM95], [MK99]. An extensible framework that can 
accommodate dynamic warehousing [Dayal99] of changing data gracefully, and have adaptive handles 
for processing OLAP queries efficiently is needed. 

1.1  ORV framework 

In [VLK98], we examined issues involved in developing the Object-Relational View (ORV) 
mechanism for the data warehouse. Here, OR means an object-oriented front-end or views to 
underlying relational data sources. So, the architecture and examples we provide follow our 
interpretation of OR. It must be noted though, that the merits of this proposal can be applied to views 
in Object-Relational Databases (ORDBs) [CMN97] also. The layered architecture of the ORV is as 
shown in figure 1. 
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Fig. 1. A Layered Architectural Framework 

In this framework, two models are captured; both have a multi layer architecture, consisting of 
wrapper/monitors, integrator and summarizing units. In the first model, relational - OO translation is 
done after database integration, hence the warehouse data is built on the underlying integrated 
framework. In the second model, we perform translation into the O-O model at the wrapper level, so 
that the canonical model for the integrated schema is the O-O model, offering more flexibility in 
dealing with diverse semantics of the underlying data [NS96]. 

The Complete Warehouse Schema (CWS) in both models contains Base classes (BWS) which include 
some directly mappable classes and some derived View classes (VWS) based on the OLAP queries. 
The CWS views can be implemented as partitions, indexes and aggregate views, as will be described 
in the next sections. Further more, views (Virtual classes) can be inherited from this CWS. These 
views may be partially or completely materialized. 
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1.2  An Iterative ORDW design methodology 

In [VLK98], we showed that besides establishing a semantically richer framework for multi-dimension 
hierarchies, the ORV model provides excellent support for complex object retrieval. Here we illustrate 
this iterative design methodology for the ORDW.  

 

Our view design methodology depends on the type and pattern of queries that access the DW 
frequently. By incorporating these access patterns, we can form an efficient framework for retrieving 
popular queries. Note though that as the queries change, the O-O schema may require changes in terms 
of partitioning and indexing, but the underlying schema is fairly dynamic because of embedded 
semantics, viz. nested containment relationships, references, is-a types, multi-valued objects & object 
identity. This implicit support of semantics also enables efficient traversal of multiple query paths 
along the same dimension hierarchy. For example in the Time dimension, multiple paths could be 
along the Week, Month & Season compositions. These are supported by the Class Composition 
Hierarchy (CCH) framework as shown in figure 2. 
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Fig. 2. The Time Hierarchy  Fig. 3. The ORV Design methodology 

 
As shown in figure 3, we illustrate our methodology in three phases. Phase 1 is the Conceptual level 
design, in which we translate the underlying schema from the snowflake schema model to the O-O 
model, using the Primary Query Set (PQS) which contains queries that are fairly stable and most 
frequently asked. Conceptual schema is generally static and does not reflect internal optimization, 
hence this phase is outside the refinement loop. The Logical & Physical design consisting of Phase-2 
(AHCP partitioning) & Phase-3 (indexing) are constructed based on the Secondary Query Set (SQS) 
containing the other queries that are less frequently asked but are still significant enough for 
optimization. These two phases are repeated until the ORV schema and indices are optimized. 
Aggregate Views could be further built on this refined schema and materialized if needed. These 
phases are explained in detail in the following sections. 

1.3  Paper contribution and organization 

In this paper, we present the Object Relational Data Warehousing (ORDW) methodology as an 
approach to address many of the issues associated with data warehouse schema design [VLK98]. 

To put our research in perspective, we review some related work in section 2 and briefly outline our 
previous work in the contexts of ORDW, Class Partitioning and Indexing on OODBs; we further 
motivate our study by presenting a sample DW schema and some OLAP query characteristics.  In 
section 3, we create basic sub-query expressions (out of PQS) and utilize a Multiple Query 
Optimization (MQO) approach to trigger our schema design processes. We further explain the 
Conceptual level design of the iterative ORDW design methodology, viz., translation from Star to OO 
schema and refinements. Section 4 deals with the Logical & Physical design aspects, which comprises 
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of obtaining an optimal AHCP partitioning scheme (4.1), and indexing schemes (4.2). In section 5, we 
provide a walkthrough of our design algorithms and performance analysis of our iterative 
methodology. Section 6 illustrates some innovative applications of the ORDW framework, viz. Multi-
fact aggregate queries, recursive OLAP, and parameterised queries. Finally we conclude in section 7, 
and briefly state our future work. 

2. Motivations and related work 
Here we provide a need for adopting a new methodology viz. Object Relational Data Warehousing. 
We motivate it by building on the very popular "Sales" Data Warehouse schema, and introduce 
complexities by means of normalising and range queries. Further, we state work done in the realm of 
logical and physical design, with encouraging results that justify this approach. 
2.1  Motivations 
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Fig. 4. A Sample Snowflake Schema  

Let us consider the sample snowflake schema for a Sales DW (taken from [CD97]), with one fact table 
and dimension tables representing Time, Product, Customer, and Address hierarchies, as shown in 
figure 4. As shown in table 4, OLAP queries could be posed on various predicates along a single 
hierarchy, as well as on predicates along multiple hierarchies. Summary tables could be defined along 
a predicate or set of predicates by separate fact tables and corresponding dimension table(s). These 
summary tables could be materialized depending on various materialization selection algorithms to 
improve querying cost. As seen in the figure, the dimension tables in the snowflake schema (along 
with schema for summary tables) are in a composition hierarchy. 

For the purpose of this paper, queries involving Nested Facts can be considered as sub-sets of inter-
Fact queries. They are distinguished by the presence of a semantic disjoint-ness between the Facts 
involved. It must be noted though that this disjoint-ness does not preclude the Facts from sharing the 
same component objects. A query processing scheme that is built on separate Facts will inadvertently 
need costly joins. This inefficiency is amplified for queries with low selectivity and high frequency. 
This calls for a need for a partitioning scheme that transcends Facts and is not restricted by the 
hierarchies mentioned. It must be noted that such a partitioning scheme may well be overlapping and 
hence will suffer due to storage space restrictions. 

For the example in the figure, some OLAP queries could be on the entire range of Sales and would 
need to access multiple dimensions for the commonly used Group By clauses. However, other queries 
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could also have a predicate range in place (such as "Categ=Elec" or "Country=US"). In such cases, the 
search space on the Fact "Sales" is reduced by a factor equal to the selectivity of the predicate. 
However, this does not help during query processing (normal unpartitioned case), as the entire Fact 
table is processed while searching for relevant tuples. Even in cases where indexes are built 
[VLK00a], the benefit could be reduced, as index creation takes up more time due to the enormity of 
the Fact. Further, as the OLAP queries involve multiple paths (multiple selections and group bys), the 
size of the Forward and Reverse Joins is dependent on the size of the Root (Fact). This calls for the 
need to partition the Fact according to the query characteristics [VLK00b]. 

On the other hand, indexing is definitely a complementary means (to class partitioning) for efficient 
query processing. As noted above, the dimension tables in the snowflake schema (along with schema 
for summary tables) are in a composition hierarchy, hence they can be naturally represented as an 
Object-Oriented schema. Therefore, querying costs (join) on complex predicates along this snowflake 
schema should be analogous to querying costs by pointer chasing mechanism in an O-O framework. 
From [FKL98], we see that the Structural Join Index Hierarchy (SJIH) mechanism is far superior to 
pointer chasing operations for Complex Object retrieval, especially in queries involving predicates 
from multiple paths. Experimental results [Won98], [VLK00a] conform to the analytical results of this 
cost model. It therefore makes sense to incorporate the semantic-rich SJIH into our ORDW framework 
[VLK00a]1, as an additional step to embed query semantics for efficient query processing (cf., Fig. 3). 

2.2  Related work 

Partitioning has been vastly researched in Relational and OO database systems. Excellent work has 
been done in Vertical Partitioning (VP) and Horizontal Partitioning (HP) in both systems, but the 
unique features of OO systems have made it possible to experiment with different variations such as 
Derived Horizontal Class Partitioning (DHCP) [BK98], Associated Horizontal Class Partitioning 
(AHCP), Path Partitioning (PP) and Method Induced Partitioning (MIP). [KL00] presents a 
comprehensive framework for devising partitioning schemes based on different types of methods and 
their classification. The issue of fragmentation transparency is addressed by considering appropriate 
method transformation techniques. While those methods were extremely successful in the transactional 
environment of an OODB, to the best of our knowledge, no work has been done in partitioning of an 
Object Relational DB. Our research in partitioning an Object Relational Data Warehouse (ORDW) 
[VLK00b] is the first work in this direction. 

Recently, we have conducted some preliminary studies on developing the ORDW framework. In 
[VLK98], we showed that the ORV (Object Relational View) model offers inherent features that are 
conducive to managing a data warehouse. We listed the various issues that arise during the design of 
an OR-DWMS (Object Relational Data Warehouse Management Systems). Here, OR means an object-
oriented front-end or views to underlying relational data sources. Based on the issues discussed in 
[VLK98], we articulated a three-phased design approach in [VLK99], which also provided a query-
driven translation mechanism from the star/snowflake schema to an object oriented (O-O) 
representation. Some query processing strategies utilizing Structural Join Index Hierarchy (SJIH) 
techniques for complex queries on composite objects were addressed in [VLK00a]. In this paper, we 
focus on the efficacy of class partitioning techniques in the context of our ORDW framework, for the 
purpose of semantic query optimization. 

3. Conceptual Design 
As seen in figure 3, the Conceptual level design of the iterative ORDW design methodology consists 
of Phase-1, i.e. the translation from Star schema to OO schema. Conceptual schema is generally static 
and does not reflect internal optimization, hence this phase is outside the refinement loop, which 
operates only on phases 2 and 3. The schema at the conceptual level should be immune to changes in 
query patterns and frequency. As mentioned in section 1.2, we use the Primary Query Set (PQS) as 
                                                      

1 In this paper we omit further coverage and evaluation of the SJIH indexing scheme on the ORDW, due to space 
limitations. The reader may refer to [VLK00] for further details. 
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input for the construction of the ORV schema (the translation phase). In order to implement this, we 
create atomic sub query expressions by utilizing a Multiple Query Optimization (MQO) approach. 
Assigning weights to the intermediate nodes based on frequency and degree of sharing of the query 
sub-expressions, we derive ORV schema from the snowflake schema. 

It must be noted here that as the queries change, the ORV schema may require changes in terms of 
partitioning and indexing, but the underlying schema is fairly static because of embedded semantics. 
This implicit support of semantics also enables efficient retrieval of multiple query paths along the 
same dimension hierarchy. 

3.1  MQO hierarchy (MVPP) 

To illustrate the derivation of our ORV schema, we assume the Primary Query Set (PQS) giving three 
sub-queries that have the highest frequency and degree of sharing that induce ORV schema range 
derivation: 

Q1 : Sales to Customers whose age is no more than 19 years (i.e. Teenager).  
Q2 : Sales to Customers whose age is at least 20 years old (i.e. Adult). 
Q3 : Sales to Customers whose age is more than 50 years, group by Product. 

selection
minus

LEGEND

Customer Sales Product

high weight
node

Q 1 Q 2 Q 3

σ
teenager adult

age>50σ

−

σ
−

join

Fig. 5. MQO on the Primary Query Set 

From this simple sub-query set, we create a sample MQO as shown in figure 5. The MQO is a DAG 
(Directed Acyclic Graph) from the ORDW classes to the sub-queries in PQS. Each node represents an 
operation (e.g., select, project, join), and is given weights according to the frequency of the queries 
accessing it and the degree by which it is shared. In the above queries, we see that pushing down the 
select operation on the age of Customer creates nodes for “adult” and “teenager” that are most 
frequently accessed and are thereby assigned higher weights. 

3.2  ORV schema derivation 

The fundamental star schema model consists of a single Fact Table (FT) and multiple Dimension 
Tables (DTs). This can be further sub-classed as snowflake (normalizing along DTs) and multi-star 
(normalizing along FTs) and combinations of multi-star & snowflake schema models. We illustrate 
our translation mechanism here on the single star / snowflake schema model. Note that a generic 
extension to include multi-star schema models can be easily derived due to advantages of the O-O 
model as stated in section 2. 

Star / Snowflake Schema 

A snowflake schema consists of a single Fact Table (FT) and multiple Dimension Tables (DT). Each 
tuple of the FT consists of a (foreign) key pointing to each of the DTs that provide its 
multidimensional coordinates. It also stores numerical values (non-dimensional attributes, and results 
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of statistical functions) for those coordinates. The DTs consist of columns that correspond to attributes 
of the dimension. DTs in a star schema are denormalized, while those in snowflake schema are 
normalized giving a Dimension Hierarchy. A generalized view of the snowflake schema is presented 
in figure 6. 
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Fig. 6. Generalized view of snowflake schema Fig. 7. Corresponding O-O schema 

Preliminaries 

Every tuple in the FT consists of the fact or subject of interest, and the dimensions that provide that 
fact. So each tuple in the FT corresponds to one and only one tuple in each DT, whereas one tuple in a 
DT may correspond to more than one tuple in the FT. So we have a 1:N relationship between FT : 
DTs. 

Let the snowflake schema be denoted as SS. 

No. of FT  =  1; No. of DT  = x. 

We denote the relations between the FT and DTs as: 

Rel (FT, DTi) = Ri 

1 ≤ i ≤ x ; where x is the no. of DTs 

Let the Relations between DTs in a dimension hierarchy be denoted as: 

Rel (DTi
r, DTi

r+1)  =  Ri
r 

0 ≤ r ≤ m ; 

where m is the no. of relations in the hierarchy under DTi. 

and DTi
0

 =  DTi 

Table 1. Elements of the Fact Table (FT)                 Table 2. Elements of the Dimension Table (DTi) 

{Dik} set of Dimension keys, each 
corresponding to a Dimension Table 
(DT). 1 ≤ i ≤ x ; where x is the no. of 
DTs 

 Dik Index of the DT 

{mj} set of member attributes. 
0 ≤ j ≤ y ; where y is the no. of 
attributes 

 {aj} Set of member attributes.  
0 ≤ j ≤ n ; where n is the no. of 
attributes. 

{fs} set of results of statistical functions. 
1 ≤ s ≤ z ; where z is the no. of 

 {Rirk} set of keys of relations that form 
its Dimension Hierarchy. 
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function results. 0 ≤ r ≤ m ; where m is the no. of 
relations in the hierarchy under 
DTi 

 

3.2.1  Translation Algorithm 
Our methodology intends to capture the hidden semantics behind a DW schema design, by 
incorporating the star / snowflake schema information with the query type and pattern information. 
Frequent Data warehousing queries can be thought of being decomposed and categorized into the 
following form: 

Q → { Qn ∪ Qr } 

where Qn is the set of sub-queries that leads to normalising the schema, and Qr is the set of sub-queries 
(from the MQO hierarchy) that act on a range of the schema, with the highest weights (cf. figure 5). 

Based on this classification, we can refine the resultant schema in two complementary ways: 
Refinement-1, involving normalising sub-queries Qn, and Refinement-2, involving range sub-queries 
Qr. 

Refinement 1 - normalising 

In the ORDW environment, normalising can be regarded as a technique for refining the ORDW 
schema through utilizing the query semantics to generate a finer class composition hierarchy of any 
class. The refinement can be accomplished in a step-by-step manner, as shown below. 
We note that in terms of predicates accessed in the DTs, queries of type Qn can be defined as  

Qn → ( DTir. {aj } ) where {aj}is a set of attributes of DTi
r. 

Step N1. For the Fact Table FT in the snowflake schema, create a class C0 in the O-O schema. 
Create Co 

Step N2. For each Dimension Table DTi in the snowflake schema, create a class Ci in the O-O schema. 

∀ DTi Create Ci 
Step N3. For each relation Ri in the snowflake schema, create a pointer to OID, pOIDi  in class C0 in 
the O-O schema. 

∀ Ri  Create C0 . pOIDi  = OID(Ci) 
Step N4. For each member attribute mj in FT in the snowflake schema, create an attribute mj in class 
C0 in the O-O schema. 

∀ mj in FT Create C0 . mj 
Step N5. For each result-value attribute fs in FT in the snowflake schema, create an attribute fs in class 
C0 in the O-O schema. 

∀ fs in FT Create C0 . fs 
Step N6. For each relation Ri

r in the snowflake schema, create a class Ci
r in the O-O schema. 

∀ Ri
r Create Ci

r
 

Step N7. For each member attribute aj in DTi
r in the snowflake schema, create an attribute aj in class Ci 

in the O-O schema. 

∀ i(∀r DTir. aj Create Ci. aj ) 
Step N8. For each relation Ri

r in the snowflake schema, create a pointer to OID, pOIDi
r in class Ci in 

the O-O schema. 

This is a recursive step, as it navigates through the dimension hierarchy. The relations between the 
various nodes of the DT are explicitly captured, so steps 6-7 can be repeated in the hierarchy loop. 

∀ Rirk Create Cir . pOIDir  = OID(Cir) 
Step N9. For each Query Qi in Qn, which accesses a set of {aj} belonging to a DT in Di, vertically 
partition the corresponding class Ci in the O-O schema. 
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∀ Qi (∀d DTn. {aj} Create Cnj ← Cn) 
Refinement 2 - range derivation 

In terms of values of predicates accessed in the DTs, queries of type Qr, can be defined as 

Qr → ( DTir. aj . {vk } ) where vk  is a set of values of attribute aj of DTi
r. 

Step R1. For each Sub-Query Qi in Qr, which accesses a record containing a range of values {vk} for 
attribute aj belonging to a DT in Di, derive the range of corresponding class Ci in the O-O schema. 

∀ Qi (∀d DTd. aj . {vk }  Create Cdjk :: Cd) 

This forms the primary is-a hierarchy of the O-O schema. Here, the classes mapping to the DTs are 
divided into range groups according to the queries acting on them. This range derivation ensures that 
specific subsets of classes are available while maintaining a high degree of reusability. As seen in 
figure 7, the generalized view of the O-O schema is similar to that of the snowflake schema. The class 
corresponding to FT is C0 . 

3.2.2  Resultant schema 

Product

Sales

City Customer

State

Product Retailer

Category

Country

Address Time

Type

Order

Date

Month

Year

Season

Week

QuarterAdultTeenager

Customer

 
Fig. 8. The OO Schema. 

The figure shows the class composition hierarchy for the Time dimension after refinement 1, and the is-a 
hierarchy (shaded area) for the Customer dimension after refinement 2. 

Figure 8 (without the shaded area) shows the translated O-O schema for the Sales example taken in 
previous sections, which is generated by tracing the steps of the above algorithm step-by-step: Note 
that this hierarchy is not a mere mapping of FTs and DTs from the snowflake schema. The classes 
mapping to the DTs are further vertically partitioned according to the queries acting on them. For an 
example of multiple paths within a single dimension hierarchy, let us consider the Time (Date) 
hierarchy. If the queries access Date by multiple paths like Day_of_Week, or Day_of_Month or 
Week_of_Quarter, they must be supported within the same path, instead of having to access disjoint 
entities (classes). 

4. Logical & Physical Design 
As seen in figure 3, the Logical & Physical level design of the iterative ORDW design methodology 
consists of Phase-2, i.e. enhancing the ORV schema (VWS) with query-driven Associated Partitioning 
and Phase-3, i.e. creating indexing mechanisms on the Complete Warehouse Schema (CWS). These 
two phases are repeated until the ORV schema and indices are optimized, as shown in the refinement 
iteration loop (cf. figure 3). Aggregate Views could be further built on this refined schema and 
materialized if needed. This design level is influenced by the Secondary Query Set (SQS) containing 
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the queries that are less frequently asked (as compared with PQS), but are still significant enough for 
optimization. 

Based on classifications by DW operations & by OO concepts, we consider the following queries 
listed in Table 3 as our sample SQS for subsequent discussions. 

Table 4. Sample OLAP queries - SQS 

No. Query Query type 
Q1 Sales by Prod by State in US Only along cch (pivot) 
Q2 Sales by Prod by State by Year in US -> Drill-down 
Q3 Sales by Prod for Categ=Elec -> Roll-up 
Q4 Sales by Prod by City for Categ=Elec Only along cch, Drill-down 
Q5 Sales by Prod by Country for Categ=Elec Only along cch, Roll-up 
Q6 Sales by Prod to Teenagers by State for Categ=Elec & 

in US 
Only along cch, Slice_and_dice 

Q7 Sales of Prod 1 compared with Sales of Prod 2 to 
Teenagers for Categ=Elec 

Only along cch, Drill-down, 
Slice_and_dice 

Q8 % increase in Sales to Teenagers over Sales to Adults, 
of Prod 1 / 2 for Categ=Elec & in US 

Combination of is-a & cch, 
Drill-down, Slice_and_dice 

 
4.1  Phase - 2 : Associated Horizontal Class Partitioning (AHCP) 

The Associated Horizontal Class Partitioning (AHCP) methodology creates semantic-rich hybrid class 
partitions for efficient query processing. It is a technique by which several classes can be partitioned 
according to the semantics of another class in its aggregation hierarchy. We employ the AHCP on our 
ORDW schema, and propose to extend its applicability from class composition hierarchies to also 
include is-a hierarchies and links quantified by partial participation, thereby encompassing the 
Complete Warehouse Schema (CWS) in the ORDW. 

4.1.1  AHCP preliminaries 
The total cost of the AHCP framework can be broadly categorized as partition storage cost, partition 
retrieval cost and partition maintenance cost. In this paper, we also incorporate query-centric 
information including selectivity and frequency to determine the selection of minimal complete set of 
partition fragments for optimal storage, maintenance and retrieval costs. 

Primary Horizontal Partitions (PHP) : 

Classes in the ORDW schema can be denoted as Ci
p, indicating the i th class in the p th path. The root 

class (FC) is denoted as C0. Primary Horizontal Partitions on these classes can be denoted as sub-
classes and placed in the is-a hierarchy under the original partitioned class. Note that the (sub) is-a 
hierarchy in our examples is denoted by the subscript i.j , denoting the j th sub-class of the i th class (in 
the p th path). The Primary Horizontal Partitioning (PHP) operation can be denoted as:  

PHP(Cip )p1 → { Ci.1p , Ci.2p ,..., Ci.np } 

where (Ci
p ) is the Class that is Primary Horizontally Partitioned according to a predicate (p1), 

resulting in n fragments which are treated as classes {Ci.n
p}. Note however, that since FC is the only 

root in the realm of our OLAP query sets, any primary partition of the root need not display the path 
suffix; i.e. (C0.1

0 = C0.1). 

The example in figure 9 shows classes C0, C2
1 and C1

2 in the class composition hierarchy (CCH). 
Some of the PHPs are { C21.1

2 , C21.2
2 and C21.3

2 }, connected by dashed lines (is-a) to the super-class 
C1

2 which was partitioned. 

As the PHPs can be considered as subclasses of the class on which the PHP were performed, they are 
placed in the is-a hierarchy of the schema. We can have any no. of PHPs on a single class based on a 
number of predicates. For a single simple predicate, the PHPs are disjoint, i.e. they do not share any 

Copyright © SCS 2001 10 November 2001 



Semantic Query Optimization … IJIT vol. 7, No. 2 

objects. PHP schemes based on multiple or complex predicates on the same class, may induce 
overlapping fragments, however we do not consider such schemes in this work to avoid complexity. 

Associated Horizontal Class Partitions (AHCP) : 

C0

C1.2
2

C1
2 C1

3C1
1

C2
3C2

1

C1.1
2 C1.3

2

Is-a

CCH

LEGEND

C2.1
1 C2.2

1

C0.21
1 C0.22

1

C0.11
2 C0.12

2 C0.13
2

C0.1
0 C0.2

0

C3
2.21

1 C3
2.22

1

Ci.j
p AHCP

Fragment
ation Join

Fig. 9. An AHCP example on the Fact and Dimension Classes 

After the PHPs are created, the AHCP operation may be performed on some other classes in the 
schema. As noted above, most queries in the SQS access the root (FC) for its value based attributes, 
and hence this paper deals primarily with AHCP of the root class. The AHCP operation can be 
denoted as follows: 

AHCP (Cjq, PHP(Cip )p1 ) → { Cqj.i1p , Cqj.i2p ,..., Cqj.imp } and 

where (Cj
q ) is the Class that is Associate Horizontally Class Partitioned (AHCP) according to the PHP 

on class Cip, resulting in m fragments which are treated as classes { Cqj.imp }. Here again since FC is 
the only root in the realm of our OLAP SQSs, any AHCP of the root need not display the path suffix; 
i.e. (C0

0.11
2 = C0.11

2). 

As seen in the figure, the examples indicate that two sets of AHCPs are created from the root C0. They 
can be created by: 

AHCP (C0, PHP(C12 )p1 ) → { C0.112 , C0.122 , C0.132 } and 

AHCP (C0, PHP(C21 )p1 ) → { C0.211 , C0.221 } 

These partition fragments are denoted as subclasses in the figure by means of the shaded boxes to 
indicate Associate Partitioning. 

The AHCP operation can also be preformed on classes other than the root, i.e. the Dimension Classes. 
For example, as seen in the figure, C2

3can be AHCPed based on the PHPs of C2
1. 

 

AHCP (C23, PHP(C21 )p1 ) → { C3.211 , C3.221 } 

The result is also shown in shaded boxes under C2
3 in the figure. 
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An important point to be noted here is that while the Fragments obtained by any single AHCP 
operation on the root are always disjoint, the same cannot be said about Fragments obtained by AHCP 
on any other (Dimension) class. This indicates the storage overhead to be incurred while performing 
AHCPs on the Dimension classes, and must be taken into account by the cost model. 

4.1.2  AHCP cost model 
In an ORDW, partitioning can be implemented by means of Method Induced Partitioning techniques 
[KL98]. Moreover due to the structural and cardinal differences inherent between Dimension Classes 
(DC) and the Fact Class (FC), we can assume that the DCs need not be physically partitioned as they 
may be wholly or partially stored in memory (under both medium and large memory hypothesis). 
Hence the cost of the traditional join between the PHP fragments and the AHCP fragments can be 
ignored. This join can be achieved by employing the methods of the FC. 

Storage Cost : 

The Storage cost (SC) has two components: Primary Horizontal Partition (PHP), and the Associated 
Horizontal Class Partition (AHCP). It can be stated as: 
SC = SCPHP + SCAHCP 

They are given as follows: 

1. SCPHP (C1) : 

We assume that in most cases, and especially in this paper, we consider only one PHP per class. This 
ensures that the partitions are disjoint for simple predicates. In such cases, there is negligible overhead 
for storage cost as SCPHP (C1) = | C1 | (no. of pages occupied by the class C1 + catalog entries for the 
no. of PHPs of C1). These catalog entries give details of the partitioned Class structure, extent and 
qualifying rules. Hence they are very small and can easily be accommodated in memory (in both the 
medium and large memory hypothesis). 

In case of multiple complex predicates on a Dimension (C1), resulting in overlapping fragments, we 
propose not to replicate the entire class extent, but rather only replicate the Class OIDs (and some 
frequently accessed attributes) in the separate Partitions. 

In this case the storage overhead can be estimated as: 
SCPHP(C1) =  || C1 || x NoAttr x (sizeof(Attr)) x NoPHP 

where NoAttr = No. of Attributes replicated.  

where NoPHP = No. of Partition schemes.  

Given a maximum of 2 replicated attributes or 20% of the class structure, and a uniform size of 
attributes, we can accommodate upto 5 different Partitioning schemes for an increase of 100% in 
SCPHP (C1). 

2. SCAHCP (C0) : 

This is by far the biggest increment for storage cost in the AHCP ORDW. As noted above, the root 
(C0) would be the widely used as the candidate for performing AHCP. Since any predicate on a single 
dimension can only induce disjoint partitions in the root, the partitioning overhead is negligible for 
multiple partitioning schemes in a single DC. 
SCAHCP (C0) = | C0 | + NoPHP x SizeCat(PHPi). 

where SizeCat = Catalog entry size (structure, extent, qualifying rules). 

But as we incorporate multiple predicates on different dimension classes, SCAHCP (C0) grows linearly 
as the no. of dimensions (assuming only single complex predicates on each dimension). This can be a 
large overhead, as C0 as the FC, is very large (~order of Gigabytes). 

Hence we intend to reduce this overhead by means of a Multiple Partition Processing Plan (MP3), 
based on MVPP [YKL97]. This would entail a compromise between duplication and efficiency of the 
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partitions, as sub-fragments will have to be created to support the AHCPs. The Join needed to produce 
the final result from these sub-fragments constitutes the increase in retrieval cost. 

Maintenance cost : 

As noted above, since inter-fragment join is avoided between the PHP and AHCP fragments, 
maintenance cost is considerably simplified due to the AHCP operation. 

As the ORDW is a read_mostly and append_only environment, we can safely estimate the 
maintenance cost even though the schema is vastly enhanced (and complicated) by semantics. For 
example, once the Warehouse has achieved full functionality, in each update cycle of the ORDW, we 
can expect upto 0.5% addition of the FC (this is a very conservative estimate based on our same DW, 
maintaining 10 years worth of "Sales" data and updated daily). The updates to DCs can be ignored 
mainly because their percentage will be even smaller and also because most of the DCs will be in 
memory anyway. Only these 0.5% FC objects have to be processed in order to maintain the 
Partitioning scheme. 

The Maintenance cost for the AHCP partitioning scheme (MC) can be defined as the extra cost of 
maintaining the AHCPs and the PHPs catalogs. 
MC = MCCat(AHCPi) + MCCat(PHPi) 

Since MCCat(PHPi) is negligible as the PHPs are in memory, the main cost is on the AHCP 
maintenance, which is comprised of maintaining catalog entries of the AHCP, Generally this meta-
information is small enough to be stored completely in memory. 

Retrieval cost : 

To determine retrieval cost, we break up the complex queries into smaller atomic sub-query 
expressions. We denote this by means of a MQO (Multiple Query Optimization) graph in the MP3, 
which is further explained in section 3.3. 

The Retrieval Cost (RC) is the cost of parsing the catalog, accessing the relevant AHCPs (as union) 
and the cost of the join with corresponding PHPs. 
RC = RCCat + RCAHCP + RCPHP + RCjoin 

However, as we store the PHPs and the join in memory, and the Catalog is relatively small, RC is 
mainly composed of AHCP loading cost. Since this is smaller than the complete FC by a factor of min 
(selpi), where selpi indicates the selectivity of the predicates on query Qi , we achieve a considerable 
savings in retrieval cost. 

This saving is also obtained when indexing schemes like the SJIH [VLK00a] are built on top of the 
AHCPs, and also when aggregate views have to be developed. 

4.1.3  AHCP selection procedure 
We approach the problem of performing AHCP in the ORDW in a different manner from the case of 
DHCP in a normal OODB [BKS98]. IN [BKS98], various techniques (candidates) were considered to 
decide the best PHP candidate for performing DHCP. Here we consider all the PHP candidates, and 
our AHCP algorithm generates an optimal combination of complete and minimal set of AHCPs. 

AHCP Algorithm (also called MP3 algorithm) 

The algorithm can be broken into three parts: 

1. Generating an exhaustive set of AHCPs based on query characteristics (selectivity, fan-out) 
obtained from the entire query space. 

1.1 For each query Qi in the SQS, generate logical associated fragments {C0.j
p} from {Cj

p}, that 
satisfy sub-expressions of Qi completely. 
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1.2 Perform an intersection of the C0.j
p fragments for all Qi . This creates the complete disjoint 

AHCP set, on which the queries will be based. 

2. Assigning query weights depending on priority and importance (frequency). 

2.1 For each query Qi , evaluate the minimal set of query processing fragments : QPFi = { C0.j1
p1 

, C0.j2
p2 , … , C0.jm

pm } 

2.2 Create query plans for each Qi having nodes involving unions of fragments that exist in 
multiple QPFi . 

2.3 Assign cumulative weights to the nodes depending on their utility to consecutive Qi (based 
on frequency and cardinality). 

3. Selecting a minimal complete set of AHCPs based on the query weights, subject to storage and 
maintenance cost. This part is similar to the Algorithm for selecting views to be materialized given 
in MVPP [YKL97]. 

3.1 For each Qi , perform top-down evaluation of nodes in its query plan. 

3.2 Select lower nodes (breakup) if the retrieval cost is lesser. 
 

Figure 10 shows examples of AHCPs (AHCP-1, AHCP-2) and PHPs (PHP-1) on the Fact Class (C0). 
These fragments are then merged by intersecting them and obtaining a complete disjoint set of 
Partitions. It must be noted that this is obtained from the query characteristics, and are very 
exhaustive. Due to this reason, it may not be feasible to materialize them all, and hence the MP3 is 
used to determine which fragments should be materialized and which should be kept virtual [VLK98]. 
The cost model is based on the MVPP [YKL97], and incorporates SC and MC besides RC. As shown 
in the figure, the shaded classes are materialized. 
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Fig. 10. Multiple Partition Processing Plan (MP3). 

 

4.2  Phase - 3: Indexing 

Though not a direct topic of this paper, we have incorporated the indexing scheme as part of our 
ORDW design methodology due to its complementary nature to partitioning. In particular, several 
indexing methods as illustrated in [OQ97], [Sar97], can be implemented on the partitioned ORV 
schema to facilitate complex object retrieval and to avoid using a sequence of expensive pointer 
chasing (join) operations. As shown in [VLK00a], a query-driven indexing approach based on the 
structural join index hierarchy (SJIH) mechanism [FKL98] can be very effectively devised, which can 
demonstrate a tremendous efficiency over plain pointer chasing approach. We omit further coverage 
and evaluation of the SJIH indexing scheme in this paper due to space limitation; further details can be 
found from [VLK00a]. 

5. Sample evaluation and analysis 
In this section, we analyze the fragment retrieval cost for processing queries in SQS using AHCP. A 
comparison of the results with that of plain query processing approach using pointer chasing is then 
conducted. 

5.1  Fragment retrieval cost 

In order to evaluate the AHCP methodology, we use the sample ORDW schema and queries as 
detailed in section 4. Here we note that there are 8 eight queries in the SQS, and we assume them all to 
be of equal importance. 
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Running our example through the algorithm given in section 4.1.3 : 

Step 1.1 : For each query Qi in the SQS, generate logical associated fragments {C0.j
p} from {Cj

p} that 
satisfy sub-expressions of Qi completely. 

We see that there are 4 main predicates, by which the Dimensions are partitioned, 

viz. p1 : "Country = US", p2a : "Customer = Teen " ,  p2b : "Customer = Adult", p3a : "Product = P1 
", p3b : "Product = P2", and p4 : "Categ = Elec". Performing the AHCP function wrt. these PHPs as 
shown in section 3.1, we arrive at an exhaustive set of AHCPs of the Sales Class (FC). 

Step 1.2 : Perform an intersection of the C0.j
p fragments for all Qi . 

Consequently, by intersection, we see that a complete set of 16 different AHCPs of the FC (Sales) can 
be created based on these 4 predicates, encompassing all possible and non-empty fragments: 

F1 p1 ^ p2a ^ p3a ^ p4 F9 !p1 ^ p2a ^ p3a ^ p4 

F2 p1 ^ p2a ^ p3b ^ p4 F10 !p1 ^ p2a ^ p3b ^ p4 

F3 p1 ^ p2a ^ !p3a ^ !p3a ^ p4 F11 !p1 ^ p2a ^ !p3a ^ !p3a ^ p4 

F4 p1 ^ p3a ^ !p4 F12 !p1 ^ p3a ^ !p4 

F5 p1 ^ p2a ^ p3a ^ p4 F13 !p1 ^ p2a ^ p3a ^ p4 

F6 p1 ^ p2a ^ p3b ^ p4 F14 !p1 ^ p2a ^ p3b ^ p4 

F7 p1 ^ p2a ^ !p3a ^ !p3a ^ p4 F15 !p1 ^ p2a ^ !p3a ^ !p3a ^ p4 

F8 p1 ^ p3a ^ !p4 F16 !p1 ^ p3a ^ !p4 

Step 2.1: For each query Qi of the SQS, evaluate the minimal set of query processing fragments. 

The query processing fragments (QPF ) are shown in the following table: 

QPF1 , QPF2 F1, F2, F3, F4, F5, F6, F7, F8 
QPF3 , QPF4, QPF5 F1, F2, F3, F4, F5, F6, F7, F9, F10, F11, F13, 

F14, F15 
QPF6 F1, F2, F3 
QPF7 F1, F2, F9, F10 
QPF8 F1, F2, F5, F6 

 

Step 2.2 : Create query plans for each Qi having nodes involving unions of fragments which exist in 
multiple QPFi . 

The intermediate nodes are created by a combination of fragments noting their affinity in the QPFs. 
For the sake of completeness, we also create un-accessed nodes, for example, N12 (F12 U F16), 
though these fragments are not accessed by any query in the SQS. 

Node Definition Node Definition 
N1 F1 U F2 N7 N2 U N6 U N9 
N2 N1 U F3 N8 F9 U F10 
N3 F5 U F6 N9 N1 U N8 
N4 N2 U N3 N10 F11 U F13 U F14 U F15 
N5 N3 U F7 N11 N5 U N8 U N10 
N6 N5 U F4 U F8 N12 F12 U F16 

 

Step 2.3 : Assign cumulative weights to the nodes depending on their utility to consecutive Qi (based 
on frequency and cardinality). 

 For each of the queries Qi, we know the optimal query processing plan opi , which is an 
ordered list of nodes and fragments. We also know the frequency (fqi) of each query, and the 
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selectivity (selpj of the clause that its (sub-query) is based on. Depending on those parameters, we give 
weights to the nodes in the opi of each query. 

For example, in processing for Q1, we have: 

<op1> = <N7, N6, N2, N9, N3, N5, N8, N1, F1, F2, F4, F5, F6, F7, F8, F9, F10> 

∴ the weights for all these nodes (and fragments) is f1 * sel1 . 

Processing for Q6, we have: 

<op6> = <N2, N1, F1, F2, F3> 

∴ the weights for all these nodes (and fragments) is f6 * sel6 . 

.. and so on. 

For simplification, we consider equal frequencies and 100% selectivity in the fragments; hence at the 
end of this step, we have weights: 

Frag Weight Frag Weight Node Weight Node Weight 
F1 4 F9 3 N1 4 N7 1 
F2 4 F10 3 N2 2 N8 3 
F3 2 F11 1 N3 3 N9 2 
F4 1 F12 0 N4 1 N10 1 
F5 3 F13 1 N5 2 N11 1 
F6 3 F14 1 N6 1 N12 0 

F7 1 F15 1 
F8 1 F16 0 

 

Step 3.1 : For each Qi , perform top-down evaluation of nodes in its query plan. 

 As the <opi> are ordered (tree structured), for each Qi, we can traverse the list in a top-down 
manner. Initially all top -level nodes can be considered marked for materialization. 

Step 3.2 : Select lower nodes (breakup) if the retrieval cost is lesser. 

 This is a recursive step, in which the node is unmarked (for materialization) if any node under 
it has a weight higher than itself. In that case the lower nodes are considered marked for 
materialization, and the process is repeated with them. 

For example, processing for Q8, we mark N4 as it is the first node: 
but the weights are : N4 : 1, N2 : 2, N3 : 3. 
hence N4 is discarded for N2 and N3. 

Now N2 : 2, N1 : 4, F3 : 2. 

So N2 is discarded for N1 and F3. 
.. and so on. 

Repeating this process for all the queries, the following nodes are materialized: 
F3, F4, F7, F8, N1, N3, N8, N10. 

This is our optimal minimal AHCP set. 

Comparing HCF retrieval cost with pointer traversal cost 

In this section, we evaluate our AHCP scheme for its performance gain over the un-partitioned case 
during query retrieval. As noted in the previous section, we have derived an optimal complete minimal 
AHCP set of the Sales FC. 

The DCs and associated joins are in memory and evaluating a query branch dealing with them would 
involve CPU cost. This is ignored here, as the disk i/o cost is the major component of response time in 
most query retrieval costs. 
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The following study shows disk i/o cost ratios for varying relative frequencies of queries in the SQS. 

cost ratio (CR) =  cost of disk i/o for unpartitioned case 

      cost of disk i/o after AHCP 

The query frequencies are varied from 10% to 90%. As these are relative frequencies, it must be noted 
that the frequencies of the other queries in SQS are modified equally in each case. The parameters for 
the study are stated in the Appendix. 

Observations 
 

Relative frequency 10% 30% 50% 70% 90% 
Q1 0.05 0.15 0.25 0.35 0.45 
Q2 0.05 0.15 0.25 0.35 0.45 
Q3 0.03 0.09 0.15 0.21 0.27 
Q4 0.03 0.09 0.15 0.21 0.27 
Q5 0.03 0.09 0.15 0.21 0.27 
Q6 0.02 0.06 0.1 0.14 0.18 
Q7 0.01 0.03 0.05 0.07 0.09 
Q8 0.01 0.03 0.05 0.07 0.09 

 
As can be seen from the above table, there is always a minimum gain obtained when the ORDW is 
partitioned; the range of the gain varies from 1% to 50% in this case study. 

Note that the above results appear to exhibit a linear relation between the selectivity of the query and 
the cost gain obtained from the AHCP operation. However this should be interpreted only as the best-
case scenario, because in real-world cases some level of data replication is expected which can cause 
redundant data access. This may lead to higher cost for the partitioned case than what this example 
indicates, although the difference will not be too significant. 
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5.2  Resultant schema 
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Fig. 11. The OO Schema. 

The figure shows the MP3 algorithm's partial results (for queries Q6, Q7, Q8 only). 

Figure 11 shows the O-O schema for the Sales example, which is generated by tracing the steps of the 
MP3 algorithm step-by-step, for queries Q6, Q7 and Q8. Due to the exhaustive nature of the algorithm, 
it is not possible to depict all internal nodes and fragments obtained in the intermediate steps, hence 
only these three queries are selected without loss in generality. This schema shows PHPs on the DCs 
(Category, Customer and Country), while Sales (FC) is Associate Horizontally Class Partitioned. Step 
1, shows first level AHCPs of Sales, viz. Salescateg=elec, Salescountry=US, etc. The fragmentation links 
between PHPs and the corresponding AHCPs are also shown. Now in the next two steps of the 
algorithm, the intermediate nodes are created, and weighted according to selectivity and degree of 
sharing. As indicated in the above figure, three intermediate nodes are materialized for queries Q6, Q7 
and Q8. 

6. Applications of ORDW framework 
Current research work on data warehouses has only focused on Single Fact schemas. Moreover, most 
work is concentrated in SPJ queries, some on queries with Aggregates, and very little on aggregates in 
the presence of hierarchies. To the best of our knowledge, no work has been done in recursive queries, 
or in true Multi-Fact queries, i.e. involving multiple Measures. In this paper we have presented a 
methodology towards efficient query processing in an object-relational data warehousing (ORDW) 
environment, through devising and incorporating Associated Horizontal Class Partitioning (AHCP) 
techniques over the ORDW schema. Our methodology starts with a given set of data warehouse 
queries, comes up with a near-optimal AHCP scheme for the queries, and selects AHCP fragments as 
materialized views to facilitate efficient evaluation of these queries. Through an initial analytical 
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study, we are already able to demonstrate the gains of our approach vis-a-vis the unpartitioned 
approach in terms of disk i/o in the ORDW environment. 

The query space on DWs can be shown as in Figure 12: 
Recursive Aggregate Views Parameterized Aggregate Views 

    |      |  | | | 
    |  Aggregate Views | | 
    |  |      | | | 
    |      |  SPJ Views | 
    |      |  | | | 
    |      |      | | | 

Multi – Fact         :       Star /  Snowflake schema 

Figure 12. ORDW inter-cube/view relationships 

1.1 Benefited applications 

Based on the query characteristics, we present some new and innovative applications that benefit from 
our ORDW methodology. Specifically, these applications arise out of queries that are complex, 
hierarchical, or ad-hoc. 

Multi-Fact queries 

Consider the following multi-Fact OLAP queries that are based on two distinct facts FT1 and FT2 

FT1 ( Product, Supplier, Date, Sales ) 

FT2 ( Category, Region, Excise_Duty ) 

DT1 (Product, Category, Type) 

Product ( Name, Size, Colour, Weight, …) 

Q1 : (Product_by_Size, Month, ΣSales) 

Q2 : (Category, State, %of Duty) 

A multi-fact OLAP query is one that has to be resolved by one or more Views, whose schema 
definition includes Dimensions from more than one Fact. This also implies that the Measure of interest 
may involve attributes from the multiple FTi 's. 

Recursive OLAP queries 

Consider a Census Data Warehouse whose typical applications include birth control, health/ hygiene 
advertising, forecasting or target marketing would involve aggregate queries on entire family trees. For 
example, the DW stores Personal details such as Parents, Siblings, Address, Salary, Tax paid, etc. 
Now, a hierarchical query, which needs to recursively navigate the Parent attribute, could be of great 
interest in determining a Measure (say, Salary earned) over generations of different ethnic groups 
determined by family ties. 

Such a nested recursive query is extremely difficulty (and virtually impossible) to achieve with 
standard SQL, and would involve redundant temporary storage structures, and call for "external" 
routines (e.g., stored procedures and/or embedded approach). Whereas in an OODW, we can easily 
formulate a recursive query based on the expressive power of, e.g., OQL [Cat94]. 

Ad-hoc (parameterised) queries 

Furthermore, there is also Ad-hoc Query, which need to be evaluated efficiently:  

Q3 : Get ΣSales of Large Products whose %of Duty > p% in Eastern States 

In this case the Ad-hoc query also needs to access both Facts. In the ORDW, this query can be 
answered by Oids assigned to the cells of materialised views V1 & V2, and with a navigation of the 
Category→Product hierarchy. The Ad-hoc query is based on (selectivities of) distinct Measures 
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present in two (or more) Facts, and correspondingly two (or more) Cubes. Hence determination / 
computation of the ad-hoc query cannot be done by a single Cube. It is also impossible with a join of 
the two Cubes (in Relational sense using Views), because each cell in Q1 is based on a range of 
Products that overlaps with the range of Products (Category) along cells in Q2. Since this query is 
parameterised, i.e. the user (analyst) can specify different values for “p”, materialisation has to be 
optimised, and view-sharing strategies have to be decided at run-time. 

7. Future work & conclusion 
In this paper we have presented a methodology towards efficient query processing in an object-
relational data warehousing (ORDW) environment, through devising and incorporating Associated 
Horizontal Class Partitioning (AHCP) techniques over the ORDW schema. Our methodology starts 
with a given set of data warehouse queries, comes up with a near-optimal AHCP scheme for the 
queries, and selects AHCP fragments as materialized views to facilitate efficient evaluation of these 
queries. Through an initial analytical study, we are already able to demonstrate the gains of our 
approach vis-a-vis the unpartitioned approach in terms of disk I/O in the ORDW environment.  

Note that the work we have described in this paper (hence the result obtained) should be only regarded 
as an intermediate stage towards efficient ORDW query processing; further advanced techniques and 
mechanisms should and can be naturally added. In particular, an adaptive and extensible indexing 
framework is currently being developed, so as to better accommodate the requirements of dynamic 
data warehousing [Dayal99] which demands the incorporation of more semantics into the data 
warehouse schemata. As shown in [VLK00a], a query-driven indexing mechanism built on the SJIH 
(structural join index hierarchy) [FKL98] seems to be very effective, and is supplementary to the 
AHCP work on materialised views [VLK00b]. We are extending the ORDW framework to include the 
notion of an Object Cube, where the Cube or aggregated view in the presence of dimensions, is treated 
as a Class. Currently we are in the process of combining these complementary approaches into the 
same framework, and are building an experimental ORDW prototype system, which will be validated 
by empirical studies based on, example, TPC-H benchmark queries. 
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Appendix  
Table A. Query Parameters 
fo = fan-out 
R - reference (reverse links) 
||Ci|| - cardinality 
 
Reference (i→j) fo R ||Ci|| ||Cj|| 
Sales→Product 1 100 50M .5M 
Sales→Customer 1 50 50M 1M 
Sales→Teenager 1 250 50M .2M 
Sales→Date 1 500 50M 36.5K 
Prod→Category 1 10 .5M 1K 
Product→Retailer 50 100 .5M 50K 
Category→Type 100 5 1000 10 
Retailer→City 1 4 50,K 12.5K 
Customer→City 1 80 1M 12.5K 
Year→Mon 12 1 10 120 
Mon→Date 30 1 120 3.6K 
Year→Date 365 1 10 3.6K 
Country→State 25 1 10 250 
State→City 5 1 250 1.2K 
Country→City 125 1 10 1.2K 

 
Table B. Selectivity (%). 
 
Country = 'US' 50 
Category = 'Elec' 30 
Product = 'P1' 5 
Product = 'P2' 5 
Customer = 'Teen' 20 
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