
Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

Branch Index: An approach for Query Processing in OODB

Pichayotai Mahatthanapiwat and Wanchai Rivepiboon
Department of Computer Engineering

Chulalongkorn University
Bangkok Thailand 10330

p41pmh@hotmail.com,wanchai.r@chula.ac.th

Abstract

In this paper, we present an access method called branch index for query processing of the aggregation
hierarchy as a tree in object-oriented databases. The algorithm of branch generation will be proposed to
generate all branches for the tree aggregation of classes in the database. For each branch, the information of
linking objects is stored so that class traversal methods can be eliminated. Using a set of attribute indexes and
identity indexes for each branch, associative searching can be conveniently performed. We discuss the retrieval
and update operation and then develop cost models in terms of storage overhead, retrieval cost and update cost.
When compared with the path dictionary index for multiple paths, the result shows that our approach has less
storage overhead and the retrieval cost is improving.

Key words: access method, object-oriented database, aggregation hierarchy, query processing.

1. Introduction
At present, object-oriented databases have been widely used in most engineering applications, such as Computer
Aided Design (CAD), Computer Aided Manufacturing (CAM) and Geographical Information System (GIS). The
complexity of data in these applications makes the conventional database, such as the relational database
cumbersome to manage them. One of the benefits of the object-oriented database is from its data model [11]. In
the object data model, the value of an attribute does not limit to a primitive value, such as integer, real or string,
but the value of an attribute can be either a primitive value or a complex value. The complex value of an attribute
is a unique Object Identifier (OID) of an object in a class. If a class C consists of an attribute A whose domain is
a class C', the class C can reference the class C' from the attribute A. We call this relation of classes as an
aggregation hierarchy. In the same way, the class C' consists of an attribute A' whose domain is a class C'' so
that the class C' can link to the class C'' directly and the class C can link to the class C'' indirectly. If a class N is
referenced by a class C either directly or indirectly and the class N does not reference any classes, the class N
will be called a leaf class of the aggregation hierarchy. On the other hand, a class C will be called the root class
of the aggregation hierarchy if it references other classes but it is not referenced by any classes. Any classes in
the aggregation hierarchy that are between the root class and the leaf class will be called intermediate classes.
 Class traversal methods for an aggregation hierarchy can be performed as forward traversal and reverse
traversal. In the forward traversal approach, we start from one class and traverse to its child class by using the
value of the complex attribute. On the other hand, the reverse traversal approach traverses up to the parent
classes. Usually, the forward traversal approach can perform conveniently because of the inherent pointer of the
complex attributes. However, the reverse traversal approach has more trouble unless reverse pointers are
implemented between classes. When there is a query, the class that the predicate is involved is called the
predicate class and the class of the target objects is called the target class.

If the predicate class and the target class are far away, i.e. there are several intermediate classes between
the target class and the predicate class, cost of traversal will be high because of intermediate classes traversal.
Therefore, much research has been performed to reduce cost of class traversal whereas the associative searching
is also in consideration. The indexing techniques are considered to accelerate database operations by
constructing efficient access structures on a database given a certain physical implementation of the database.
Secondary index on an attribute or a combination of attributes is useful for evaluating queries on a nested class
in an object-oriented database. A classic research on index [1] has been done on an aggregation hierarchy, for
example, multi index, nested index, path index. Other [3], [13], [14], [15], [16] researches on the aggregation
hierarchy attempted to improve the performance of searching by using the concept form [1]. Indexing techniques
on both aggregation hierarchy and inheritance hierarchy are proposed by [4], [8], [9] and [12].

Most indexing techniques that are used for the aggregation hierarchy are proposed as a path scheme.
However, for the application that a class schema is more complicated than a path, such as a tree, a new access
method should be considered to cope with all classes in the aggregation hierarchy. An example of the
aggregation hierarchy that forms a tree of linking classes is shown in Figure 1. It consists of eight classes,
Person, Vehicle, Company, Bank Engine, Course, University and Computer.

Copyright © SCS 2001 1 November 2001 1

mailto:p41pmh@hotmail.com

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

Name
Age
Own
Take
Use

Manufacture
Color
Driver

Name
Connection
Address

Name
Address
Capital

Model
HPName

Credit
Taught

Name
Address

Name
OS

Company

Vehicle

Computer

Person

Bank

Course

University

Engine

Figure 1. Aggregation hierarchy as a tree.

 The Person class is the root class of the aggregation hierarchy, while Bank, Engine, University and
Computer are leaf classes. The other classes; Vehicle, Course and Company are intermediate classes. We can
create four possible paths from the root class to its leaf classes as follows.

Path 1: Person→Vehicle→Company→Bank
Path 2: Person→Vehicle→Engine
Path 3: Person→Course→University
Path 4: Person→Computer

 When we specify an object of the Person class, using the forward traversal method can retrieve the
corresponding objects of the nested classes for each path. It is also noticeable from Figure 1 that the join classes
are the Person class and the Vehicle class. The Path 2 can be reduced to Vehicle→Engine because the
corresponding objects of the Vehicle class from Path 1 are sufficient for further retrieval of objects form the
classes of Path 2. We classify the queries by the following factors.
1. The class traversal methods from the predicate class to the target class.

F(A,B) : Forward traversal from class A to Class B.
R(A,B) : Reverse traversal from class A to class B.

2. The number of paths involved for the predicate class and the target class.
SP: The predicate and the target class are on the same path.
MP: The predicate class and the target class are on different paths.

In the following, we give examples of queries from the classification above. We denote PC, TC and JC
for the predicate class, the target class and the join class respectively.

Q1: Retrieve persons who own cars made by the companies that connect to Bangkok Bank.
(R(PC,TC), SP)
Q2: Retrieve banks connected by the companies that manufacture cars for persons at the age of 40.
(F(PC,TC), SP)
Q3: Retrieve engines of the cars own by the persons who take course at Chulalongkorn University.
(R(PC,JC), F(JC,TC), MP)

 Most indexing techniques can tackle the problem such as Q1 when the predicate is specified on the
indexed attribute of the leaf class and the target class is the root class. A few techniques are proposed to
eliminate the forward traversal between classes of the single path for the query Q2. Although applying the
combination of various indexes can solve the query Q3, the joining between paths is still required and overhead
occurred is considerable. The detail of overhead analysis will be discussed later.
 The access methods of the aggregation hierarchy as a tree have been proposed recently. Direct Access
to Terminal Virtual Path [23] is as follows. For each object in the root class Person, there will be corresponding
objects in leaf classes Bank, Engine, University and Computer. Associated objects in leaf classes are stored
together as if there were a path between them. This path is called Terminal Virtual Path (TVP). Therefore, the
information in TVP consists of OIDs of the leaf classes that associate with the object in the root class. OID of the
object in the root class is stored with the associated TVP as an entry in the linking file structure. Index can be
created on simple attributes of the root class and map to the associated entries in the linking file. This access
method shows that linking between objects in the root class and corresponding objects in the leaf classes stored
in TVP can reduce cost of intermediate classes traversal. However, it is only suitable for the query that the
predicate class and the target class are on leaf classes or the root class. Virtual Path Signature [24] is proposed to
handle multi key indexing. For each aggregation of objects from the class schema from Figure 1, associated

Copyright © SCS 2001 2 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

objects in leaf classes are stored together in a virtual path called Terminal Virtual Path (TVP) and associated
objects in non-leaf classes are stored in a virtual path called Non-Terminal Virtual Path (NTVP). Signature is
generated for objects in TVP and NTVP. The Virtual Path Signature shows significant improvement in retrieval
when compared with Tree Signature [22], especially when the number of classes between the target class and the
predicate class is high. However, Virtual Path Signature requires high storage overhead because of redundancy
of objects due to reference sharing. Furthermore, its retrieval performance is lower when compared with the
indexed attributes of the indexing techniques. Therefore a new approach should be proposed to tackle limitation
mentioned above. It should have the characteristics as follows.
1. Its structure should be stored in the secondary storage other than OODB.
2. It should support traversal of classes in the aggregation hierarchy.
3. It should support associative searching.
4. It should support various kinds of queries for the aggregation hierarchy; i.e. the predicate class and the target

class can be anywhere in the aggregation hierarchy.
5. Its cost model in terms of storage overhead and retrieval cost should be lower than other approaches when

applied as multi paths, for example, path dictionary index [19].
The rest of the paper is organized as follows. Section 2 summarizes the related works and the path dictionary
index that will be compared with our access method. Section 3 introduces the concept of the branch index. The
implementation and database operation will be presented in Section 4 and Section 5 respectively. Cost models in
terms of storage overhead, retrieval cost and update cost will be presented in Section 6. Finally, we conclude the
paper in Section 7.

2. Related Works
In this section, we summarize some access methods, especially, the indexing techniques proposed for the
aggregation hierarchy of object oriented databases.

 Multi index [1] is created for two classes that linked by an inherent pointer of a complex attribute. For
nth multi index, an index is created on a simple attribute of the class Cn and an indexed key is mapped to the
associated OIDs of objects in the class Cn. For ith multi index, an index will be created on a complex attribute of
a class Ci and the key will link to the associated OIDs of objects in the class Ci. If the predicate is specified on
the indexed attribute of the class Cn and the target is the class Ci and there is a relation from Ci to Cn,

 (n - I + 1) index lookups will be required. Therefore, this index is not appropriate for the query when the
predicate class and the target class are far away. We can see that the multi index is only applicable for the query
Q1 because it supports the reverse traversal from the nested class to the ancestor class. However, the multi index
has flexibility for the update because it is easy to update linkage between indexed key and the associated OIDs.

 Nested index [1] uses the concept that is similar to that of the multi index. There is only one index to
map from the indexed key of a simple attribute on the leaf class of the path to the associated OIDs of objects in
the root class. Therefore, it is suitable for the query that the predicate is specified on the indexed attribute of the
leaf class and the target is the root class. This index can also support the query such as Q1. However, it is not
suitable to use nested index if the predicate class and the target class are anywhere in the path. Furthermore, the
update requires the reverse traversal method from the updated object to its ancestor objects of the root class.
Therefore, the reverse pointers should be implemented for all classes in the path to support the update operation.

 Path index [1] extends the concept from the nested index. In this approach, an index is created on a
simple attribute of the leaf class and this indexed key links to the associated paths. The information stored in a
path is the linking of OIDs of objects from the classes on the path so that if the predicate is specified on an
indexed attribute of the leaf class, the target class can be any classes on the path. We can see that the path index
supports only the query Q1. Although the path index can support more queries than the nested index, it requires
more storage overhead.

 Direct link [17] is a structure stored in the secondary storage. The information of an entry in the
structure maintains links connecting objects in the root class and associated objects in the leaf class. This access
method is proposed in the condition that the predicate class and the target class are the root class or the leaf class.
Therefore, the direct links between two classes provide short cuts for object traversals. For example, an object O1
of the root class links to objects Ox, Oy, and Oz of the leaf class. OIDs of O1 and its associated OIDs of Ox, Oy
and Oz will be stored together as an entry in a file. This example shows the forward direct link from the root
class to the leaf class. The reverse direct link can also be created by using the similar approach, i.e. storing links
between objects of the leaf class to its associated objects of the root class. Furthermore, in order to facilitate
associative searching of the direct links, indexes can be built to map attributes of either end classes to the direct
link organization. Although the direct link is applicable for the query Q1, Q2 and Q3, it is only appropriate when
the predicate class and the target class are on the root class or the leaf class.

 Path dictionary [18], [19], [21] is proposed in the concept of grouping all objects in the path that link to
the same object in the leaf class. Information stored in an entry of the path dictionary, which is represented as an
s-expression is useful for the traversal of objects between classes in the path. The attribute index is created on

Copyright © SCS 2001 3 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

top of the path dictionary to assist associative searching. When the predicate is specified on the indexed attribute,
the target objects from the qualified s-expressions can be easily retrieved. When compared with the path index,
path dictionary index shows the improving in both storage overhead and cost of performance. Furthermore, it
can cover more queries in such a way that the predicate class and the target class can be any classes in the path.
Therefore, it supports more queries than previous indexing techniques. Although the query Q3 can be solved
with three path dictionary indexes, i.e. Path 3→Path 1→Path 2, the overhead of joining classes is still high
because the information of joining classes must be stored for three path dictionaries.

 Signature, as an alternative approach, can be used instead of the indexing techniques mentioned above.
Signature is rooted from applications in text databases, which require an efficient search method. Signature
techniques are the alternative approach for searching the target objects because we cannot always predict which
key attribute will be used to access the database. The researches about the signature techniques, which are
applied for object-oriented databases are presented in [2], [5], [6], [7], [10], [20], [22], [24]. However, if we
know attributes that are frequently used in queries, the indexing techniques should be used instead of the
signature techniques because the retrieval performance of searching tree of the indexed attribute is better than
scanning signatures in the signature file.

3. Branch Index Organization
In this section, after defining several terms we will use in the paper, we will introduce the organization of the
branch index.

A. Definitions
Definition 1:
For an aggregation hierarchy as a tree, if Cj is a non-leaf class or a leaf class and Cn is a leaf class and it is
accessible from the class Cj, a relation from the class Cj to the class Cn will be called a branch in the aggregation
hierarchy.
Example 1: Let us consider the aggregation hierarchy as a tree in Figure 1. The following are possible branches
for the aggregation hierarchy.

B1: Person→Vehicle→Company→Bank
B2: Course→University
B3: Engine
B4: Computer

Note that each class in a branch cannot be a member of other branches. The other possible branches can be as
follows.
B'1: Company→Bank
B'2: Vehicle→Engine
B'3: Course→University
B'4: Person→Computer

Definition 2:
The branch length indicates the number of classes in a branch. A branch will be called a complete branch if its
branch length is greater than one. If there is only one class in a branch, it will be called an incomplete branch.
Example 2: We can see from Example 1 that B1 and B2 are complete branches because their branch length is 4
and 2 respectively. B3 and B4 have only one class, so they are incomplete branches.

Definition 3:
For an aggregation hierarchy as a tree, the longest branch in the aggregation hierarchy is called the main branch.
If L is a set of leaf classes in the aggregation hierarchy, the main branch will start from the root class C1 to a leaf
class Cn; when Cn is a member in L.
Example 3: The main branch from Example 1 is B1 because it is the longest branch and it starts from the root
class Person to the leaf class Bank.

Definition 4:
For an aggregation hierarchy as a tree, if Ck is a class in the main branch Bi that references a class Cm,which does
not on Bi, there will be a child branch of Bi starting from class Cm to its accessible leaf class in L. The class Cm
will be called a join class. Therefore, a join class is a class of a branch that can link to its child branches.
Example 4: Let us consider the aggregation hierarchy as a tree in Figure 1 and the example branches in Example
1. The branch B1 can link to the branch B3 by the join class Vehicle. The branch B2 and B4 are linked to B1 by the
join class Person. Therefore, B2, B3 and B4 are child branches of B1.

Copyright © SCS 2001 4 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

Definition 5:
For a branch Bi of an aggregation hierarchy as a tree, if its child branch is an incomplete branch, this child
branch will be called a leaf branch of Bi.
Example 5: We can see from Example 2 that the branch B3 and B4 are incomplete branches. Since B3 and B4 are
child branches of the branch B1, they will be leaf branches of B1.

B. Algorithm of Branch Generation
The purpose of the algorithm is to generate the minimum number of complete branches. The smaller number of
complete branches, the smaller joining between them.
Given an aggregation hierarchy as a tree and L is a set of leaf classes in the aggregation hierarchy. The
procedure of the algorithm is as follows.
1. Find the main branch by considering a leaf class Cni in L that causes the maximum number of classes

between the root class C1 and the leaf class Cni.
2. If Cn1 is the result of the leaf class in the main branch from 1, then the new set L = L – {Cn1}.
3. Repeat while L is not empty.
4. Consider a join class in an existing branch Bi and find the new longest branch from the child class of that

join class of Bi. If a branch Bj is a child branch of Bi and Cnj is the ending class of the branch Bj
4.1 If the branch length of Bj is greater than 1, then the new set L = L – {Cnj}.
4.2 If the branch length of Bj is equal to 1, then the new branch is a leaf branch and will be combined to

Bi. The new set L = L – {Cnj}.
5. Go to step 3.
An example of this algorithm is as follows:
In Figure 1, L = {Bank, Engine, University, Computer}. We can see that the longest branch is from the Person
class to the Bank class. Therefore, the main branch will be generated and Bank will be deleted from L. The new
set of L = {Engine, University, Computer}.

Since Course is the child class of the Person class in the main branch, the new branch will start from
the Course class to the candidate leaf classes in L. So the new branch is generated from the Course class to the
University class. For the remaining classes in L, we can see that the Engine class and the Computer class are
direct child classes of the join class Vehicle and Person respectively. Since they are incomplete branches, Engine
and Computer will be parts of the main branch. When set L is empty, the branch generation will be terminated.

C. Branch Index Organization
The architecture of the branch index is shown in Figure 2. The branch index is a separate structure from the
object-oriented database and it is stored in the secondary storage. After using the algorithm of branch generation,
the number of branches and the corresponding classes will be obtained. A set of attribute indexes and identity
indexes is on top of the branch. The branch index consists of the following components.

Branch information
The information in the branch is OIDs linkage of objects for the classes in the branch. Therefore, the class
traversal can be handled in the branch information instead of traversal in the database. In case of any child
branches, the OIDs and pointers of the parent branch are also included as the information of the child branch. So,
the traversal from the child branch to its parent branch can be easily managed.

Attribute Index
While the branch information can facilitate traversal among objects of classes in the branch, it does not support
predicate evaluation that involves searching the object meeting the conditions specified on their attribute values.
To facilitate the associative searching, attribute indexes should be used to map attribute values to OIDs in the
branch information. For example, to tackle the query Q1 from Section 1, the attribute index should be created for
the Name attribute of the Bank class. To find the target object of the Person class, we scan the attribute index of
the Name attribute of the Bank class to obtain the qualified OIDs of the Bank class and the entry location of the
branch information that store those OIDs. Then, we use the OIDs linkage in the branch information to retrieve
the qualified OIDs from the target class.

Identity Index
Instead of creating the index by mapping the value of simple attributes to OIDs in the branch information, the
identity index uses the values of complex attributes. Therefore, the branch information can be obtained with a
given OIDs by using the identity index. Since identity search is important for retrieval and update, the identity
index can reduce the cost for retrieval and update operations.

Copyright © SCS 2001 5 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

main branch

child branch

child branch

attribute
index

identity
index

attribute
index

identity
index

attribute
index

identity
index

Query

OODB

Figure 2. Branch index.

D. Details of the branch information
For a complete branch Bi of the aggregation hierarchy as a tree, there is a relation from the starting class to the
ending class of this branch. When objects are instantiated, in logical view, the objects of the starting class point
to their child objects until the objects of the ending class. We represent linking of objects with linking of their
OIDs or OIDs linkage. Therefore, it is much faster to traverse by using OIDs linkage in a branch than objects in
the database.
The necessary information that should be kept in a complete branch consists of the following:
- OIDs of objects of the classes in the branch and the pointers to their child objects.
- OIDs of the parent objects for the branch, in case it is not the main branch, and the corresponding pointers to

the parent branch.
- OIDs of the leaf branch.
When several objects in one class reference the same object of the child class, it is called the reference sharing.
Therefore, OIDs linkage should be kept to save the storage in case of the reference sharing. Figure 3 shows an
example of object instantiation and the reference sharing by using the information from Figure 1.

Person[1]

Person[2]

Person[3]

Person[4]

Person[5]

Person[6]

Vehicle[1]

Vehicle[2]

Vehicle[3]

Company[1]

Company[2]
Bank1]

Person[1]

Person[4]

Person[8]

Person[9]

University[1]
Course[1]

Course[2]

Engine[1]

Engine[2]

Vehicle[1]

Vehicle[2]

Vehicle[3]

Person[1]

Person[2]
Computer[1]

Figure 3. An example of object instantiation.

From Figure 3, the ith object of the Person class will be denoted as Person[i]. OIDs of objects of other
classes will use the same notation. We can see that Person[1] and Person[2] reference the same object
Vehicle[1].
From the algorithm of branch generation presented earlier, we obtain two complete branches of the result as
follows.

Copyright © SCS 2001 6 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

- The main branch that starts from the Person class to Vehicle, Company and Bank. Since the Computer class
and the Engine class are leaf branches of the main branch, they are also part of the main branch.

- The child branch that starts from the Course class to the University class.

To cope with the reference sharing, we use the concept that is similar to that of the path dictionary. All ancestor
objects of an object in the ending class of the branch will be kept as an entry of the branch information. For
example, for the object Bank[1] of the ending class, the entry of the main branch consists of Person[1] to
Person[6], Vehicle[1] to Vehicle[3], Company[1] to Company[2] and Bank[1]. All linkages between objects are
also kept, for example, pointer between Person[1] and Vehicle[1], pointer between Person[2] and Vehicle[1]
and so on. Since the leaf branch Engine and Computer are parts of the main branch, their objects will correspond
to the main branch. Therefore, Engine[1] will be linked from Vehicle[1] and Vehicle[2]; Engine[2] will be
linked from Vehicle[3]. Finally, Computer[1] will be linked from Person[1] and Person[2].

4. Implementation
The structure of an entry of a branch is shown in Figure 4.

Bi,1
Bi,2
 .
 .
Bi,n

offset
offset
 .
 .
offset

Information
of Bi,1

Information
of Bi,2

. Information
of Bi,n

Figure 4. The structure of an entry of a branch.

From Figure 4, Bi,1 denotes the starting class of ith branch while Bi,n denotes the ending class of ith

branch. We assume that there are n classes that have relation in ith branch. The relation is in the form that Bi,1
references Bi,2 and Bi,2 references Bi,3 ,…, Bi,n-1 references B i,n. The offset for each class points to the location of
1st OID of the object in that class, for example, the offset of Bi,1 locates the address of 1st OID of object of the
starting class. The example of an entry of the main branch is shown in Figure 5.

Person
Vehicle
Company
Bank

offset
offset
offset
offset

Information
of Person

Information
of Vehicle

Information
of

Company

Information
of Bank

Figure 5. An example of the structure of an entry of the main branch.

There are four classes of the main branch and their associated information for each class. The offset will

point to the first entry of the information for that class. Therefore, given a specified class, we can determine the
information comfortably. The detail implementation of information for each class of a branch is shown in Figure
6.

OID(Bi,1,1) PTR(Bi,2,j) OID(PBj,k,l) PTR(PBj,k,l) ... OID(PBj,k,m) PTR(PBj,k,m) OID(LBj,k) ... OID(LBm,l)

 ...

OID(Bi,1,n) PTR(Bi,2,k) OID(PBj,k,x) PTR(PBj,k,x) ... OID(PBj,k,z) PTR(PBj,k,z) OID(LBj,p) ... OID(LBj,q)

Parent objects of the
parent branch

Leaf branch
objects

Object of
this class

Figure 6. The structure of an information of a class in an entry of a branch.

From Figure 6, Bi,1,1 and Bi,1,n denotes the 1st object and the nth object of the starting class of the ith

branch respectively. The n objects that belong to the starting class of the ith branch may point directly or
indirectly to the same object of the ending class of the ith branch. Each object of the starting class is implemented
as a record that consists of members as follows.
1. OID of the object itself.
2. Pointer to OID's child object.
3. Multiple pairs of OID's parent object and its pointer to the parent branch (except the main branch).
4. Multiple OIDs of leaf branch objects for the starting class in case that the starting class has leaf branches.

In general, for the second class to the class before the ending class of a branch, a record for each object
of the class consists of members as follows.
1. OID of the object itself.
2. Pointer to OID's child object.

Copyright © SCS 2001 7 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

3. Multiple OIDs of leaf branch objects for the class in case it has leaf branches.
Finally, for the ending class, the information will be only OID of the ending class. The number of OIDs

for the ending class will be only one for each entry of the branch. Figure 7 shows an example of the information
of the class Person, Vehicle, Company and Bank for an entry of the main branch.

Person[1] PTR(Vehicle[1]) Computer[1]
Person[2] PTR(Vehicle[1]) Computer[1]
Person[3] PTR(Vehicle[2])
Person[4] PTR(Vehicle[2])
Person[5] PTR(Vehicle[2])
Person[6] PTR(Vehicle[3])

Leaf branch
objects

Object of
this class

Vehicle[1] PTR(Company[1]) Engine[1]
Vehicle[2] PTR(Company[1]) Engine[1]
Vehicle[3] PTR(Company[2]) Engine[2]

Leaf branch
objects

Object of
this class

Object of
this class

Company[1] PTR(Bank[1])
Company[2] PTR(Bank[1])

Object of
this class

Bank[1]

Object of
this class

(a)

(b)

(c) (d)
Figure 7. An example of the information for all classes of an entry of the main branch.

From Figure 7, there is no information of the parent objects and the parent pointers because it is the

ancestor branch of all branches. However, for the other branches, we have to keep OID's parent objects and their
pointers as mentioned earlier. An example of the information for the child branch is shown in Figure 8.

Course[1] PTR(University[1]) Person[1] PTR(Person[1]) Person[4] PTR(Person[4])
Course[2] PTR(University[1]) Person[8] PTR(Person[8] Person[9] PTR(Person[9])

University[1]

Object of
this class

(b)

Object of
this class

Parent objects of the
parent branch

(a)

Figure 8. An example of the information for all classes of an entry of the child branch.

The information of the Course class and the University class is shown in Figure 8(a) and Figure 8(b)

respectively. Notice that this child branch has no leaf branch for all classes of the branch. However, since it is
the child branch of the main branch, the OIDs of the parent objects and pointers to the main branch have to be
stored.
 At present time, the price of the media storage is decreasing and the capacity of the storage is
increasing. Therefore, the storage overhead of an access method is not significant when compared with the
retrieval performance. The branch information will be created for every branch generated in case that the
predicate class and the target class can be any classes in the aggregation hierarchy. It will be stored sequentially
on the secondary storage. However, if we know exactly where the predicate class and the target class are, we can
create the branch information for the branches involved. An entry of the branch information is not allowed to
cross page boundaries unless its size is greater than the page size. Free space directory is required for each page
to inform the free space left. If there is not space enough left for an entry of the branch, the new page will be
allocated. Therefore, the free space directory will be stored before the branch information.
 The data structure that we will use to model the various indexes is based on tree-structures, such as B+-
trees. The format of a non-leaf node for the identity index is similar to that of the attribute index. Figure 9(a) and
Figure 9(b) shows the format of a non-leaf node for the identity index and the attribute index respectively.

OID Page pointer Key value Page pointer

(a) (b)
Figure 9. Non-leaf node record of the identity index and the attribute index.

The format of a non-leaf node record of the identity index consists of OID and page pointer. The page

pointer contains the address of the next level non-leaf page of the OID or the address of the leaf page of the OID.
The format of a non-leaf node record of the attribute index is similar to that of the identity index. Key value is
used for the attribute index instead of OID used for the identity index.
 The format of a leaf node record of the identity index and the attribute index is shown in Figure 10.

Copyright © SCS 2001 8 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

 OID Entry addr. OID no.of entries addr1 addr2 ... addrn

 key length key value no. of entries <OID1,addr1> <OID2,addr2> ... <OIDn,addrn>

(a) (b)

(c)
Figure 10. Leaf node record of the identity index and the attribute index.

The identity index is created for all objects for each class of a branch. Therefore, if there are n classes

involved in a branch, there will be n identity indexes for each class in the branch. A leaf node record for the
identity index of any classes is shown in Figure 10(a). However, for the class that is a leaf branch, the identity
index is shown in Figure 10(b). The leaf node for the attribute index is shown in Figure 10(c) of the
corresponding OIDs and addresses for the indexed attribute.

5. Retrieval and Update Operation
In this section, we discuss the retrieval and update operation on the branch index.

5.1 Retrieval Operations
We use the aggregation hierarchy as a tree shown in Figure 1 to discuss the retrieval operation. As mentioned in
Section 3, there will be two branches generated when we use the algorithm of branch generation. Therefore, we
will use B1 and B2 to represent the main branch and the child branch respectively. We can classify a query that
involves the predicate class and the target class as follows.
- The predicate class and the target class are on the same branch.
- The predicate class and the target class are on different branches.

A. The predicate class and the target class are on the same branch
In this case, the predicate class and the target class can be any classes on the branch. For example, to find the
owner of the car manufactured by the company that connected to Bangkok bank. We can see that the predicate
class is the Bank class and the target class is the Person class of branch B1. In this case, if an index is created on
the Name attribute of the Bank class, we can determine the qualified entries of the branch that associate with the
indexed key. Since the information of an entry of a branch consists of OIDs of every class in the branch, OIDs of
the objects in the Person class can be easily retrieved. Furthermore, if the target objects are on any classes of the
branch, the OIDs of the objects for those classes can also be easily retrieved. When mention about the leaf
branch, it is also a part of a complete branch. The query that the predicate class or the target class are on the leaf
branch is similar to that of discussion above, for example, to find the manufacturer of the car that own by the
person who use the computer with OS UNIX. We can see that the leaf branch, in this case, is the Computer class
that is a part of the main branch B1. The predicate class is the Computer class and the target class is the Company
class of branch B1. If an index is created on the Name attribute of the Computer class, we can use this index to
find the qualified entries of the branch B1 and access the qualified OIDs from the Company class. We can
conclude that if the predicate class and the target class are on the same branch and the predicate is specified on
the indexed attribute, we can access the qualified OIDs of the target class by scanning the indexed attribute.
Several attribute indexes can be created with low storage overhead because the overhead is only for the non-leaf
node records and leaf node records of the attribute indexes.

B. The predicate class and the target class are on different branches
In this case, the predicate class and the target class occurs on different branches, for example, a predicate is on a
class of branch B1 and the target is on a class of branch B2. From Figure 1, the query "to find the university of the
person who own the car manufactured by the company that connect to Bangkok bank" is an example above. We
can see that the predicate occurs on the Bank class of the main branch B1 and the target class is the University
class of the child branch B2. The main branch B1 connects to its child branch B2 by the Person class. If an index
is created on the Name attribute of the Bank class, the OIDs of the Person class from the qualified entries of the
main branch will be obtained. Then, we can use the forward traversal technique from each qualified OIDs of the
Person class to the Course class and the University class of branch B2 and access the qualified objects from the
University class. Also, an alternative approach is to scan the identity index of the Person class for the qualified
objects on the branch B2 to access the target objects of the University class from the qualified entries of branch
B2. On the contrary, the query "to find the bank that is connected by the manufacturer of the car own by the
person who take course at Chulalongkorn University" is somewhat different. Although the predicate class and
the target class are on different branches, in this case, we can not use the join class for the reverse traversal. If an
index is created on the Name attribute of the University class of branch B2, we can scan this index to obtain the
qualified entries of the branch B2. Because the branch B2 is the child branch of B1 and the information of branch

Copyright © SCS 2001 9 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

B2 consists of OIDs and the addresses of the parent branch B1, we can use these information to determine the
qualified entries of branch B1 and retrieve the OIDs from the Bank class. Therefore, we can conclude that the
traversal from the child branch to its parent branch can be achieved easily by using the information stored in the
child branch. However, we do not store information from the parent branch to its child branch because we can
use the forward traversal method from the join objects to the target objects directly.

5.2 Update Operations
We use Figure 1 and Figure 3 to discuss the update operations. We consider only update the complex attribute
because it reflects the information stored in the branch. We can classify the update operations as follows.
- Update the reference between the parent object and the child object on the same branch.
- Update the reference between the parent object and the child object on different branches.

A. Update the reference on the same branch.
In this case, the parent object and its child object are on the classes of the same branch. We assume that an object
O of class C changes the reference from an object O' of class C' to an object O" of class C'. We have to search
the identity index of class C' to find the entries that associate with object O' and O". Furthermore, we assume
that E1 and E2 are the corresponding entries for O' and O" respectively. If E1 is equal to E2, we will change the
pointer that O points from O' to O". However, when E1 is not equal to E2, we have to delete OIDs and the
pointers of class C and its ancestor classes that associate with object O' in E1 and add these information in the
entry E2 that associates with object O". Also, the information stored in the child branch for the moved class has
to be updated. Meanwhile, the associated identity indexes have to be updated. For example, if Vehicle[1] that
references Company[1] changes to company[5], we firstly search the entry of a branch for Company[1] and
Company[5]. If the entries are different, we have to delete Vehicle[1] and the pointer to Vehicle[1] from the
entry of Company[1] and add this information in the entry of Company[5]. Furthermore, we have to move
Person[1], Person[2] and corresponding pointers from the entry of Company[1] to the entry of Company[5].
All associated leaf branch objects for Vehicle[1], Person[1] and Person[2] have to be moved. Therefore,
Engine[1] and Computer[1] will be moved to the entry of Company[5]. The child branch B2 is affected when the
entry of its parent branch is updated. Therefore, the information that associates with Person[1] in Course[1] will
also be updated. Finally, the identity index for Person[1], Person[2], Vehicle[1], Engine[1] and Computer[1]
have to be updated. Additionally, if the attribute index is created for the classes involved for the moving, the
attribute index will also be updated, for example, if an index is created for the Name attribute of the Computer
class, this attribute index has to be updated by removing the associated addresses with corresponding to
Company[1] from the leaf node record and insert the address of the entry that corresponding to Company[5] to
that leaf node record.

B. Update the reference on different branches.
 We assume that an object O in a class C of branch B1 changes the reference from an object O' in a class C' of
branch B2 to an object O" in the class C' of branch B2. We have to search the identity index of the class C' of the
branch B2 to find the entries that associate with the object O' and O" and assume that they are E1 and E2
respectively. We will only perform with the branch B2 by deleting OID of O and the pointer of O from the entry
of O' and insert them to the entry of O". For example, Person[1] of branch B1 that previously references
Course[1] of branch B2 is updated to reference Course[2]. Therefore, we will delete Person[1] and its pointer
from Course[1] and insert them to the entry of Course[2]. Finally, we update the identity index of Person[1]
and the attribute index involved on the branch B2.

6. Cost Model
In this section, we will formulate the cost model in terms of storage overhead, retrieval cost and update cost.
Then, we will compare them with the cost model of the path dictionary index. We will give the parameters that
used in the analysis and adopt some common parameters from [19] to facilitate our comparison.

Parameters :

jiN , : The number of objects in class j of branch i or path dictionary i.
jiA , : The complex attribute of class j on branch i or path dictionary i.
jiD , : Distinct value of complex attribute ., jiA

UIDL : The length of Object Identifier.
P : Page size.
pp : The size of page pointer.
f : Average fan out from a non-leaf node.

Copyright © SCS 2001 10 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

kl : Average length of a key value in attribute index.
OFFL : The length of offset field in the path dictionary.
SL : The length of start field in the path dictionary and branch information.
FSL : The length of free space in path dictionary and branch information.
EL : The length of EOS in path dictionary.
PL : The length of pointer in branch information.

kjiSA ,, : Simple attribute k of class j on branch i or path dictionary i.
kjiU ,, : The number of distinct values for simple attribute . kjiSA ,,

kjiq ,, : The ratio of shared attribute value = ./ ,,, kjiji UN
iPk : Reference sharing of the parent class of class i.
jik , : Reference sharing of class j on branch i or path dictionary i.

jinlb , : The number of leaf branch of class j on branch i.

We have adopted values for some parameters as in [19]. The chosen values of the path dictionary index
and branch index are listed in Table 1.

Performance is measured by
overhead and the cost of performance b
the secondary storage. All lengths and
follow their assumptions.

Assumptions :
1. There are no partial instantiation. T
2. All key values have the same length
3. Attribute values are uniformly distr
4. All attributes are single-valued.

6.1 Storage Overhead
In this subsection, we will adopt storage
our storage overhead for the branch inde
in Figure 11(a) are generated by using th
1, while all path dictionaries in Figure 1

Person

VPerson

Person

Figure 11. Branch a

Copyright © SCS 2001
UIDL = 8 OFFL = 2
P = 4096 SL = 2
pp = 4 FSL = 2
f = 218 EL = 4
kl = 8 PL = 2
Table 1. Parameters of cost models.

the number of I/O accesses. We use a page to estimate the storage
ecause it is the basic unit for data transfer between the main storage and
sizes above are in bytes. To directly adopt the formulae from [19], we

his implies that .1,, += jiji ND
.

ibuted among the objects of the class defining the attribute.

 overhead of the path dictionary index developed by [19] and formulate
x. We will use the information of Figure 11 in our analysis. All branches
e algorithm of branch generation for the aggregation hierarchy of Figure

1(b) are generated to mimic the branches in Figure 11(a).
CompanyVehicle

Computer

Bank

Course University

Engine

Companyehicle Bank

ComputerPersonCourse University

Vehicle Engine

Path Dictionary 1

Path Dictionary 2

Path Dictionary 3

Path Dictionary 4

Branch 1
Branch 2

a)

b)

nd path dictionary generated from the aggregation hierarchy.

11 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

6.1.1 Path Dictionary Index
Path dictionary
For the path dictionary i, the average number of objects in an s-expression is:

.1
1

1

1

,∑
−

=

−

=

+=
n

l

n

lj

jikNOBJ C

when there are n classes in the path dictionary i.

The average size of an s-expression is:

NOBJOFFLUIDLnSLSS ∗++−∗=)()1(.EL+

The number of pages needed for all of the s-expressions on the path is:

>∗
≤

=
. if /
, if //

,

,

PSSPSSN
PSSSSPnN

SSP
ni

i

The number of pages needed for the free space directory is:

 . /)(PFSLppSSPFSD +∗=

The total number of objects in this path dictionary is:

., niNNOBJTOBJ ∗=

identity index
The number of leaf pages needed for path dictionary i is:

 .)/(/ ppUIDLPTOBJLPiden +=

The number of non-leaf pages is:

 ++= ffLPfLPNLP idenideniden /// … x++

where x < f. If is increased by 1 for the root node. idenNLPx ,1≠
Therefore, the total number of identity index is:

.ideniden NLPLPIIP +=

attribute index
The average number of pages needed for a leaf node record is:

).(,,,, ppUIDLqklXP kjiSA kji +∗+=

The number of leaf node pages is:

>∗

≤
=

. if /

. if //

,,,,

,,,,

,,

,,

,,

PXPPXPU

PXPXPPU
LP

kjikji

kjikji

kji

SASAkji

SASAkji
SA

The number of non-leaf pages is:

 += fLONLP kjikji SASA /,,,, //,, xffLO kjiSA ++

Where min and ,, =kjiSALO),(,,,, kjiSAkji LPU

Copyright © SCS 2001 12 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

x< f. If is increased by 1 for the root node. kjiSANLPx ,,,1≠
Therefore, the total number of pages for attribute index is:

.,,,,,, kjikjikji SASASA NLPLPAIP +=
In case of m attribute indexes:

....21 indexmindexindex AIPAIPAIPAIP +++=

Therefore, the storage cost for path dictionary i is:

.iiiiPDI AIPIIPSSPFSDSC +++=

6.1.2 Branch Index
Branch Information
For an aggregation hierarchy as a tree and after applying the algorithm of branch generation, we assume that m
branches are generated.
We also assume that there are n classes in a branch Bi. These classes are related as in the form C1C2C3…Cn. The
size that associates with one object of the class C1 of Bi consists of the following:
- OID of this object for class C1 and its pointer to the child object.
- OIDs and pointers of the parent objects for the object in the first class of branch Bi.
- OIDs of leaf branch objects for class C1 of branch Bi.

++∗++=)()(PLUIDLPkPLUIDL i .)(1, UIDLnlbi ∗
.)()()1(1, UIDLnlbPLUIDLPk ii ∗++∗+=

.*)1()1(1, PLPkUIDLnlbPk iii ++∗++=

The size of an entry for one object in a class Cj of branch Bi; when 12 −≤≤ nj ; consists of the following:
- OID of this object for class Cj and its pointer to the child object.
- OIDs of leaf branch objects for class Cj of branch Bi.

.)(, UIDLnlbPLUIDL ji ∗++=

The size of an entry for one object in the class Cn of branch Bi:

.UIDL=
The size of an entry for every object in class C1 of branch Bi:

UIDLnlbPkkBSE ii

n

j

jii *)1[()()(1,

1

1

,1, ++∗=
−

=
C .]*)1(SLPLPki +++

The size of an entry for every object in class Cj of branch Bi, 12 −≤≤ nj :

UIDLnlbkBSE ji

n

jl

liji *)1[()()(,

1

,, +∗=
−

=
C .] SLPL ++

The size of an entry for every object in class Cn of branch Bi:

.)(, SLUIDLBSE ni +=

The total size of an entry of branch Bi:

.)()()()(
1

2
,,1, ∑

−

=

++=
n

j
nijiii BSEBSEBSEBSE

In case of the main branch B1.

The size of an entry for every object in class Cj of branch B1, 1 1−≤≤ nj :

Copyright © SCS 2001 13 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

UIDLnlbkBSE j

n

jl

lj *)1[()()(,1

1

,1,1 +∗=
−

=
C .] SLPL ++

The size of an entry for every object in class Cn of branch B1:

.)(,1 SLUIDLBSE n +=

The total size of an entry of branch B1:

.)()()(
1

1
,1,11 ∑

−

=

+=
n

j
nj BSEBSEBSE

If is the number of pages used for every entry in the branch Bi, then iBP

>∗
≤

=
PBSEPBSEN
PBSEBSEPN

BP
iini

iini
i

)(if ./)(
)(if ,)(//

,

,

The number of pages for the free space directory of branch Bi:

 . /)(PFSLppBPFSD ii +∗=

The total size for all branch.

∑
=

+=
m

i
ii FSDBPTBP

1
)(

Identity Index
The identity index will be created for every object for each class of a branch. The average length of a leaf node
index record for the identity index of class Cj.

+
+

=
branch leaf a is if

branch leaf anot is if

 .*
 ,

jj

j

C

C

PPPkUIDL
PPUIDL

XI

The number of leaf pages for the identity index of class Cj on branch Bi.

 . //,,, XIPNLP jijiiden =

The number of non-leaf pages for the identity index of class Cj on branch Bi.

 += fLPNLP jiidenjiiden /,,,, / ,, xffLP jiiden +++

If x < f and , we will add 1 in for the root node. Therefore, the number of pages for the
identity index of class Cj on branch Bi:

1≠x jiidenNLP ,,

.,,,,, jiidenjiidenji NLPLPIIP +=

If there are n classes on the branch Bi, the number of pages for the identity index of branch Bi:

.
1

,∑
=

=
n

j
jii IIPIIP

The number of of pages for the identity index of every branch is:

.
1
∑
=

=
m

i
iIIPTIIP

Attribute Index

Copyright © SCS 2001 14 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

When creating the attribute index on a primitive value of a class j of branch Bi, represents a primitive
value k of the class j of branch Bi and an index is created on . The average length of a leaf node index
record for the attribute index is:

kjiSA ,,

kjiSA ,,

).(,,,, PPUIDLqklXP kjiSA kji +∗+=

The number of leaf pages of the attribute index on branch Bi is:

>∗
≤

=
PXPPXPU
PXPXPPU

LP
kjikji

kjikji
kji

SASAkji

SASAkji
SA

,,,,

,,,,
,,

 if . /
 if ,//

,,

,,

The number of non leaf pages of the attribute index on branch Bi is:

kjiSANLP ,, = /// ,,,, xffLOfLO kjikji SASA +++
when = and kjiSALO ,,),min(,,,, kjiSAkji LPU .fx < If 1≠x add 1 to for the root node. kjiSANLP ,,

Therefore, the number of pages for index on is: kjiSA ,,

kjiSAAIP ,, = .,,,, kjikji SASA NLPLP +

Actually, we can create many attribute indexes. If there are n indexes on the branch Bi, the number of pages for
these indexes is:

iTAIP = ∑
=

n

j
indexi jAIP

1
,

when is the jth index of branch Bi. jindexiAIP ,

The number of pages for the attribute index of every branch is:

TAIP = ∑
=

m

i
iTAIP

1
.

Finally, the storage cost is:

.TAIPTIIPTBPSCBI ++=

6.1.3 Comparison
Using the formulae developed above, we compare the storage cost between the path dictionary index and branch
index. We use the aggregation hierarchy as a tree mentioned earlier and the result of branches and paths are
shown in Figure 11. The storage costs are calculated for all branches and paths and their associated indexes.
Attribute indexes are created for all leaf classes. Also, we fix the cardinality of the root class to 200,000.
 We assume that all reference sharing of all classes and the shared key values are set to the same value,
which we represent it as K. We observe the impact of K to the storage overhead and cost of performance. The
value of K is varied from 2 to 10 as shown from the x-axis of Figure 12. It is shown apparently that the storage
cost of the branch index is less than that of the path dictionary index in all ranges of K. The storage cost of the
path dictionary index is higher because we have to store all information for every path.

Storage Cost

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 3 4 5 6 7 8 9 10
K

P
ag

e

SC(PDI)

SC(BI)

Figure 12. Storage cost of the path dictionary index and branch index.

6.2 Retrieval Cost

Copyright © SCS 2001 15 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

To simplify our analysis, we assume that there is only one predicate attribute in the queries and the predicate is
specified on the indexed attribute.
We will classify cost formulae as in the discussion in Section 5.1. Furthermore, we choose the identity index to
scan for the required entries instead of the forward traversal technique.

6.2.1 The predicate class and the target class are on the same branch
In this case, the predicate class and the target class are on the same branch. Therefore, it is convenient to perform
the class traversal in the branch when using the branch index. However, it is possible that, in the considered
branch, the predicate class and the target class are on different path dictionaries.

6.2.1.1 Path Dictionary Index
The retrieval cost of path dictionary index consists of the following:
- Cost of attribute index scanning.
- Cost of accessing the target objects for the qualified s-expressions when the target class is in the same s-

expression as the predicate class, otherwise access the qualified join objects to traverse to the target objects
in the other path dictionary.

Case 1: the predicate class and the target class are on the same path dictionary

 .// / PSSNPXPhRC QPattrattrPDI ∗++=

when is the height of the attribute index -1; for the predicate class. XPattr is the leaf node record of the
attribute index. NP/Q is the number of the qualified s-expressions for the predicate P of query Q. SS is an s-
expression of the path dictionary.

attrh

Case 2: the predicate class and the target class are on different path dictionaries

We can formulate the retrieval cost according to the location of the target class and join class.

- The target class is an ancestor class of the join class

 PSSNPXPhRC pQPattrattrPDI // / ∗++=)]./()1[(PSShN tidenj ++∗+

when SSp is an s-expression of path dictionary for the predicate class, SSt is an s-expression of path dictionary for
the target class. Nj is the number of qualified join objects of the join class. hiden is the height of the identity index
-1; of the join class.
- The target class is a descendant class of the join class

We can use the same formula above. Furthermore, we can use the forward traversal from the objects of the join
class to the target objects of the target class. However, if the distance between the join class and the target class
is high, we should use the identity index of the join class to retrieve the qualified s-expressions to access the
target objects.

6.2.1.2 Branch Index
The retrieval cost of the branch index consists of the following:
- Cost of the attribute index scanning.
- Cost of the accessing the target objects from the target class for the qualified entries.

 .// / PSENPXPhRC BiQPattrattrBI ∗++=
when hattr is the height of the attribute index-1, XPattr is the length of a leaf node index record, NP/Q is the number
of the qualified entries of a branch Bi for the predicate P of query Q.

6.2.1.3 Comparison
We use the same parameters and assumptions as we use in evaluating the storage cost. In this subsection, we
assume that the predicate is specified on the indexed attribute of the Computer class and the target is the Bank
class. For the branch index, we can scan the attribute index to obtain the qualified entries of the branch for that
predicate and locate the target objects from those entries of the branch. Although the query in this case requires
only one branch for the branch index, it requires two path dictionaries to solve the query. The first path
dictionary is from the Computer class to the Person class. After obtaining the qualified objects from the class
Person, we use them to scan the identity index of the path dictionary from the Person class to the Bank class to

Copyright © SCS 2001 16 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

obtain the qualified s-expressions and retrieve the qualified objects from the Bank class. We can see that the
retrieval cost, in this case, of the branch index is much lower than that of the path dictionary index because it is
unnecessary to traverse between paths. However, when the predicate class and the target class are on the same
path dictionary, the retrieval cost of the branch index and the path dictionary is so close.

Retrieval Cost (Case 1)

1

10

100

1000

2 3 4 5 6 7 8 9 10
K

P
ag

e

RC(PDI)

RC(BI)

Figure 13. Retrieval cost of the path dictionary index and branch index when the predicate class and the target class are on the same branch.

6.2.2 The predicate and target class on different branches
In this case, the predicate class and the target class are on different branches for the branch index. For the path
dictionary index, the predicate class and the target class are apparently on different path dictionaries.

6.2.2.1 Path Dictionary Index
The retrieval cost of the path dictionary index is the same as in Section 6.2.1.1 of Case 2. However, the
additional cost may be occurred when the predicate class and the target class on the path dictionaries are far
away. The general formula for the retrieval cost when the predicate class is on a path dictionary j and the target
class is on a path dictionary k is:

 PSSNPXPhRC pQPattrattrPDI // / ∗++= ∑
−

=

+∗+ +

1

)1([1,

k

jl
idenlj hN ll]. /11, PSSN lj ll +∗+ +

when are the qualified objects of the join class that link between the path dictionary l and the path
dictionary l+1 and there are several path dictionaries between the path j and path k.

1, +lljN

6.2.2.2 Branch Index
The retrieval cost of the branch index can be classified on the location of the predicate class and the target class.

- The predicate class is on an ancestor branch of the target class
There is no information of the child branch stored in the parent branch. Therefore, after scanning the attribute
index and obtain the qualified join objects from the join class, we have to use the identity index of the join class
to retrieve the qualified entries of the child branch. The general formula for the branch index when the predicate
is on a branch j and the target class is on a branch k is:

 PSENPXPhRC BiQPattrattrBI // / ∗++= ∑
−

=

+∗+ +

1

)1([1,

k

jl
idenj lll hN]. /* 11, PSEN lll Bj +++

when are the qualified objects of the join class that link between the branch l and the branch l+1 and
there are several branches between the branch j and branch k.

1, +lljN

- The target class is on an ancestor branch of the predicate class
Because the information of the child branch can link directly to its parent branch, the retrieval cost in this case is:

 PSENPXPhRC BiQPattrattrBI // / ∗++= . /
1

11,∑
−

=

++ ∗+
k

jl
Bj PSEN lll

6.2.2.3 Comparison
In this subsection, we classify the location of the predicate class and the target class on different branches. In
Figure 14, we assume that the predicate is specified on the indexed attribute of the Engine class of the main
branch and the target is the University class, the child branch of the main branch. We also notice the impact of K

Copyright © SCS 2001 17 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

for the retrieval cost for both path dictionary index and branch index. We can see that the retrieval cost for both
access methods in this case are nearly the same. The retrieval cost of the path dictionary index is higher because
it must traverse more than two path dictionaries from the Engine class to the University class.
 However, when the predicate is specified on the indexed attribute of the University class and the target
is the Engine class as shown in Figure 15, the retrieval cost of the branch index is much lower than that of the
path dictionary index. That is because the child branch of the branch index stores the information of its parent
objects and the associated entries so that the retrieval of the entries of the parent branch can be easily performed.

Retrieval Cost (Case 2)

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10
K

P
ag

e

RC(PDI)

RC(BI)

Figure 14. Retrieval cost of the path dictionary index and branch index when the predicate class is on the parent branch of the target class.

Retrieval Cost (Case 3)

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10
K

P
ag

e

RC(PDI)

RC(BI)

Figure 15. Retrieval cost of the path dictionary index and branch index when the predicate class is on the child branch of the target class.

6.3 Update Cost
We will formulate the update cost as discussed in Section 5.2. To simplify the analysis, we do not include the
cost due to page overflow caused by update operation. When a complex attribute of one object is updated, the
possible result is as follows.
- Update the reference on the same branch.
- Update the reference on different branches.

6.3.1 Update the reference on the same branch
In this case, we consider the update of the reference on the same branch of the branch index.

6.3.1.1 Path Dictionary Index
When a complex attribute of one object is updated, Two different cases are categorized as follows.

A. The class of the updated object or its ancestor classes have no attribute index
In this case, the update will be performed to the reference between objects. We can use the identity index of the
old and new child objects to retrieve the qualified s-expressions and then update the information in the s-
expressions. Finally, update of the identity index for the updated object and its ancestor objects have to be
performed. We assume that the updated object is on the mth class of the path dictionary.

 +∗++∗=)/21(2 PSShUC idenPDI).2()1(
1

1

1

, +∗+∑
−

=

−

=

iden

m

l

m

lj

ji hkC

when hiden is the height of the identity index - 1.

B. The class of the updated object or its ancestor classes have an attribute index
In addition to all terms in previously cost model, cost for update attribute index should be considered.

Copyright © SCS 2001 18 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

 +∗++∗=)/21(2 PSShUC idenPDI ++∗+∑
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m

lj

ji hkC)./2(PXPh attrattr ∗+

when hiden is the height of the identity index -1and hattr is the height of the attribute index -1.

6.3.1.2 Branch Index
The update of the branch index is more complicated than that of the path dictionary index because more
information is stored in the entry of the branch. Four different cases are categorized as follows.

A. The class of the updated object or its ancestor classes have no attribute index, no leaf branch and no child

branch
In this case, the formula is similar to that of the path dictionary index in Section 6.3.1.1 case A. Also, We
assume that the updated object is on the mth class of branch i.

 +∗++∗=)/21(2 PSEhUC BiidenBI).2()1(
1

1

1

, +∗+∑
−

=

−

=

iden

m

l

m

lj

ji hkC

when hiden is the height of the identity index - 1.

B. The class of the updated object or its ancestor classes have an attribute index but no leaf branch and no

child branch

 +∗++∗=)/21(2 PSEhUC BiidenBI ++∗+∑
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m

lj

ji hkC)./2(PXPh attrattr +

C. The class of the updated object or its ancestor classes have an attribute index and leaf branches but no child

branch.
The number of objects for the leaf branches from objects of the first class to the updated objects is:

].)*([,

1

1

1

,, mi

m

j

m

jl

liji nlbknlbNLO += ∑
−

=

−

=
C

 Therefore, the update cost is:

 +∗++∗=)/21(2 PSEhUC BiidenBI

)./2(PXPh attrattr ∗+

++∗++∑
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m

lj

ji hNLOkC

D. The class of the updated object or its ancestor classes have an attribute index, leaf branches and child

branches.
We will use some parameters defined earlier. So the update cost is:

 +∗++∗=)/21(2 PSEhUC BiidenBI ++∗++∑
−

=

−

=

)2()1(
1

1

1

, iden

m

l

m

lj

ji hNLOkC

 +∗+)/2(PXPh attrattr)./2(
1 1

,

,

∑
= =

∗
m

l

ncb

j

jl

li

PSCBC

when is the number of child branches of a branch i of class l and is the entry size of a child
branch j of class l.

lincb , jlSCB ,

6.3.1.3 Comparison
We use the same parameters and assumptions as used in the storage cost and retrieval cost. In this subsection, we
assume that one object of the Person class changes its reference to another object of class Vehicle. We can see
that the update cost of the branch index is more than that of the path dictionary index because the information
stored in an entry of branch index is more than that stored in s-expression of path dictionary index. However,
the small increased update cost of the branch index is likely acceptable when we consider the gain from the
retrieval.

Copyright © SCS 2001 19 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

Update Cost (Case 1)

0
5
10
15
20
25
30
35
40

2 3 4 5 6 7 8 9 10
K

P
ag

e

UC(PDI)

UC(BI)

Figure 16. Update cost of the path dictionary index and branch index when the predicate class and the target class are on the same branch.

6.3.2 Update the reference to the different branch
6.3.2.1 Path Dictionary Index
It makes no different for the path dictionary index. Therefore, the update cost of the path dictionary is the same
as in Section 6.3.1.1.

6.3.2.2 Branch Index
The update of the branch index is performed only on the object of the first class of the child branch. The parent
objects and associated pointers will be updated for the branch information of the child branch. Therefore, the
update cost consists of the following:
- The scanning of the identity index for the old and new OID of object of the first class of the child branch.
- The update of the qualified entries of the child branch.
- The update of the identity index of the parent object.

 +∗++∗=)/21(2 1 PSEhUC BjidenBI).2(2 +idenh

when is an entry size of a branch j; the child branch of a branch i. BjSE
hiden1 is the height of the identity index - 1; of the first class of the branch j
hiden2 is the height of the identity index - 1; of the parent class of the branch j

6.3.2.3 Comparison
In this subsection, we assume that an object in the Person class changes its reference to another object of the
Course class. We can see that the associated entries of the child branch are updated. Also, the identity index of
the updated object is updated. Therefore, the update cost for the branch index in this case is similar to that of the
path dictionary index.

Update Cost (Case 2)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9
K

P
ag

e

UC(PDI)

UC(BI)

Figure 17. Update cost of the path dictionary index and branch index when the predicate class and the target class are on different branches.

7. Conclusion
The aggregation hierarchy as a tree is considered as a more complicated form than a path. Therefore, the
efficient access method to handle the query on the aggregation hierarchy should be developed. We introduce the
new access method called the branch index to evaluate all kinds of query on an aggregation hierarchy as a tree
and then compared it with the path dictionary index method for the path scheme. We varied the reference sharing
of classes and shared key values to observe the performance and the storage overhead of the path dictionary
index and branch index.
 We create path dictionaries to mimic our branch for comparison. The attribute indexes are created on all
leaf classes of the aggregation hierarchy. The identity indexes are also created for the objects of every class on a
branch of the branch index and on a path of the path dictionary index for complex attribute searching. The result

Copyright © SCS 2001 20 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

is that the storage overhead of the branch index is much lower than cost of the path dictionary index because we
can store the information of the leaf branch as part of the complete branch so that the redundant path is
eliminated. However, the entry size of a branch may be bigger than the s-expression of a compared path
dictionary because more information, such as the leaf branch and the associated parent branch, is stored in a
branch. Therefore, the update cost of the branch index is a little higher than the update cost of the path dictionary
index. However, we gain the benefit from the organization of the branch index so that its retrieval cost is much
lower than path dictionary index cost. We can conclude that the branch index is more appropriate for the
aggregation hierarchy as a tree than the path dictionary index, especially when the retrieval operation is high.
The branch index can be reduced to the form of the path dictionary index when there is only one path of the
aggregation hierarchy and then all cost will be the same. Therefore, the branch index is more general than the
path dictionary index.
 Throughout this paper, we have some assumptions that limit the general case for the access method.
The multi value attribute and complex query are a challenge one for the next research of this area. Furthermore,
the most complicated form of the aggregation hierarchy as a graph should be in consideration in the future.

References
[1] E. Bertino and W. Kim, "Indexing Technique for Queries on Nested Objects," IEEE Trans. on

Knowledge and Data Eng., vol. 1, pp. 196-214, 1989.
[2] H.–S. Young, S. Lee, and H.–J. Kim, "Applying Signatures for Forward Traversal Query Processing in

Object-Oriented Databases," Proc. 10th Int’l Conf. on Data Eng., pp. 518-525, 1994.
[3] K.A. Hua and C. Tripathy, "Object Skeleton: An Efficient navigation Structure for Object-Oriented

Database System," Proc. 10th Int’l Conf. on Data Eng., pp. 508-517, 1994.
[4] E. Bertino and P. Foscoli, "Index Organizations for Object-Oriented Database System," IEEE Trans. on

Knowledge and Data Eng., vol. 7, pp. 193-209, 1995.
[5] Y.–H. Chen and A.J.T. Chang, "Object Signatures for Supporting Efficient Navigation in Object-

Oriented Databases," Proc. 8th Int’l Workshop on Database and Expert System Application, pp. 502-
507, 1997.

[6] H. Shin and J. Chang, "A New Signature Scheme for Query Processing in Object-Oriented Database,"
Proc. 20th Int’l Conf. on Computer Software and Applications”, pp. 400-405, 1996.

[7] D.L. Lee and W.-C. Lee, "Signature Path Dictionary for Nested Object Query Processing," Proc. 15th
Int’l Conf. on Computers and Communications, pp. 275-281, 1996.

[8] E. Gudes, "A Uniform Indexing Scheme for Object-Oriented Databases," Proc. 12th Int’l Conf. on Data
Eng., pp. 238-246, 1996.

[9] S. Choenni, E. Bertino, H.M. Blahken and T. Chang, "On the Selection of Optimal Index Configuration
in OO Databases," Proc. 10th Int’l Conf. on Data Eng., pp. 526-537, 1994.

[10] S.Y. Sung and J. Fu, "Access Methods on Aggregation of Object-Oriented Database," Proc. Int’l Conf.
on Systems, Man and Cybernetics, vol. 2, pp. 977-982, 1996.

[11] W. Kim, "Object-Oriented Databases: Definition and Research Directions,” IEEE Trans. on Knowledge
and Data Eng.", vol. 2, No.3, pp. 327-341, 1990.

[12] F. Fotouhi, T.-G. Lee and W.I. Grosky, "The Generalized Index Model for Object-Oriented Database
Systems," Proc. 10th Phoenix Conf. on Computer and Communication, pp. 302-308, 1991.

[13] E. Bertino and C. Guglielmina, "Optimization of Object-Oriented Queries Using Path Indices," Proc.
2nd Int’l Workshop Research Issues on Data Eng., pp. 140-149, 1992.

[14] B. Shidlovsky and E. Bertino, "A Graph-Theoretic to Indexing in Object-Oriented Databases," Proc.
12th Int’l Conf. on Data Eng., pp. 230-237, 1996.

[15] W.-S. Cho, S.-S. Lee and Y.-I. Yoon, "A Join Algorithm Utilizing Multiple Path Indexes in Object-
Oriented Database Systems," Proc. 2nd Int’l Conf. on Eng. of Complex Systems, pp. 376-382, 1996.

[16] S.K. Seo and Y.J. Lee, "Optimal Configuration of Nested Attribute Indexes in Object-Oriented
Databases," Proc. 20th EUROMICRO Conf. on System Architecture and Integration, pp. 379-386, 1994.

[17] W.-C. Lee and D.L. Lee, "Short Cuts for Traversals in Object-Oriented Database Systems," Proc. Int’l
Computer Symposium, pp. 1172-1177, 1994.

[18] W.-C. Lee and D.L. Lee, "Combining indexing Technique with Path Dictionary for Nested Object
Queries," Proc. 4th Int’l Conf. on Database Systems for Advanced Applications, pp. 107-114, 1995.

[19] W.-C. Lee and D.L. Lee, "Path Dictionary: A New Access Method for Query Processing in Object-
Oriented Databases," IEEE Trans. on Knowledge and Data Eng., vol. 10, No.3, pp. 371-388, 1998.

[20] Y. Ishikawa and H. Kitagawa, "Analysis of Indexing Schemes to Support Set Retrieval of Nested
Objects," Proc. Int’l Symposium on Advanced Database Technologies and Their Integration, 1994.

[21] D.L. Lee and W.-C. Lee, "Using path Information for a Query Processing in Object-Oriented Database
Systems," Proc. Conf. on Information and Knowledge Management, pp. 64-71, 1994.

Copyright © SCS 2001 21 November 2001

Branch Index: An approach for Query Processing in OODB IJIT vol. 7, No. 2

[22] W.-C. Lee and D.L. Lee, "Signature File Methods for Indexing Object-Oriented Database Systems,"
Proc. 2nd Int’l Computer Science Conf., pp. 616-622, 1992.

[23] P. Mahatthanapiwat and W. Rivepiboon, "Direct Access to Terminal Virtual Path in OODB," Proc.
National Computer Science and Engineering, 1999.

[24] P. Mahatthanapiwat and W. Rivepiboon, "Virtual Path Signature: An approach for Flexible Searching
in OODB, " Proc. Int'l Conf. on Intelligent Technology, pp. 335-340, 2000.

Copyright © SCS 2001 22 November 2001

	Abstract
	3. Branch Index Organization
	A. Definitions
	B. Algorithm of Branch Generation
	C. Branch Index Organization
	Branch information
	Attribute Index
	Identity Index

