
International Journal of Information Technology, Vol. 9 No. 1

31

An Object Oriented Timetabling Framework

Swee-Chuan Tan
Singapore Technologies Electronics Limited

24 Ang Mo Kio Street 65
Singapore 569061

tansc@stee.com.sg

Abstract: Real world timetabling applications are usually diverse in their problem
structures, constraints and algorithms used. We have developed an object oriented
timetabling framework that adapts to varied problem structures, and allows for easy
and flexible maintenance of timetabling algorithms and constraints. We use the
Unified Modelling Language for problem structure representations and Object
Constraint Language for constraint expressions. The model is easier to understand
as compared to mathematical formulations and results in coherent development
from problem specification to software constructions. We also describe an
application that we have instantiated from this framework.

1 INTRODUCTION

Timetabling problems can be found in many areas, for example, in sports league, and
in educational, transport and employee timetabling. In his survey [23] on educational
timetabing, Schaerf presented many problem variants and numerous solution
techniques. The main reasons for the large variants are due to differences in problem
structures, constraints and objectives. In addition, the type of solution technique often
imposes a specific problem structure and most of the solution techniques are only
good for certain cases. When there is a change in user requirements, the existing
solution technique or algorithm may become unusable. Most timetabling problems,
even in some simple cases, are found to be NP-Complete (e.g. see [9], [10]), and the
running time of complete search algorithms grow exponentially with respect to
problem size. Over the past forty years, researchers have been looking for ways to
construct timetables automatically. Many models and solution techniques have been
proposed, the PATAT series (e.g. see [5], [6]) are especially devoted to many aspects
of timetabling.

As the object oriented (OO) paradigm emerges as a popular software
construction approach in the software community, the idea of an object oriented (OO)
framework [11] approach to software construction appears to be promising in
providing software reusability and maintainability. An OO framework consists of a
generic structure of an identified problem domain and provides a set of commonly
used abstract and concrete functions. While the generic structure can be adapted into
one or more specific application structures, the functions can be extended to solve
specific application problems. In this way, a high degree of software reusability can
be achieved. Until the late nineties, there have been increasing reports on the use of
object-oriented frameworks to solve constraint-based problems. For example, Ferland
[12] used the Object Pascal for an assignment type model, and implemented several

Swee-Chuan Tan
An Object Oriented Timetabling Framework

32

local search algorithms to show that only minimal code changes are required.
Andreatta [3] created a set of object-oriented local search classes in a framework to
construct and compare local search heuristics under a common platform. They
describe the proposed framework using design patterns and encapsulate different
aspects of local search heuristics into abstract classes. They used the framework to
build and compare heuristics for the one of the problems in comparative biology.
Another example of local search library is LOCAL++, a C++ framework developed
by Schaerf [25]. With the so-called inverse control mechanism, users of LOCAL++
only need to focus on the problem description and do not have to worry about the
implementation details. Later, the authors abandoned the LOCAL++, in favor to a
completely different and more powerful C++ framework, the EASYLOCAL++ [16].
They used this framework to solve a number of classical combinatorial problems and
applied the tools in practical timetabling (e.g. see [17]). Michel [22] contributed a
constraint-based architecture to supply the shortage of local search libraries in the
community. Similarly, Fink [14] used an OO framework as a ‘stock room’ for local
search heuristics. So far, most reports in the literature are restricted to frameworks for
heuristic constructions and comparisons. In particular, most of the frameworks focus
on local search heuristics rather than any specific timetabling problem domain. On the
timetabling problems, Gröbner et al. [19] take a more general view. They propose a
general timetabling langauge to describe the common, underlying structure of
timetabling problems and show how the problem descriptions can be translated into
Java programming langauge.

Our perspective of modelling timetabling problems is close to that of Gröbner.
Although we feel that it is not possible to build a universal framework for all
timetabling problems, we feel that OO frameworks should not be limited to local
search heuristics, and can have wider applicability in timetabling. Our proposed
timetabling framework generalizes a set of timetabling applications in a common
domain rather than any particular class of heuristics. We use design patterns [15] to
separate the timetabling heuristics from the timetabling domain objects. In this way,
the framework allows a flexible control of algorithms and constraints.

In this paper, we present a conceptual timetabling framework, and show how it can be
extended for educational timetabling domain. The framework allows easy switching
between several local search heuristics during program execution, and we exploit this
capability by implementing a simple hyperheuristic (e.g. see [7], [8]) to select lower
heuristics that could improve the timetable solution quality. Finally, we show how an
educational timetabling application can be instantiated from the framework. The
educational timetabling problem involves assigning groups of students to attend
lessons at particular time and venue, and may be taught using certain equipment, and
by a particular instructor. In the process of developing the software framework, we
modeled the software with the Unified Modelling Language (UML) [4, 13]. The UML
is set of OO notations for representing objects in OO systems. We also use the Object
Constraint Language (OCL) [27], a precise textual language to express the constraints
in the UML diagram. One research question today is how to incorporate constraints as
seamlessly as possible into constraint optimization applications such as timetabling.
Traditionally, timetable problems are expressed using mathematical models and
occasionally using natural language. There are also specialized languages such as the

International Journal of Information Technology, Vol. 9 No. 1

33

STTL [20] for specifying timetable problems, describing instances and solutions.
Mathematical formalism is rigorous but abstract, and difficult for software developers
to understand. Natural language is easy to understand but ambiguous. In software
development, these languages cannot reduce the distance from the problem definition
stage to the software specification and construction stages. The UML and OCL can
shorten this gap, and blend well with our OO framework. We believe that UML/OCL
will be a suitable modelling tool for OO timetabling framework.

This work covers the analysis, design and development of an automated timetabling
framework for educational domain using the OO paradigm. Section 2 covers the OO
timetabling framework. Section 3 describes an example timetabling application
instantiated from the framework. Section 4 presents test results and analysis. Section 5
concludes this project.

2 AN OBJECT ORIENTED TIMETABLING FRAMEWORK

The framework is divided into three levels, the conceptual (abstract) level that has no
code written, the first level and second level that are implemented in Java.

ScheduleObjectScheduleObject Group

TimetablingAlgorithm <interface>

ObjectiveFunction <interface>

ResourceManagerBase {abstract}

ConstraintManagerBase {abstract}

ScheduleObject {abstract}

Calendar

Fig. 1: The conceptual level framework

The conceptual level framework

Figure 1 shows a composite of schedule objects associated with a set of classes.
The ScheduleObject represents a task (or a group of tasks), and it allows different
timetabling algorithms and objective functions to be registered. The
ResourceManagerBase is responsible for managing the resources requirements and
resource allocation logic. The ConstraintManagerBase manages all the constraints

Swee-Chuan Tan
An Object Oriented Timetabling Framework

34

and is in charge of the constraint activation logic. The Calendar manages the time
domain and keeps track of the availability of the ScheduleObject. This pattern
succinctly represents a great variety of timetabling problems. However, it can be
overly abstract and lack semantic clarity of the overall hierarchical structure. When
using the OCL to express the constraints in the model, it is better to present the actual
decomposed hierarchical class diagram rather than to use the composite pattern. The
rest of this section describes the decomposed model in the first level and second level
framework.

Fig. 2: An overview of the framework

An overview of the actual framework

Figure 2 shows an overview of the actual framework implemented. The first level
shows that the ScheduleObject is associated with a set of abstract classes and
interfaces. The first level is similar to the conceptual level except for the composite.
At this level it is not clear how these classes will perform their tasks as we still do not
know the exact application to be instantiated. However, we do know the basic
responsibilities of these classes and we declare a set of abstract methods to ensure that
these methods are implemented at the lower level framework or application. Since our

Specific
Timetabling
Algorithms

Schedule
Object

{abstract}

Objective
Function

<interface>

TimeTabling
Algorithms
<interface>

Resource
ManagerBase

{abstract}

Constraint
Manager Base

{abstract}

Subject
Group Base
{abstract}

Subject Offered
Base

{abstract}

Lesson
Base

{abstract}

Subject
Group

LessonSubject
Offered

Constraint
Manager

Resource
Manager

Level 1

Level 2

Student
Group

Instantiated
Application

Specific
Objective
Functions

Calendar

Time
Preference

International Journal of Information Technology, Vol. 9 No. 1

35

interest is in building educational timetabling applications, our second level
framework consists of educational timetabling classes. The LessonBase represents a
basic teaching activity, the SubjectOfferedBase consists of a group of lessons, and the
SubjectGroupBase consists of a group of subjects. These classes form a basic
hierarchy of teaching activities in a school. Finally, the instantiated application
consists of concrete classes inherited from the first and second level abstract classes.
The exact resource management and allocation logic is implemented in the
ResourceManager. The ConstraintManager defines exactly how the constraints will
be activated. There are also specific timetabling algorithms and specific objective
functions registered with the ScheduleObjects. Besides, there are some additional
classes (e.g. StudentGroup, TimePreference) needed in the actual timetabling
application model. Some key features of the framework are described as follows.

A Strategy pattern
We use the strategy design pattern to allow different algorithms to be invoked by a
ScheduleObject during program runtime. Figure 3 shows a strategy design pattern for
different algorithms to be executed by a ScheduleObject. The
ScheduleObject::setStrategy method registers a particular algorithm with the
ScheduleObject. The registered algorithm can then access the objects associated with
the ScheduleObject. The ScheduleObject::execute method invokes a kind of Strategy
that is registered with the ScheduleObject. With the Java runtime method resolution,
the setStrategy and the execute method allows a ScheduleObject to switch between
different algorithms during program execution. This is useful for implementing hyper
heuristics, which are heuristics for selecting other heuristics.
We use the strategy design pattern to implement the automatic timetabling algorithms
and the objective functions. As seen in Figure 2, the Lesson, SubjectOffered and
SubjectGroup are all a kind of ScheduleObject, and this means that different levels of
timetabling algorithms and objective functions can be implemented on each of these
ScheduleObjects. When a timetabling algorithm is executed, automatic scheduling is
performed on the ScheduleObject. When an objective function is executed, the
objective function value of the ScheduleObject is evaluated.

Algorithm1

schedule()
setClient()

1
Strategy <interface>

execute()
setClient()

0..*ScheduleObject

execute()
setStrategy()

1 0..*employs >

Algorithm2

schedule()
setClient()

Algorithm N

schedule()
setClient()

...

Fig. 3: A strategy pattern for flexible algorithms selection

Swee-Chuan Tan
An Object Oriented Timetabling Framework

36

Implementation of the timetabling algorithms
The kind of timetabling algorithm used depends on the kind of ScheduleObject. For
the Lesson objects, we implemented four simple timeslot search algorithms. The first,
CHRONOLOGICAL_SEARCH, searches for a suitable lesson timeslot from the
earliest start time until the latest end time of a lesson. By suitable we mean a timeslot
that satisfies all the constraints. The second, RANDOM_SEARCH, randomly
searches a suitable timeslot for a lesson. The third, PREFERENCE_SEARCH,
searches for a preferred and suitable timeslot. The fourth, LESSON_EXCHANGE,
exchanges the timeslot positions of two lessons, if both lessons satisfy the constraints.
The Lesson algorithms are the lowest level heuristics and are used by the
SubjectOffered algorithms. We implemented a constructive algorithm that schedules
all the Lessons in the SubjectOffered. The algorithm, CONSTRUCT, constructs a mini
timetable for each SubjectOffered by scheduling each lesson with
CHRONOLOGICAL_SEARCH. Once an initial solution is in place, it is accepted by
the local search algorithms that perform local moves of lessons to timeslots with
RANDOM_SEARCH, PREFERENCE_SEARCH or LESSON_EXCHANGE, and
then the new neighborhood solution is computed. The decision on whether a
neighborhood solution is accepted depends on the local search algorithm used. We
have implemented three simple versions of local search algorithms for the
SubjectOffered, namely the hill climbing, simulated annealing and tabu search (e.g.
see [1]).

The first, HILL_CLIMBING, accepts a neighborhood solution (S’) only if S’ is better
than the current solution (S). The search repeats until no better solution can be found
or when the maximum trials have been reached.

The second, SIMULATED_ANNEALING, is a stochastic approach that simulates the
slow cooling of a physical system. This approach to combinatorial problems was
proposed by Kirkpatrick [21]. Since its introduction, Simulated Annealing techniques
have been studied extensively and later applied in timetabling (e.g. see [2], [26]) with
good results. In Simulated Annealing S’ is accepted if it is better than S, otherwise S’
is accepted only if PAccept is > exp (-∆C/T). PAccept is the acceptance probability, ∆C is
the difference between the cost of solutions S’ and solutions S, and T is the
temperature that decreases slowly. Initially, T is large and exp (-∆C/T) is small and
most S’ are accepted. As T decreases, exp (-∆C/T) gets larger and the chance of
accepting a lousy S’ become smaller. At this stage of development, we experimented
the algorithm at an initial temperature of 50, and a cooling rate of 0.98 and the
algorithm produces reasonable outputs.

The third, TABU_SEARCH, maintains a tabu list that stores some earlier moves and
forbids subsequent moves on the tabu list. Tabu search was originally proposed by
Glover [18], and has been applied in classical or specific optimization problems. In
particular, there are many reports on the applications of Tabu Search techniques in the
timetabling literatures (e.g. see [24], [28]). TABU_SEARCH accepts a neighborhood
solution only if the move is not in the tabu list and S’ is better than S, or when S’ does
not deteriorate too far from S.

International Journal of Information Technology, Vol. 9 No. 1

37

The three local search algorithms run at the SubjectOffered level. At the SubjectGroup
level, we consider the use of hyperheuristics to schedule the SubjectOffereds to
optimize the overall timetable solution quality. Hyperheuristics are domain
independent heuristics that operates at a higher level of abstraction than the
metaheuristics. We implemented the SIMPLE_HYPER, a simple hyperheuristic that
selects the SubjectOffered heuristic to be used at any given time, depending on the
contribution of each heuristic to the timetable solution quality. Firstly, it selects a
construction algorithm that creates an initially feasible timetable. Secondly, it
improves the timetable solution quality by using the appropriate local search
algorithms. There are many ways to select which algorithms to use. The
SIMPLE_HYPER chooses the algorithms that can at least contribute to the solution
quality. The decision as to when to change an algorithm is dependent on the objective
function improvement value FN at iteration step N, where FN ß α. FN-1 + ∆FN. The
control parameters are α and τ. α is a real value such that 0 < α < 1 and it defines the
amount of importance given to the historical contributions of a heuristic. τ is a
threshold value such that if FN is less than τ, the current algorithm is replaced by
another algorithm, otherwise the current algorithm is executed and ∆FN+1 and FN+1 are
computed. The process is repeated until the timetable solution is of acceptable quality
or when the maximum trails have been reached.

Implementation of the Objective Functions
As mentioned, different objective functions can be registered with the
ScheduleObject. A Lesson objective function evaluates the solution quality of a
lesson. We use the following penalty rules to evaluate a lesson:

• If a lesson is scheduled at a preferred timeslot, the penalty value is zero.
• If a lesson is not scheduled at a preferred timeslot but is just next to the

preferred slot, a penalty value of two is given.
• If a lesson is not scheduled at the preferred timeslot and is not next the

preferred slots, a penalty value of five is given.
• If a lesson is not scheduled at all, the penalty value is ten.

To compute the total penalty value, the SubjectGroup sums the SubjectOffereds’
objective functions, and each SubjectOffered in turn sums the Lessons’ objective
functions. The objective is to minimize the total penalty value.

Resource manager
As seen in Figure 4, the abstract ResourceManagerBase declares the basic
responsibilities for managing a pool of resources. These basic responsibilities are
abstract methods for resources allocation, retrieval, and availability updates. The
ResourceManager must implement all the abstract methods as defined in
ResourceManagerBase. For example, the ResourceManager implements the actual
resource (venue, instructor, equipment etc.) allocation logic for each lesson. The
allocation logic involves checking the type of room to be used, the room capacity and
the availability of the resources.

Swee-Chuan Tan
An Object Oriented Timetabling Framework

38

...

1 ResourceManagerBase {abstract}1ScheduleObject {abstract} 11
employs >

Laboratory InstructorClassRoom

Calendar

*

ResourceManager

venue
instructor
equipment

allocateResource()
getResources()

*

Resource

name
capacity

init()
getName()
getCapacity()

< uses

**

< manages

Equipment

Fig. 4: A class diagram for the resource management section

Constraint manager
As seen in Figure 5, the ConstraintManagerBase manages a set of constraints, and
decides when and what constraints to enforce during a timetabling process. The
ConstraintManager has an integer specifying the cutOffLimit (which ranges from 1 to
6) and it holds a set of constraints extended from the GeneralConstraint. Each
GeneralConstraint has a Boolean flag enable and an integer specifying the
importanceLevel (which ranges from 1 to 6). If a constraint is enabled and its
importanceLevel is more than the cutOffLimit, the constraint will be validated,
otherwise it is not used in constraint validation. The constraints are validated when
there is an attempt to modify the timetable schedule. Constraint violations are thrown
as Java exceptions so that the violation messages can be logged or reported to the user
interface. By arranging the constraints with increasing importance levels, constraints
can be relaxed or enforced gradually by adjusting the cutOffLimit. Examples of
specific constraints include “Schedule room with correct capacity”, “Do not schedule
already scheduled lesson”, “Schedule lesson within earliest start time and latest end
time”, and “Do not schedule lesson across break points”, …etc.

International Journal of Information Technology, Vol. 9 No. 1

39

General Constraint

importanceLevel
enabled

enable()
disable()
setImportanceLevel()
getImportanceLevel()
check()
abstract fire()

ConstraintListener <<Interface>>

check()
setLesson(Lesson aLesson)

ConstraintManagerBase {abstract }

cutOffLimit
exceptionLog

setClient()
checkAllConstraints()
getConstraintByName()
addConstraintListener()
saveExceptions()

ScheduleObject {abstract}

exceptionLog
count

addConstraintListener()
checkAllConstraints()
saveExceptions()

employs >

ConstraintManager

checkAllConstraints()

Fig. 5: A class diagram for the constraint management section

3 A PART TIME COURSE TIMETABLING APPLICATION

The problem

We built a prototype application that is instantiated from the framework. We consider
a computer school offering part-time courses for working adults. The school has 7
computer labs and 7 classrooms, and they employ a number of part-time contract
instructors. Students enroll at different times of the year and the school forms groups
of students to take up subjects offered. Each student group has about 10 to 25
students. Each subject offered is conducted once or twice in a week and covers 10
practical and 5 theory lessons. Typically each subject offered lasts from 8 to 15
weeks, depending on how frequently the class is conducted. Currently, there is a
maximum of 14 subjects offered over about 4 months, thus resulting in about 210
lessons to be scheduled over 4 months. Constructing the timetable involves entering
the course, resource and student information. These include details of the subjects
offered, the student groups taking up the subject, the classrooms, computer
laboratories, instructors and equipment used. The part-time students attend lessons
according to the following time arrangement:

Monday to Friday 1 timeslot: 7:00 PM to 10:00 PM
Saturday, Sunday 1 timeslot: 2:00 PM to 5:00 PM
Public Holiday and Holiday Eve No Lessons

Table 1: Time arrangment for part time course

This application is to create a timetable for 120 days, that is, 120 timeslots. A timeslot
translation table gives the date and time meaning of each timeslot:

Swee-Chuan Tan
An Object Oriented Timetabling Framework

40

Timeslot Date/Time Details
0 01/Sep/2002 2-5 PM Sunday
1 02/Sep/2002 7-10PM Monday
… …
119 29/Dec/2002 2-5 PM Sunday

Table 2: Timeslot translation table

Timetabling algorithms are implemented at three levels, namely at the SubjectGroup
level, the SubjectOffered level and the Lesson level. During timetable construction,
each lesson is allocated with one venue, instructor and equipment. The objective is to
allocate the timeslot of each Lesson according to the predefined time preference as
specified in a TimePreference class. Subject to:

• No Resource can be involved in two Lessons at the same time
• No ScheduleObject (i.e. Lesson, SubjectOffered, SubjectGroup) can be

involved in two or more Lessons at the same time
• No StudentGroup can be involved in two or more Lessons at the same time
• All Lessons must be scheduled within the Earliest Start time and the Latest

End time of the Lesson
• Use only venues with enough seating capacity for any StudentGroup

attending the Lesson
• Do not schedule an already scheduled Lesson
• Do not schedule a Lesson on BreakPoints (e.g. public holidays)

The above constraints can be conceptualized using OCL and implemented using Java
programming. As an example, we show how one of the constraints is defined below:

Step 1) Express the constraint in natural langauge:
• All Lessons must be scheduled within the Earliest Start time and the Latest

End time of the Lesson

Step 2) Define the constraint with an OCL expression as shown in Figure 6.

OCL Expression

Fig. 6: An OCL expression that states that a lesson must be scheduled within earliest start and latest end

Context Lesson inv:
Lesson.allInstances->forAll(

l: Lesson
| l.isScheduled()
implies (l.actualStart >= l.earliestStart
and ((l.actualStart + l.duration) <= l.latestEnd)

)

International Journal of Information Technology, Vol. 9 No. 1

41

Step 3) Realize the OCL constraint using Java programming as shown in Figure 7.

Java Realization

Fig. 7: A Java program that realizes the OCL constraint stated in Figure 6

An extension of OCL to include objectives

Besides the hard constraints, soft constraints can be represented using an extended
version of OCL. The explanation of the extension is as follows:

• Constraint Type
The keyword soft represents the type of constraint which is soft, rather than invariant.

• Objectives
There are two possible objectives: maximize or minimize. The keyword maximize
(resp. minimize) represents a maximization (resp. minimization) objective. When
applied to a collection, it intends to maximize (resp. minimize) the size of the
resultant collection. When applied to a collection operation (such as count() or sum())
or any other values returned by the OCL expresson, it intends to maximize (resp.
minimize) the value returned. Thus, the OCL extended to support soft constraints will
have the general form:

Context class soft:
Objective (the size of the resultant collection in OCL expression)

or
Context class soft:

Objective (the value returned by the OCL expression)

As an example, we consider the objective to be the minimization of the number of
lessons scheduled at undesirable timeslots, which can be declared as:

class ScheduleLessonWithinEarliestStart_LatestEnd extends GeneralConstraint {
 ScheduleLessonWithinEarliestStart_LatestEnd (Lesson aLesson) {
 super(aLesson);
 }

 public boolean fire() throws Exception {
 boolean result = true;
 if (myLesson.isScheduled) {
 if ((myLesson.planStart < myLesson.earliestStart)||
 ((myLesson.planStart+myLesson.duration-1)>myLesson.latestEnd)){
 result = false;

 throw new ScheduleLessonWithinEarliestStart_LatestEnd_Violation();
 }
 }
 return result;
 }
}

Swee-Chuan Tan
An Object Oriented Timetabling Framework

42

(Objective) Try to minimize the number of Lessons scheduled at undesirable timeslots.

Fig. 9: An extended OCL constraint that expresses the optimization objective

The computeUndesirableTimeSlots () method assigns the penalty values to lessons
based on the rules described earlier.

4 TEST RESULTS

A prototype application is developed using Microsoft AccessTM. It allows users to
maintain the timetabling data and generate the timetable. Timetabling data includes
courses, students, resources and lessons requirements. Users can edit time preference
for each subject, update the availability of lessons and resources, edit the constraints,
objective functions, and the timetabling algorithms. It takes a resonable 6 to 7 minutes
on a Pentium-III ® 600 MHz personal computer to construct a timetable with 210
lessons. We tested the framework application with 3 local search algorithms and
observed the average running time and average solution quality over different input
sizes. The test results are tabulated as follows:

Running Time (Minutes) Quality (Objective Function Value)
Number of
Lessons

Hill
Climbing

Simulated
Annealing

Tabu
Search

Hill
Climbing

Simulated
Annealing

Tabu
Search

56 0.3 0.3 0.4 0 0 0
140 0.9 0.6 0.9 0 0 0
224 6.0 4.9 6.7 118 157.5 121
280 9.3 7.6 10.1 704.3 694.3 701.3
420 10.4 11.2 10.2 2385 2410 2378.9

Table 3: Running time and objective function test results of different algorithms

Analysis of test results

With the algorithm parameters unchanged, the three algorithms show similar average
running times and similar average solution qualities with respect to different number
of lessons. The similarities occur mainly because the three algrothims use the same
local search framework. However, these algorithms will behave differently if there are
significant differences in their individual heuristics and parameters. Furthermore, we
observed that the penalty value is zero for up to about 200 lessons. However, beyond
200 lessons the solution quality deteriorates very quickly, with 224 lessons having
about 10% of the lessons (according to the penalty rules described earlier) scheduled

Context SubjectOffered soft:
{

minimize self.getTimePreference().computeUndesirableTimeSlots()
}

International Journal of Information Technology, Vol. 9 No. 1

43

at undesirable timeslots, and any input sizes more than 224 lessons have the penalty
values grows exponentially. This phenomenon occurs because the available preferred
timeslots are already very limited with 224 lessons. While the main theme of this
work is not on novel algorithms, the results demonstrate that the framework is feasible
with different algorithms, constraints and objective functions and can be used to build
practical educational timetabling applications. To ascertain that the framework is
usable at a larger scale, we expanded the problem size 5 times, that is, there are 1120
lessons to be scheduled over 600 timeslots. The average time taken is 42 minutes and
the total penalty value is about 800. Although we have yet to breakdown the
component values that make up the total penalty value, we know that it means a worst
case of 160 (out of 1120) lessons not being scheduled to the preferred timeslots, and
we are very confident to improve this situation in the near future. We also tested that
the SIMPLE_HYPER is effective in choosing a proper heuristics. We intentionally
assign a heuristic, TABU_SWAP, a tabu search that uses lesson exchange as its local
move. With an α of 0.95 and a τ (threshold) of 0.5, the SIMPLE_HYPER is able to
identify that the TABU_SWAP cannot contribute at all for 60 iterations, and another
algorithm (TABU_SEARCH) is used to replace the TABU_SWAP. After the
replacement of the algorithm, the total penalty value begins to drop and finally
produce a reasonable timetable. Our future work is to develop more robust
hyperheuristics that are domain independent, and yet able to produce reasonable
result.

Evaluation of the program

This program has the following benefits and limitations:

a) Flexible Constraints Maintenance
Most commercial timetabling applications offer a set of predefined constraints and
objectives. Users can enable/disable or change the weight of the constraints and
objectives, but are unable to add new constraints or modify existing ones when the
need arises. Adding new constraints to such programs normally involves modifying
the original source code and recompiling the whole set of code and re-testing it, and
this is costly! The current framework program allows the user to define new
constraints and objectives using OCL, and build separately compiled Java code for the
constraints, and there is no need to recompile the whole framework.

b) Flexible Timetabling Algorithms Maintenance
Commercial timetabling applications normally prescribe a fixed timetabling algorithm
with the assumption that the algorithms will be always effective with a fixed set of
constraints. However, real life systems are rarely static. When a timetabling system
allows flexible constraints maintenance and supports a range of applications in the
same domain, it is important to allow the users to change the algorithms as and when
it is needed. The current timetabling framework demonstrates that it is easy to switch
between different local search algorithms. In addition, programmers can
add/remove/modify algorithms without changing and recompiling the invariant part of
the framework.

Swee-Chuan Tan
An Object Oriented Timetabling Framework

44

c) Still requires programmer for maintenance
The maintenance of constraints, objective functions and algorithms would still require
the expertise of programmers, and such work cannot be done by the end users alone.
In particular, the programmers must understand the UML class diagram, be able to
express constraints using OCL and realize the constraints using Java programming.

d) Does not suggest the best algorithm to use
Although the SIMPLE_HYPER is able to choose a suitable timetabling algorithm, it
does not necessarily choose the best algorithm. Furthermore, some processing time is
required for the software to ‘test and see’ which algorithm is suitable. We are
currently considering approaches to allow the framework to learn the effectiveness of
each algorithm given an input instance.

5 CONCLUSION

We have presented the idea of an OO framework approach, which allows us to build
timetabling applications that lead to an extensible structure, and allow flexible
algorithm selections and constraints maintenance. We have constructed an OO
framework for the educational timetabling domain, and the framework was described
using UML. We have demonstrated that the OCL is useful in expressing the
constraints, and provides intuitive realization of the constraints with Java
programming. We have demonstrated this by creating a Part Time Course
Timetabling System. The results obtained showed that the OO framework approach is
feasible for timetabling application developments and suggest wider applicability to
other timetabling problem domains.

REFERENCES

[1] Aarts, E., Lestra, J.K., "Local Search in Combinatorial Optimization", John Wiley
& Son, Chichester, 1997.

[2] Abramson, D., "Constructing school timetables using simulated annealing:
sequential and parallel algorithms'', Management Science, 37(1), 98-113, 1991.

[3] Andreatta, A.A., Carvalho, S.E.R., Ribeiro, C.C., "An object-oriented framework
for local search heuristics”, Technical report, Department of Computer Science,
Catholic University of Rio de Janerio, 1998.

[4] Booch, G., Rumbaugh, J., Jacobson, I., "Unified Modeling Language User Guide",
Addison-Wesley Object Technology Series, 1999.

International Journal of Information Technology, Vol. 9 No. 1

45

[5] Burke, E., Erben, W., editors, "Proceedings of the 3rd International Conference on
the Practice and Theory of Automated Timetabling", number 2079 in Springer
Lecture Notes in Computer Science Series, 2001.

[6] Burke, E., De Causmaecker, P., editors, "Proceedings of the 4th International
Conference on the Practice and Theory of Automated Timetabling", to appear in the
Springer Lecture Notes in Computer Science Series, 2003.

[7] Burke, E., Petrovic, S., Qu, R., "Case-Based Heuristic Selection for Examination
Timetabling", Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning, 2002.

[8] Cowling, P., Kendall, G., Soubegia, E., "A Hyperheuristic Approach to
Scheduling a Sales Summit", Proceedings of the 4th Metaheuristics International
Conference, 127-132, 2001.

[9] de Werra, D., "An introduction to timetabling,'' European Journal of Operational
Research, 19, 151-162, 1985.

[10] Even, S., Itai, A., and Shamir, A., "On the complexity of timetabling and
multicommodity flow problem". SIAM Journal of Computation. 5:691-703, 1976.

[11] Fayad, M.E., Schmidt, D.C., "Special issue: Object-oriented application
frameworks", Communications of the ACM, 40 (10):32-87, 1997.

[12] Ferland, J.A., Hertz, A., Lavoie, A., "An Object-Oriented Methodology For
Solving Assignment-Type Problems with Neighborhood Search Techniques",
Operations Research Vol. 44, 347-359, 1995.

[13] Fowler, M., Scott, K., "UML Distilled", Addison-Wesley, 1997.

[14] Fink, A., Voß, S., "Reusable Metaheuristic Software Components and their
Application via Software Generators", Proceedings of the 4th Metaheuristics
International Conference, 637-642, 2001.

[15] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,“Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison Wesley. October 1994.

[16] Gaspero, L.D., Schaerf, A., “EASYLOCAL++: an object-oriented framework for
the flexible design of local search algorithms and metaheuristics.”, In Proceedings of
the 4th Metaheuristics International Conference (MIC'2001). 2001.

[17] Gaspero, L.D., Schaerf, A., “A case-study for EasyLocal++: the Course
Timetabling Problem”, Research report UDMI/13/2001/RR, University of Udine,
October 2001.

Swee-Chuan Tan
An Object Oriented Timetabling Framework

46

[18] Glover, F., Laguna, M., "Tabu search." In: C.R. Reeves (ed.) Modern Heuristic
Techniques for Combinatorial Problems. Blackwell, Oxford, 70 - 150.

[19] Gröbner, M., Wilke, P., "A General View on Timetabling Problems",
Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling", 221-227, 2002.

[20] Kingston, J.H., "Modelling Timetabling Problems with STTL", Proceedings of
the 3rd International Conference on the Practice and Theory of Automated
Timetabling, 433-445. 2000.

[21] Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, "Optimization by Simulated
Annealing", Science, 220, 4598, 671-680, 1983

[22] Michel, L., Hentenryck, P.V., "A constraint-based architecture for local search",
Proceedings of the 17th ACM conference on Object-oriented programming, systems,
languages, and applications, 83-100, 2002.

[23] Schaerf, A., "A survey of automated timetabling", Technical Report, CWI-
Amsterdam. 1995.

[24] Schaerf, A., "Tabu search techniques for large high-school timetabling
problems”, Technical Report, CWI-Amsterdam, 1996.

[25] Schaerf, A., Lenzerini, M., Cadoli, M., "LOCAL++: A C++ Framework for
Local Search Algorithms", Software Practice & Experience, 30(3), 233-256. 2000.

[26] Thompson, J., Dowsland, K., "General Cooling Schedules for Simulated
Annealing Based Timetabling Systems", Proceedings of the 1st International
Conference on the Practice and Theory of Automated Timetabling, 1995.

[27] Warmer, J., Kleppe, A., "The Object Constraint Language: Precise Modelling
with UML", Addison-Wesley, 1999.

[28] White, G. M., Zhang, J., "Generating Complete University Timetables by
Combining Tabu Search with Constraint Logic", Proceedings of 2nd International
Conference on the Practice and Theory of Automated Timetabling, 268-277, 1997.

